
Coupling Policy Iterations with Piecewise Quadratic
Lyapunov Functions

Assalé Adjé
Université of Perpignan Via Domitia

LAMPS
France

assale.adje@univ-perp.fr

ABSTRACT
We recently constructed piecewise quadratic Lyapunov func-
tions to compute overapproximations over the reachable val-
ues set of piecewise affine discrete-time systems. The over-
approximations can be viewed as the solutions of an in-
verse problem. However these overapproximations can be
loose. In this paper, we refine the latter overapproximations
extending previous works combining policy iterations with
quadratic Lyapunov functions.

1. INTRODUCTION
Several catastrophic events showed the importance of the

formal verification of programs. Some of these failures are
caused by overflows. A method to prove the absence of over-
flows in numerical programs consists in providing precise safe
bounds over the values taken by the variable of the analyzed
program.

In this paper, we are interesting in a particular class of nu-
merical programs: single while loop programs with a switch-
case structure inside the loop body. Moreover, we suppose
that test and assignment functions are affine. Such a pro-
gram can be represented as a piecewise affine discrete-time
system. To compute bouns over the values taken by the
variable of the analyzed program is thus reduced to over-
approximate the reachable values set of a piecewise affine
discrete-time system. Hence, we propose to compute auto-
matically precise bounds over piecewise affine discrete-time
systems using policy iterations and piecewise quadratic Lya-
punov functions.

Initially the policy iterations algorithm solves stochastic
control problems [16] which are equivalent to solve fixed
point problems involving maxima of affine functions. The
policy iteration algorithm was then extended to zero-sum
two-player stochastic games [15], this extension allows the
computation of the unique fixed point of a contractive piece-
wise affine function. The very first extension of the pol-
icy iterations algorithm in program analysis was in 2005 by
Costan et al [9]. Since then, the use of policy iterations in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC’17, April 18-20, 2017, Pittsburgh, PA, USA
c© 2017 ACM. ISBN 978-1-4503-4590-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3049797.3049825

various verification problems greatly increases: in [3, 14],
the authors describe a policy iteration algorithm to overap-
proximate the reachable values set of numerical programs
with affine assignments; in [19], the author proves termina-
tion using policy iterations; in [26, 28] the authors propose
to embed policy iterations for programs dealing with both
numerical and boolean variables.

The method developed in [2] allows to compute bounds
over the state-variable of a piecewise affine system. The
method relies on the synthesis of a piecewise quadratic Lya-
punov function for the considered system. The optimal value
of the formulated maximization problem furnishes an upper
bound on the maximal value of the Euclidian norm of the
state variable. This upper bound can be very loose since
it combines all the coordinates together. To obtain tigher
results, we propose to use a templates based method. A
templates method consists in representing sets as sublevel
sets of given functions called templates. Then an overap-
proximation in this context is computed from a vector of
bounds over the templates. The most precise overapproxi-
mation with respect to these templates is provided by the
vector of bounds satisfying a smallest fixed point equation.
In our context, the generated piecewise quadratic Lyapunov
function is used as a template. We complete the templates
basis by the square of variables. Finally we use policy it-
erations to solve the (smallest) fixed point equation. Thus,
the developed policy iterations algorithm leads to tighter
bounds over the reachable values set.

Related Works. The use of a quadratic Lyapunov function
as a quadratic template was explicitly done in [25] but one
quadratic Lyapunov function is not sufficient to prove the
boundedness of reachable values set of a piecewise affine
system unless it exists a common quadratic Lyapunov func-
tion. Then, we deal with piecewise quadratic Lyapunov
functions. Hence the works on the computation of piece-
wise quadratic Lyapunov functions [11, 12, 17, 21] are also
related to this paper. Their authors are interested in prov-
ing stability of piecewise affine systems. However, as classi-
cal quadratic Lyapunov functions, piecewise quadratic Lya-
punov functions provide sublevel invariant sets for the con-
sidered system. We use this latter interpretation for a ver-
ification purpose to compute an overapproximation of the
reachable values set.

In this paper, we aboard the reachability problem as we
are interested in reachable values sets. In [6], the authors
consider the complexity of some reachability problem such
as: Is a certain value can be attained? When this value is at-

143

tained?...In our work, we do not consider complexity issues
but we want to represent a reachable value set in a com-
putable way. So we avoid complexity issues by using com-
putable representations which present some conservatism.
We can cite the work of Rakovic et al [23]. The authors
propose to deal with set invariance and present some results
about sets that are invariant according to certain piecewise
affine dynamics and some control. In our work, we are inter-
esting in computing invariants set that contain initial con-
ditions and thus the whole reachable value sets.

Another interesting tool could be the tropical polyhedra
domain [4]. It generates disjunctions of zones as invariants.
Nevertheless, the latter invariants did not encode quadratic
relations between variables.

The works about verifying hybrid systems (see [27] and
references therein) could give us some inspirations. First,
the studies concern continuous dynamics whereas we are in-
terested in discrete-time systems. Up to some adaptation,
this first inconvenient could be overcomed. Second, tools to
study safety problems are mainly limited to a bounded time
analysis and perform a huge number of steps to obtain a
sufficient precision. We propose to compute a safe guaran-
teed overapproximation which is valid whatever the time in
a small number of iterations.

Policy iteration algorithms in templates domain proposed
in [3] used quadratic templates and did not handle piecewise
quadratic templates. In this paper, we adapt policy itera-
tion based on Lagrange duality [1] to piecewise quadratic
functions.

Contributions. The first contribution of the paper is the
formalisation of piecewise quadratic Lyapunov functions to
compute an overapproximation of the reachable values set of
a piecewise affine discrete-time dynamical system. This for-
malisation uses the theory of cone-copositive matrices which
is also an original contribution in this context.

The main contribution of the article is the extension of
the policy iterations algorithm to the piecewise quadratic
templates. Indeed, a policy iterations algorithm has just
been constructed in the case of quadratic functions.

Notations. Numbers. N denotes the set of nonnegative in-
tegers, then for d ∈ N, [d] = {1, . . . , d}. R is the set of reals,
R+ the set of nonnegative reals and Rd denotes the set of
vectors of d reals. We denote by ℘(Rd) the set of subsets of
Rd.

Inequalities. For y, z ∈ Rd, y < z (resp. y ≤ z) means
∀ l ∈ [d], yl < zl, (resp. ∀ l ∈ [d], yl ≤ zl) and y ≤w,s z is a
mix of weak and strict inequalities.

Matrices. Mn×m is the set of matrices with n rows and m
columns. 0n,m and 0n are respectively the null matrices of
Mn×m and Mn×n. Idn is the identity matrix of Mn×n. Mᵀ

is the transpose of M ∈ Mn×m. Sn is the set of symmetric
matrices of size n× n. A � 0 means that A is semi-definite
positive i.e. A ∈ Sd and ∀x ∈ Rd, xᵀAx ≥ 0. S+

d is the
convex cone of semidefinite positive matrices.

2. PIECEWISE AFFINE DISCRETE-TIME
SYSTEMS

Our very first motivation is the verification of programs.
Indeed, we want to prove that the values taken by the vari-
able of the program are bounded. To prove it, it suffices to

compute bounds over the values taken by each variable. The
considered programs consist of a single loop with possibly a
complicated switch-case type loop body supposed to be writ-
ten as a nested sequence of if then else (ite for short) state-
ments, or a switch c1 → inst1; c2 → instr2; c3 → instr3.
Moreover, we assume that the analyzed programs are writ-
ten in affine arithmetic: the assignments of the programs
are of the form vj =

∑d
i=1 aivi + c where ai and c are

scalars and vj denotes a variable of the program. So, the
programs analyzed here can be viewed as piecewise affine
discrete-time systems as we can see at Example 1. In the
rest of the paper, we only consider piecewise affine discrete-
time systems. Finally, the verification problem boils down
to compute an overapproximation of the reachable states of
a piecewise affine discrete-time system.

Piecewise affine systems (PWA for short) are defined as
systems the dynamic of which is piecewise affine. Thus the
dynamic is characterized by a polyhedral partition and a
family of affine maps relative to this partition. Here, a poly-
hedral partition is a family of convex polyhedra such that:⋃

i∈I

Xi = Rd and ∀ i, j ∈ I, i 6= j Xi ∩Xj = ∅ . (1)

The convex polyhedron Xi can contain both strict and weak
inequalities and is represented by T i ∈ Mni×m and ci ∈ Rni .
We denote by T is (resp. T iw) and cis (resp. ciw) the parts of
T i and ci corresponding to strict (resp. weak) inequalities:

Xi =
{
x ∈ Rd

∣∣T ix ≤w,s ci}
=
{
x ∈ Rd

∣∣T isx < cis, T
i
wx ≤ ciw

} (2)

Definition 1 (Piecewise Affine System). A PWA is
characterized by the triple (X0,X ,A) where:

• X0 is the polytope of the initial conditions of the form (2);

• X := {Xi, i ∈ I} is a polyhedral partition i.e. satisfy-
ing (1);

• A := {x 7→ f i(x) = Aix+ bi, i ∈ I} where Ai ∈ Md×d
and bi ∈ Rd;

And satisfies the following relation for all k ∈ N:

x0 ∈ X0, if xk ∈ Xi, xk+1 = f i(xk) . (3)

Let P = (X0,X ,A) be a PWA. We need some notations for
the rest of the paper. First we define the reachable values
set R of P :

R :=
⋃
k∈N

Ak(X0), where A(x) = f i(x) if x ∈ Xi (4)

We define the set of possible switches:

Sw := {(i, j) ∈ I2 | R ∩Xij 6= ∅}
where Xij = Xi ∩ f i−1

(Xj) .
(5)

Finally, we define the set of indices of polyhedra of X which
meet the polyhedron of possible initial conditions:

In := {i ∈ I | Xi0 6= ∅} where Xi0 = Xi ∩X0 . (6)

We introduce for i ∈ I, the following matrix of M(d+1)×(d+1):

F i =

(
1 01×d
bi Ai

)
. (7)

Eq. (3) can be rewritten as (1, xk+1)ᵀ = F i(1, xk).

144

Example 1. Let us consider the following program : a
single while loop with a ite instruction in the loop body.

(x , y)∈ [0, 3]× [0, 2] ;
w h i l e (t r u e){

ox=x ;
oy=y ;
i f (3∗ ox+8∗oy < −3){

x =0.4197∗ox−0.2859∗ oy +2;
y=−0.5029∗ox +0.1679∗ oy +5;

}
e l s e { \\3∗ ox+8∗oy>=−3

x =−0.0575∗ox−0.4275∗oy−4;
y=−0.3334∗ox−2682∗oy +4;

}
}

The initial condition X0 of the piecewise affine systems
is (x, y) ∈ [0, 3] × [0, 2]. We can rewrite this program as a
piecewise affine discrete-time dynamical systems using our
notations. To do so, we have to exhibit the matrices T is and
T iw and vectors cis and ciw (see Eq. (2)) and the matrices F i

(see Eq. (7)):

F 1 =

(
1 0 0
2 0.4197 0.2859
5 0.5029 0.1679

)
,

{
T 1
s = (3 8)

c1s = −3

F 2 =

(
1 0 0
−4 −0.0575 0.4275
4 −0.3334 −0.2682

)
,

{
T 2
w = (−3 −8)

c2w = 3

We are interested in computing automatically precise over-
approximation of R. First, we propose to compute an over-
approximation of R as a set S ⊆ Rd such that X0 ⊆ S and
∀ i ∈ I, x ∈ S ∩ Xi =⇒ Aix + bi ∈ S. From the lat-
ter invariance condition, a sublevel of a Lyapunov function
containing the initial states can be such a set S.

From now on, we consider a fixed P = (X0,X ,A) follow-
ing Def. 1.

3. WEAK PIECEWISE QUADRATIC LYA-
PUNOV FUNCTIONS

In this paper, we use weak piecewise quadratic Lyapunov
functions to compute directly an overapproximation of reach-
able values set.

Let q be a quadratic form i.e. a function such that for all
y ∈ Rd, q(y) = yᵀAqy+bᵀqy+cq where Aq ∈ Sd, bq ∈ Rd and
cq ∈ R. We define the lift-matrix of q, the matrix of Sd+1

defined as follows:

M(Aq, bq, cq) = M(q) =

(
cq (bq/2)ᵀ

(bq/2) Aq

)
(8)

It is obvious that the q 7→ M(q) is linear. Let A ∈ Md×d,
b ∈ Rd, and q be a quadratic form, we have, for all x ∈ Rd:

q(Ax+ b) =

(
1
x

)ᵀ(
1 01×d
b A

)ᵀ

M(q)

(
1 01×d
b A

)(
1
x

)
.

(9)

Lemma 1. Let A ∈ Sd, b ∈ Rd and c ∈ R. Then: (∀ y ∈
Rd, yᵀAy + bᵀy + c ≥ 0) ⇐⇒ M(A, b, c) ∈ S+

d+1

Proof. It suffices to remark that for all t 6= 0, for all

y ∈ Rd, t2q(t−1y) =

(
1
y

)ᵀ

M(q)

(
1
y

)
.

Definition 2 ((Cone)-copositive matrices). Let M ∈
Mm×d. A matrix Q ∈ Sd is said to be M-copositive iff:

My ≥ 0 =⇒ yᵀQy ≥ 0

An Idd-copositive matrix is called a copositive matrix. We
denote by Cd (M) the set of M-copositive matrices and Cd

the set of copositive matrices.

The notion of cone-copositive matrix involves conic polyhe-
dra but can be easily extended to non-conic polyhedra by

using Mx ≤ p ⇐⇒
(

1 01×d

p −M

)(
1

x

)
≥ 0.

Lemma 2. Let q : Rd → Rd be a quadratic function. Let
M ∈ Mm×d, p ∈ Rm and consider C = {x |Mx ≤ p}. Then

M(q) ∈ Cd+1

((
1 01×d

p −M

))
=⇒ (q(x) ≥ 0, ∀x ∈ C).

We introduce the following matrices:

∀ i ∈ I, Ei =

(
1 01×d
ci −T i

)
, (10a)

∀ (i, j) ∈ I2, Eij =

 1 01×d
ci −T i

cj − T jbi −T jAi

 , (10b)

∀ i ∈ In, Ei0 =

 1 01×d
ci −T i
c0 −T 0

 . (10c)

We will denote by ni the number of rows of Ei, nij the
number of rows of Eij and ni0 the number of rows of Ei0.

Lemma 3. For all i ∈ I, Xi ⊆ {x | Ei(1 xᵀ)ᵀ ≥ 0},
for all (i, j) ∈ Sw, Xij ⊆ {x | Eij(1 xᵀ)ᵀ ≥ 0} and for all
i ∈ In, Xi0 ⊆ {x | Ei0(1 xᵀ)ᵀ ≥ 0}.

Definition 3 (wPQL functions). A function L is a
weak piecewise quadratic Lyapunov function (wPQL for short)
for P if and only if there exist a family {(P i, qi), P i ∈ Sd, qi ∈
Rd, i ∈ I} and two reals α and β such that:

1. ∀ i ∈ I, ∀x ∈ Xi, L(x) = Li(x) = xᵀP ix+ 2xᵀqi;
2. ∀ i ∈ I:

M(P i, 2qi,−α)−M(Id, 0,−β) ∈ Cd+1

(
Ei
)

; (11)

3. ∀ (i, j) ∈ Sw:

M(P i, 2qi, 0)− F iᵀM(P j , 2qj , 0)F i ∈ Cd+1

(
Eij
)

; (12)

4. ∀ i ∈ In:

−M(P i, 2qi,−α) ∈ Cd+1

(
Ei0
)
. (13)

Proposition 1 (Bounded trajectories). Suppose
that P admits a wPQL function represented by {(P i, qi), P i ∈
Sd, qi ∈ Rd, i ∈ I} and reals α and β. Let i ∈ I, Siα = {x ∈
Xi | Li(x) ≤ α} = {x ∈ Xi | xᵀP ix + 2xᵀqi ≤ α} and
S = ∪i∈ISiα. Then, R ⊆ S ⊆ {x ∈ Rd | ‖x‖22 ≤ β}.

Proof. First, we prove that S ⊆ {x ∈ Rd | ‖x‖22 ≤
β}. Let i ∈ I and x ∈ Xi. From Eq. (11), Lemma 2 and
Lemma 3, xᵀP ix+ 2xᵀqi − α− ‖x‖22 + β ≥ 0 which implies

that S ⊆ {x ∈ Rd | ‖x‖22 ≤ β}.

145

From Eq. (4), to prove the first inclusion, we have to show
that for all k ∈ N, Ak(X0) ⊆ S. We prove it by induction
on k. Let x ∈ X0. Since X satisfies (1), there exists a
unique i ∈ In such that x ∈ Xi0. From Eq. (13), Lemma 2
and Lemma 3, Li(x) ≤ α. Now suppose Ak(X0) ⊆ S for
some k ∈ N. Let y ∈ Ak+1(X0). Then y = A(x) for some
x ∈ Ak(X0). Since X satisfies (1), there exists an unique
(i, j) ∈ Sw such that x ∈ Xij (hence y ∈ Xj). As x ∈ Xi

and x ∈ S, then x ∈ Siα. From Eq. (12), Lemma 2 and
Lemma 3, 0 ≤ Li(x) − Lj(y) = Li(x) − α − (Lj(y) − α).
Finally y ∈ Sjα ⊆ S as x ∈ Siα.

3.1 Computational issues
To construct wPQL functions, we are faced with two is-

sues. First, we must know the sets of indices Sw and In.
Second we have to manipulate cone-copositive constraints.

3.1.1 The computation of sets Sw and In

To set Sw relies on R, the set we want approximate. To
overcome this issue, we just remove the intersection with R:

Sw := {(i, j) ∈ I2 | Xij 6= ∅} . (14)

The polyhedra Xi and Xj can contain strict inequalities.
Hence to compute Sw we need Motzkin’s theorem [22]. This
alternative theorem permits to compute exactly the set In.
The direct application of Motzkin’s transposition theorem [22]
yields to the next proposition.

Proposition 2. The couple (i, j) ∈ Sw if and only if:

 1 01×d
cis −T is

cjs − T js bi −T jsAi

ᵀ

ps +

(
ciw −T iw

cjw − T jwbi −T jw

)ᵀ

p = 0

∑
k

psk = 1, ps ≥ 0, p ≥ 0

has no solution.
The index i ∈ In if and only if:

 1 01×d
cis −T is
c0s −T 0

s

ᵀ

ps +

(
ciw −T iw
c0w −T 0

w

)ᵀ

p = 0

∑
k

psk = 1, ps ≥ 0, p ≥ 0

has no solution.

3.1.2 Cone-copositive constraints
The interested reader can refer to [7] a list of exciting

papers about the representation of cone-copositive matrices.

Proposition 3 (Th. 2.1 of [18]). For all M ∈ Mm×d,
we have:

{MᵀCM + S | C ∈ Cd and S ∈ S+
d } ⊆ Cd (M) (∆)

If the rank of M is equal to m, then (∆) is an equality.

The next proposition discusses a simple characterization of
copositive matrices.

Proposition 4 ([10, 20]). We have: ∀ d ∈ N: S≥0
d +

S+
d ⊆ Cd. If d ≤ 4 then Cd = S≥0

d + S+
d .

Corollary 1. Let M ∈ Mm×d. Then:

Cd (M) ⊇
{
Q ∈ Sd

∣∣∣∣ ∃Wp ∈ S≥0
m , W+ ∈ S+

m, s. t.
Q−Mᵀ (Wp +W+)M � 0

}
(?)

If M has full row rank and d ≤ 4, then (?) is actually an
equality.

The computation of copositive constraints is a quite recent
field of research. Algorithms exist (e.g. [8]) but for the
knowledge of the author no tools are available. In this pa-
per, in practice, we use Corollary 1 and we replace Cd (M)
by the right-hand side of Eq. (?).

3.1.3 Computation of weak piecewise quadratic Lya-
punov functions using SDP solvers

Finally, we construct wPQL functions using semidefinite
programming. We define the notion of computable wPQL
functions.

Definition 4 (Computable wPQL functions). A func-
tion L is a computable wPQL for P if and only if there exist
two reals α and β and four families:

• P := {(P i, qi), P i ∈ Sd, qi ∈ Rd, i ∈ I}

• W := {
(
W i
p,W

i
+

)
∈ S≥0

ni+1 × S+
ni+1, i ∈ I},

• U := {
(
U ijp , U

ij
+

)
∈ S≥0

nij
× S+

nij
, (i, j) ∈ Sw}

• Z := {
(
Zi0p , Z

i0
+

)
∈ S≥0

ni0
× S+

ni0
, i ∈ In}

such that:
1. ∀ i ∈ I, ∀x ∈ Xi, L(x) = Li(x) = xᵀP ix+ 2xᵀqi;
2. ∀ i ∈ I:

M(P i, 2qi,−α)−M(Id, 0,−β)
− Eiᵀ

(
W i
p +W i

+

)
Ei � 0 ;

(15)

3. ∀ (i, j) ∈ Sw:

M(P i, 2qi, 0)− F iᵀM(P j , 2qj , 0)F i

− Eijᵀ
(
U ijp + U ij+

)
Eij � 0 ;

(16)

4. ∀ i ∈ In:

−M(P i, 2qi,−α)− Ei0ᵀ
(
Z0i
p + Z0i

+

)
Ei0 � 0; (17)

Let us consider the problem:

inf
P,W,U,Z,

α,β

α+ β

s. t.

{
(P,W,U ,Z, α, β) satisfies (15), (16) and (17)
α ≥ 0, β ≥ 0

(PSD)
Problem (PSD) is thus a semi-definite program. The use of
the sum α + β as objective function enforces the functions
Lis to provide a minimal bound β and a minimal ellispoid
containing the initial conditions. The constraint β ≥ 0 is
obvious since β represents a norm. However, α ≥ 0 is less
natural but ensures that the objective function is bounded
from below. The presence of the constraint α ≥ 0 does
not affect the feasibility. Note that to reduce the size of the
problem, we can take qi = 0 and get an homogeneous wPQL
function.

We remark the presence of (1, 01×d) in the contruction
of matrices Ei, Eij and Ei0 (see Eqs (10)). It would be
more natural to express them without this vector. However,

146

when we replace the cone-copositivity constraints by right-
hand-side of Eq. (?), we allow symmetry as it is shown in
Example 2. The vector (1, 01×d) aims to break it.

Example 2 (Why (1, 01×d) in Eqs (10)?). Let us con-
sider X = {x ∈ R | x ≤ 1}. Let u(x) = (1, x), and
M = (1 − 1). Then X = {x |Mu(x)ᵀ ≥ 0}.

Now let W ≥ 0 and define X ′ = {x | u(x)MᵀWMu(x)ᵀ ≥
0}. Since u(x)MᵀWMu(x)ᵀ = Wu(x)MᵀMu(x)ᵀ = 2W (1−
x)2, X ′ = R for all W ≥ 0.

Now let us take E =
(

1 0
1 −1

)
and let W = (w1 w3

w3 w2) with

w1, w2, w3 ≥ 0 and define X = {x | u(x)EᵀWEu(x)ᵀ ≥ 0}.
Hence, u(x)Eᵀ (w1 w3

w3 w2)Eu(x)ᵀ = w1 + 2w3(1− x) +w2(1−
x)2. Taking for example w2 = w1 = 0 and w3 > 0 implies
that X = X.

Proposition 5. Assume that Problem (PSD) has a fea-
sible solution (P,W,U ,Z, α, β). Then:

1. The family P defines a wPQL function L;
2. There exists (P,W,U ,Z, α, β) satisfiying (15), (16) and

(17) if and only if Problem (PSD) is feasible;
3. Let (i, j) ∈ Sw. Let us define the permutation σ as

follows: σ(k) = ni if k = 1, k − 1 if 2 ≤ k ≤ ni and
k otherwise. and Pσ the associated permutation matrix1.
Then, we have:

F i
ᵀ
M(Id, 0, 0)F i

� M(P i, 2qi,−α) + M(0, 0, β)

−Eijᵀ
(
P ᵀ
σ

(
0ni−1 0ni−1,nj

0nj,ni−1 W j
p+W

j
+

)
Pσ + U ijp + U ij+

)
Eij ;

4. We have sup
x∈X0

‖x‖22 ≤ β;

5. Assume that (P,W,U ,Z, α, β) is optimal with α > 0.
Then, sup

x∈X0

L(x) = α.

Proof. 1. This follows readily from Corollary 1.
2. The ”if” part is obvious. Let us focus on the ”only if”

part and let S1 := (P,W,U ,Z, α, β) satisfiying (15), (16)
and (17). From Th. 1, β ≥ 0. Let us suppose that α < 0
otherwise the proof is finished. Let us prove that S2 :=
(P,W,U ,Z, 0, β − α) is feasible for Problem (PSD). First
β − α ≥ 0 since β ≥ 0 and α < 0. Second, M(P i, 2qi, 0) −
M(Id, 0,−(β−α))−Eiᵀ

(
W i
p +W i

+

)
Ei = M(P i, 2qi,−α)−

M(Id, 0,−β) − Eiᵀ
(
W i
p +W i

+

)
Ei thus S2 satisfies (15) as

S1 does. Since α and β do not appear in (16), S2 satis-
fies (16). Finally, −M(P i, 2qi, 0) − Ei0ᵀ

(
Z0i
p + Z0i

+

)
Ei0 =

−M(P i, 2qi, α−α)−Ei0ᵀ
(
Z0i
p + Z0i

+

)
Ei0 = M(0, 0,−α)−

M(P i, 2qi,−α) − Ei0
ᵀ (
Z0i
p + Z0i

+

)
Ei0. We conclude that

S2 satisfies (17) as S1 does.
3. Let (i, j) ∈ Sw. We have, M(P j , 2qj ,−α)−M(Id, 0,−β)
− Ejᵀ

(
W j
p +W j

+

)
Ej � 0. Hence, F i

ᵀ(
M(P j , 2qj ,−α) −

M(Id, 0,−β)−Ejᵀ
(
W j
p +W j

+

)
Ej
)
F i � 0. Thus, F i

ᵀ
M(P j ,

2qj ,−α)F i−F iᵀEjᵀ
(
W j
p +W j

+

)
EjF i � F iᵀM(Id, 0,−β)F i.

Hence, −F iᵀEjᵀ
(
W j
p +W j

+

)
EjF i+M(P i, 2qi, 0)−Eijᵀ

(
U ijp

+U ij+
)
Eij � F iᵀM(Id, 0,−β)F i. By using F i

ᵀ
M(0, 0,−β)F i

= M(0, 0,−β), we get that F i
ᵀ
M(Id, 0, 0)F i � −F iᵀEjᵀ

(
W j
p

+W j
+

)
EjF i+M(P i, 2qi, 0)−Eijᵀ

(
U ijp + U ij+

)
Eij+M(0, 0, β).

To end with the proof, it suffices to remark that Eij =

P ᵀ
σ

(
ci −T i
EjF i

)
.

1[Pσ]lk = 1 if l = σ(k); 0 otherwise and P−1
σ = P ᵀ

σ .

4. Since P is wPQL, then from Th. 1 R ⊆ {x ∈ Rd |
‖x‖22 ≤ β} and since X0 ⊆ R, supx∈X0 ‖x‖22 ≤ β.

5. Assume that (P,W,U ,Z, α, β) is an optimal solution
with α > 0 and suppose that supx∈X0 L(x) 6= α. From

Constraint (17), we have for all i ∈ In, Xi ∩ X0 ⊆ {x |
Li(x) ≤ α} and thus for all i ∈ In, supx∈Xi∩X0 Li(x) ≤
α. Since supx∈X0 L(x) = supi∈In supx∈Xi∩X0 Li(x), we get
supx∈X0 L(x) ≤ α. Now let ε > 0 such that γ = α −
ε ≥ 0 and supx∈X0 L(x) ≤ γ. Let us define the matrix
N by Nl,m = 1 if l = m = 1 and 0 otherwise. We have
−M(P i, 2qi,−γ)−Ei0ᵀ

(
Z0i
p + Z0i

+

)
Ei0 = −M(Li) + γN −

Ei0
ᵀ (
Z0i
p + Z0i

+

)
Ei0. From Ei01,1 = 1, we get Ei0

ᵀ
NEi0 =

N . So, −M(P i, 2qi,−γ)−Ei0ᵀ
(
Z0i
p + Z0i

+

)
Ei0 = −M(Li)+

αN − Ei0
ᵀ (
Z0i
p + εN + Z0i

+

)
Ei0. Now, M(P i, 2qi,−γ) −

M(Id, 0,−β)−Eiᵀ
(
W i
p +W i

+

)
Ei = M(P i, 2qi,−α)−M(Id,

0,−β) − Ei
ᵀ (
W i
p +W i

+

)
Ei + εN . From Constraint (15),

M(P i, 2qi,−γ)−M(Id, 0,−β)−Eiᵀ
(
W i
p +W i

+

)
Ei is posi-

tive semidefinite. We conclude that (P,W,U ,Z ′, γ, β) with
Z ′ = {

(
Zi0p + εN,Zi0+

)
∈ S≥0

ni0
× S+

ni0
, i ∈ In} is feasible and

γ + β = α + β − ε thus (P,W,U ,Z, α, β) cannot be opti-
mal.

4. POLICY ITERATION ALGORITHM
In this section, we give details about the policy iteration

algorithm which aims to make more accurate the overap-
proximation found directly from the computation of a wPQL
function.

4.1 Sublevel Modelisation
In Def. 4, β is an upper bound on the Euclidian norm of

the state variable. We do not have a precise upper bound on
each coordinate considered separetely neither a precise up-
per bound on the state variable considering a specific cell.
To obtain tigher bounds, we intersect Sα with other sublevel
sets. In [25], the authors propose to combine quadratic Lya-
punov functions with the square of coordinate. In this paper,
we apply this technique replacing quadratic Lyapunov func-
tions by wPQL functions. Thus we are interested in a set
V of the form Sα ∩ ∪i∈I{y ∈ Xi | y2

l ≤ βil , l = 1, . . . , d}.
The computation of V is thus reduced to compute βil . In
verification of programs, the method is called a templates
domain abstraction (for more background [3]).

We can deduce from Eq. (4) that R = A(R) ∪ X0. We
introduce the map F : ℘(Rd) 7→ ℘(Rd) defined by

C 7→ F (C) := A(C) ∪X0 .

Hence, R is the smallest fixed point of F in the sense of if
C = F (C) then R ⊆ C. From Tarski’s theorem [29], since
F is monotone on ℘(Rd), then:

R = inf{C ∈ ℘(Rd) | F (C) ⊆ C}; (18)

Any set C such that F (C) ⊆ C satisfies R ⊆ C. We propose
to consider a restricted family of such sets C parameterized
by ω ∈ Rd+1:

C(ω) := {x ∈ Rd | ∀ k ∈ [d], x2
k ≤ ωk, L(x) ≤ ωd+1}

where L is a wPQL function for the PWA P . A set C(ω) is
just the intersection of a sublevel of a wPQL function with
a cartesian product of intervals. We define:

∀ k ∈ [d], X0
k = sup

y∈X0

y2
k and X0

d+1 = sup
y∈X0

L(y)

147

The numbers X0
k allows to construct interval bounds for the

k-th coordinate of an initial value whereas X0
d+1 refers to

the maximum value of the wPQL function L over X0.
We also define for all (i, j) ∈ Sw and for all ω ∈ Rd+1:

∀ k ∈ [d], F]ij,k(ω) = sup
∀ k∈[d], x2k≤ωk,

Li(x)≤ωd+1, x∈Xij

(Aik·x+ bik)2

and

F]ij,d+1(ω) = sup
∀ k∈[d], x2k≤ωk,

Li(x)≤ωd+1, x∈Xij

Lj(Aix+ bi)

and finally, we define for all ω ∈ Rd+1:

∀ l ∈ [d+ 1], F]l (ω) = sup{ sup
(i,j)∈Sw

F]ij,l(ω), X0
l }

and F](ω) = (F]1 (ω), . . . , F]d+1(ω)). The map F acts on sets

whereas F] acts on vectors of Rd+1. Prop. 6 highlights the
link between the two maps.

Proposition 6. The following statements hold:
1. F (C(ω)) ⊆ C(ω) ⇐⇒ F](ω) ≤ ω;
2. R ⊆ inf{C(ω) | ω ∈ Rd+1 s.t. F](ω) ≤ ω};
3. For all ω ∈ Rd+1 and all l ∈ [d + 1], F]ij,l(ω) is the

optimal value of quadratic program;
4. For all k ∈ [d], X0

k = max{(inf
x∈X0

xk)2, (sup
x∈X0

xk)2} and

if L is a computable wPQL function constructed from an
optimal solution (P,W,U ,Z, α, β) of (PSD) with α > 0,
then X0

d+1 = α.

Proof. 1. We remark that F (C(ω)) ⊆ C(ω) iff for all k ∈
[d], supy∈F (C(ω)) y

2
k ≤ ωk and supy∈F (C(ω)) L(y) ≤ ωd+1.

We only give details for the first inequality, the proof of the
second follows the same idea. For all k ∈ [d]:

sup
y∈F (C(ω))

y2
k = sup{ sup

y∈A(C(ω))

y2
k, sup
y∈X0

y2
k}

= sup{ sup
(i,j)∈Sw

sup
y=Aix+bi,
x∈C(ω),

x∈Xij

y2
k, sup
y∈X0

y2
k} = F]k(ω)

2. From Eq. (18), R ⊆ inf{C(ω) | ω ∈ Rd+1, F](C(ω)) ⊆
C(ω)}. We conclude using the first point.

3. Direct from the definition of F]ij,l(ω).

4. Let k ∈ [d]. Since X0 is compact and x 7→ xk is contin-
uous, there exist u, z ∈ X0 such that uk = infx∈X0 xk and
zk = supx∈X0 xk. Hence for all x ∈ X0, x2

k ≤ max(z2
k, u

2
k).

Since z and u belong to X0, then X0
k = max(z2

k, u
2
k). Since

(P,W,U ,Z, α, β) is an optimal solution of Problem (PSD)
and α > 0 then X0

d+1 = α from Prop. 5.

Now, we assume that Problem (PSD) has an optimal solu-
tion (P,W,U ,Z, α, β) with α > 0 and we denote by L the
associated wPQL function.

From Prop. 6, to compute F]ij,l(ω) is reduced to solve a
quadratic maximization known to be NP-Hard [30]. So we
propose to compute instead a safe overapproximation using
Lagrange duality and semi-definite programming.

4.2 Relaxed functional
In this subsection, we define the function on which we

compute a fixed point.
For this subsection, we fix (i, j) ∈ Sw and ω ∈ Rd+1. For

all k ∈ [d], we write Mk for M(x 7→ x2
k) and for all i ∈ I,

Mi
L for M(Li). The matrix N ∈ M(d+1)×(d+1) is defined by

Nl,m = 1 if l = m = 1 and 0 otherwise.
Let λ ∈ Rd+1

+ , Y ∈ S≥0
nij

and Z ∈ S+
nij

. We construct the
auxiliary matrices:

Φij,k(λ, Y, Z) =

F i
ᵀ
MkF

i −
d∑
l=1

λlMl − λl+1M
i
L + Eij

ᵀ
(Y + Z)Eij

Φij,d+1(λ, Y, Z) =

F i
ᵀ
Mj

LF
i −

d∑
l=1

λlMl − λl+1M
i
L + Eij

ᵀ
(Y + Z)Eij

(19)
For all l ∈ [d+ 1], for all ω ∈ Rd+1

+ :

FRij,l(ω) =
inf

λ,η,Y,Z
η

s. t.

{
(η −

∑d+1
k=1 λkωk)N− Φij,l(λ, Y, Z) � 0,

λ ∈ Rd+1
+ , η ∈ R, Y ≥ 0, Z � 0

(20)

FRl (ω) = sup{ sup
(i,j)∈Sw

FRij,l(ω), X0
l }

and FR(ω) = (FR1 (ω), . . . , FRd+1(ω)). The map FR is com-

putable overapproximation of F]. Indeed, FR(ω) is the op-
timal value of a semidefinite program which can be solved
in polynomial time2and thus relies on SDP solvers.

Proposition 7 (Safe overapproximation). The fol-
lowing assertions are true:

1. For all l ∈ [d + 1], FRl is the optimal value of a SDP
program;

2. F] ≤ FR .

Proof. 1. The first statement is straightforward.
2. We have to prove that for all k ∈ [d+1], for all ω ∈ Rd+1,

F]ij,k(ω) ≤ FRij,k(ω). We do the proof for the case k = d+ 1.
The other cases follows the same proof constructions.

Applying the Weak Duality Theorem (see e.g. [5, Sect.
5.3]), we obtain:

F]ij,d+1(ω) ≤ inf
λ∈Rd+1

+

sup
x∈Xij

Lj(f i(x)) +

d∑
k=1

λk(ωk − x2
k)

+λd+1(ωd+1 − Li(x))

Let us write qη,λ := η − Lj(f i(x)) −
∑d
k=1 λk(ωk − x2

k) −
λd+1(ωd+1−Li(x)). Then supx∈Xij Lj(f i(x))+

∑d
k=1 λk(ωk−

x2
k) + λd+1(ωd+1 −Li(x)) = inf{η | qη,λ(x) ≥ 0, ∀x ∈ Xij}.
From Lemma 2, M(qη,λ) ∈ Cd+1

(
Eij
)

=⇒ (qη,λ(x) ≥
0, ∀x ∈ Xij). From Corollary 1, (M (qη,λ) − Eij

ᵀ
(Y +

Z)Eij � 0 for some Y ≥ 0 and Z � 0) =⇒ M(qη,λ) ∈
Cd+1

(
Eij
)
. Now from Eq. (9) and since A→M(A) is lin-

ear, we have M(qη,λ) = (η−
∑d+1
k=1 λkωk)N−Φij,d+1(λ, Y, Z)+

Eij
ᵀ
(Y + Z)Eij . Since FRij,l is the infimum of η over the

constraint (η −
∑d+1
k=1 λkωk)N − Φij,d+1(λ, Y, Z) � 0, λ ∈

Rd+1
+ , η ∈ R, Y ≥ 0 and Z � 0, this achieves the proof.

2The term ”polynomial time” here must be taken very care-
fully. Some precisions over the complexity analysis of SDP
problems can be found in [24].

148

Lemma 4. Let (i, j) ∈ Sw, l ∈ [d + 1] and ω ∈ Rd+1.
Then:

FRij,l(ω) = inf
λ∈Rd+1

+

Fλij,l(ω)

where

Fλij,l(ω) =

d+1∑
m=1

λmωm + inf
Y≥0
Z�0

sup
x∈Rd

(
1
x

)ᵀ

Φij,l(λ, Y, Z)

(
1
x

)
(21)

Proposition 8. Let (i, j) ∈ Sw, l ∈ [d + 1], λ ∈ Rd+1
+ .

The following statements are true:
1. Fλij,l is affine;

2. Fλij,l, F
R
ij,l and FRl are monotone;

3. FRij,l and FRl are upper semi-continuous.

Proof. The first assertion follows readily from Eq. (21).
The function w 7→ Fλij,l(w) is monotone from the positivity
of λ and the two last functions are monotone as the supre-
mum of monotone functions. The function w 7→ FRij,l(w) is
upper semi-continuous as the infimum of continuous func-
tions and w 7→ FRl (w) is upper semi-continuous as the finite
supremum of upper semi-continuous functions.

To be able to perform a new step in policy iteration, we need
a selection property. In our case, the selection property relies
on the existence of an optimal dual solution.

Definition 5 (Selection property). Let (i, j) ∈ Sw
and l ∈ [d+ 1]. We say that ω ∈ Rd+1 satisfies the selection
property if there exists λ ∈ Rd+1

+ such that:

FRij,l(ω) = Fλij,l(ω) (22)

We define:

Solλ ((i, j), l, ω) := {λ ∈ Rd+1
+ | FRij,l(ω) = Fλij,l(ω)}

and

S :=
{ω ∈ Rd+1 | ∀ (i, j) ∈ Sw, ∀ l ∈ [d+ 1],Solλ ((i, j), l, ω) 6= ∅} .

Corollary 2. Let (i, j) ∈ Sw, l ∈ [d + 1] and ω ∈ S.
Now let λ ∈ Solλ ((i, j), ω, p), then:

inf
Y≥0
Z�0

sup
x∈Rd

(
1
x

)ᵀ

Φij,l(λ, Y, Z)

(
1
x

)
= FRij,l(ω)−

d+1∑
m=1

λmωm .

Let (i, j) ∈ Sw, l ∈ [d+ 1] and ω ∈ S. From Corollary 2, for
all λ ∈ Solλ ((i, j), l, ω), for all v ∈ Rd+1, we have:

Fλij,l(v) =

d+1∑
m=1

λmvm + FRij,l(ω)−
d+1∑
m=1

λmωm (23)

We remark that Fλij,l(ω) = FRij,l(ω).
From the first statement of Prop. 6 and the second asser-

tion of Prop. 7, the most precise overapproximation of R
(with this templates basis) is given by ω = inf{ω ∈ Rd+1 |
FR(ω) ≤ ω}. From Tarski’s theorem, ω is the smallest fixed
point of FR. However, the smallest is difficult to get and
since any vector ω such that FR(ω) ≤ ω furnishes a valid
but less precise overapproximation of R, we perform policy
iterations until a fixed point is reached.

4.3 Policies definition
A policy iteration algorithm can be used to solve a fixed

point equation for a monotone function written as an infi-
mum of a family of simpler monotone functions, obtained
by selecting policies, see [9, 13] for more background. The
idea is to solve a sequence of fixed point problems involving
the simple functions. In the present setting, we look for a
representation of the relaxed function:

∀ (i, j) ∈ Sw, ∀ l ∈ [d+ 1], FRij,l = inf
π∈Π

Fπij,l (24)

where the infimum is taken over a set Π whose elements π
are called policies, and where each function Fπ is required
to be monotone. The correctness of the algorithm relies on
a selection property, meaning in the present setting that for
each argument ((i, j), l, ω) there must exist a policy π such
that FRij,l(ω) = Fπij,l(ω). The idea of the algorithm is to start

from a policy π0, compute the smallest fixed point ω of Fπ
0

,
evaluate FR at point ω, and, if ω 6= FR(ω), determine the
new policy using the selection property at point ω.

Let us now identify the policies. Lemma 4 shows that
for all l ∈ [d + 1], FRij can be written as the infimum of

the family of affine functions Fλij , the infimum being taken

over the set of λ ∈ Rd+1
+ . When ω ∈ S is given, choosing

a policy π consists in selecting, for each (i, j) ∈ Sw and for
all l ∈ [d + 1], a vector λ ∈ Solλ ((i, j), l, ω). We denote by
πij,l(ω) the value of λ chosen by the policy π. Then, the
map F

πij,l

ij,l in Eq. (24) is obtained by replacing FRij,l by Fλij,l
appearing in Eq. (23). Finally, we define, for all l ∈ [d+ 1]:

Fπl (ω) = sup{ sup
(i,j)∈Sw

F
πij,l

ij,l (ω), X0
l }

and Fπ = (Fπ1 , . . . , F
π
d+1).

Now, we can define concretely the policy iteration algo-
rithm at Algorithm 1.

Algorithm 1 Policy Iteration with wPQL functions

1 Choose π0 ∈ Π, k = 0.

2 Define Fπ
k

by choosing λ according to policy πk using
Eq. (23).

3 Compute the smallest fixed point ωk in Rd+1 of Fπ
k

.

4 If ωk ∈ S continue otherwise return ωk.

5 Evaluate FR(ωk), if FR(ωk) = ωk return ωk otherwise

take πk+1 s.t. FR(ωk) = Fπ
k+1

(ωk). Increment k and
go to 2.

4.4 Some details about Policy Iteration algo-
rithm

Initialization. Policy iteration algorithm needs an initial
policy. Recall that L was computed from an optimal solution
(P,W,U ,Z, α, β) of Problem (PSD) with α > 0. The first
policy is given by an element in Solλ

(
(i, j), l, w0

)
where w0

is defined by:

∀ k ∈ [d], ω0
k = β, w0

d+1 = α (25)

149

Proposition 9. The vector ω0 satisfies FR(ω0) ≤ ω0.

Proof. From Prop. 5, we have for all k ∈ [d], X0
k ≤ β =

ω0
k and X0

d+1 = α = ω0
d+1. Let (i, j) ∈ Sw and l ∈ [d + 1].

We have to prove that FRij,l(ω
0) ≤ ω0. It suffices to prove

there exist λ ≥ 0, Y ≥ 0 and Z � 0 such that:

(ω0
l −

d+1∑
k=1

λkωk)N − Φij,l(λ, Y, Z) � 0 (26)

Indeed, if Eq. (26) holds then (ω0
l (p), λ, Y, Z) is feasible for

the SDP problem (20) and thus FRij,l(ω
0) ≤ ω0

l .

Let us define λ̄ by λ̄d+1 = 1 and λ̄k = 0 for all k ∈ [d].
Let us simply write S := (P,W,U ,Z, α, β).

Let l = d + 1 and extract U ijp and U ij+ from U . Then,

(ω0
d+1 −

∑d+1
k=1 λ̄kωk)N − Φij,l(λ̄, U

ij
p , U

ij
+) = −F iᵀMj

LF
i +

Mi
L − Eij

ᵀ
(U ijp + U ij+)Eij . Since S satisfies Eq. (16) as

an optimal solution of Problem (PSD), Eq (26) holds with
λ = λ̄, Y = U ijp and Z = U ij+ .

Let l ∈ [d], Ȳ = P ᵀ
σ

(
0ni−1 0ni−1,nj

0nj,ni−1 W j
p

)
Pσ + U ijp and

Z̄ = P ᵀ
σ

(
0ni−1 0ni−1,nj

0nj,ni−1 W
j
+

)
Pσ + U ij+ where Pσ is the per-

mutation matrix defined at Prop 5, W j
p and W j

+ are ex-

tracted from W and U ijp and U ij+ are extracted from U . We

have (ω0
l −
∑d+1
k=1 λ̄kωk)N−Φij,l(λ̄, Ȳ , Z̄) = M(0, 0, β−α)−

F i
ᵀ
MlF

i+Mi
L−Eij

ᵀ
(Ȳ + Z̄)Eij . Now, remark that Ml �

M(Id, 0, 0) and thus−F iᵀMlF
i+M(P i, 2qi,−α)−Eijᵀ(Ȳ +

Z̄)Eij+M(0, 0, β) � −F iᵀM(Id, 0, 0)F i+M(P i, 2qi,−α)−
Eij

ᵀ
(Ȳ +Z̄)Eij+M(0, 0, β). We conclude that Eq (26) holds

with λ = λ̄, Y = Ȳ and Z = Z̄ from the second assertion of
Prop. 5.

Smallest fixed point computation associated to a pol-
icy. For the third step of Algorithm 1, using Lemma 4, Fπ

is monotone and affine, we compute the smallest fixed point
of Fπ by solving the following LP see [13, Section 4]:

min

{
d+1∑
k=1

wk s.t. Fπ(w) ≤ w

}
(27)

Convergence. In [1], it is proved that the policy iterations
algorithm in the quadratic setting converges towards a fixed
point of FR. Here, we establish a similar result (Th. 1).
Combined with Prop. 7, this fixed point provides a safe over-
approximation of R.

Let (wl)l∈N be the sequence generated by Algorithm 1. If
wl /∈ S and wl−1 ∈ S, then we set wk = wl for all k ≥ l.

Theorem 1. The following assertions hold:
1. For all l ∈ N, FR(wl) ≤ wl;
2. The sequence (wl)l≥0 is decreasing. Moreover for all

l ∈ N such that wl−1 ∈ S either wl = wl−1 and FR(wl) = wl

or wl < wl−1;
3. For all l ∈ N, for all k ∈ [d+ 1], X0

k ≤ wlk ≤ w0
k;

4. The limit w∞ of (wl)l≥0 satisfies: FR(w∞) ≤ w∞.
Moreover if ∀ k ∈ N, wk ∈ S then FR(w∞) = w∞.

Proof. 1. From Prop. 9, FR(w0) ≤ w0. Now, let l > 0

and assume wl−1 ∈ S, there exists πl such that, Fπ
l

(wl) =

wl and since FR = infπ F
π, we get FR(wl) ≤ Fπ

l

(wl) = wl.

If wl−1 /∈ S, then there exists k ∈ N, k ≤ l − 1 such that
wk−1 ∈ S and wl = wk, and thus FR(wk) ≤ wk.

2. Let l ∈ N, if wl−1 /∈ S, wl = wl−1. Now suppose wl−1 ∈
S. There exists πl ∈ Π such that FR(wl−1) = Fπ

l

(wl−1) ≤
wl−1 and since wl = inf{v ∈ Rd+1 | Fπ

l

(v) ≤ v} then
wl ≤ wl−1. Now if wl = wl−1, FR(wl−1) = FR(wl) =

Fπ
l

(wl−1) = Fπ
l

(wl) = wl = wl−1.
3. From Prop. 6, Prop. 7 and the first assertion, X0

k ≤
F]k(wl) ≤ FRk (wl) ≤ wlk.

4. First, w∞ exists since (wl)l∈N is decreasing and bounded
from below (third assertion). Then, for all l ∈ N, w∞ ≤ wl

and since FR is monotone (Prop. 8) FR(w∞) ≤ FR(wl) ≤
wl. Taking the infimum over l, we get FR(w∞) ≤ w∞.
Now we prove that w∞ ≤ FR(w∞). Let l ∈ N. Since

wl ∈ S, there exists πl+1 ∈ Π such that Fπ
l+1

(wl) =

FR(wl). Moreover, wl+1 ≤ wl and since Fπ
l+1

is mono-

tone: wl+1 = Fπ
l+1

(wl+1) ≤ Fπ
l+1

(wl) = FR(wl). Now
by taking the infimum on l, we get w∞ = infl w

l+1 =
infl w

l ≤ infl F
R(wl). Finally, since FR is upper semicon-

tinuous (Prop. 8), then infk F
R(wk) = lim supk F

R(wk) ≤
FR(limk w

k) = FR(w∞). Hence, w∞ ≤ FR(w∞).

5. EXAMPLES
The following examples are performed using Yalmip in-

terfaced with the SDP solver Mosek.

5.1 Example from [21] slighty modified
Consider the followinf PWA: X0 = [−1, 1]× [−1, 1], and,

for all k ∈ N:

xk+1 =


A1xk if xk,1 ≥ 0 and xk,2 ≥ 0
A2xk if xk,1 ≥ 0 and xk,2 < 0
A3xk if xk,1 < 0 and xk,2 < 0
A4xk if xk,1 < 0 and xk,2 ≥ 0

with

A1 =

(
−0.04 −0.461
−0.139 0.341

)
, A2 =

(
0.936 0.323
0.788 −0.049

)
A3 =

(
−0.857 0.815
0.491 0.62

)
, A4 =

(
−0.022 0.644
0.758 0.271

)
Then, we have X1 = R+ × R+, X2 = R+ × R∗−, X3 =
R∗− × R∗− and X4 = R∗− × R+.

From Prop. 2, In = {1, 2, 3, 4} and Sw = {(i, j) | S(i, j) =

1} with S =

(
1 0 1 1
1 0 0 1
0 1 1 0
1 1 0 0

)
.

By solving Problem PSD, we get a (optimal) wPQL func-
tion L characterized by the following matrices:

P 1 =

(
1.1178 −0.1178
−0.1178 1.1178

)
, P 2 =

(
1.5907 0.5907
0.5907 1.5907

)
,

P 3 =

(
1.3309 −0.3309
−0.3309 1.3309

)
, P 4 =

(
1.2558 0.2558
0.2558 1.2558

)
Since α = β = 2, then R ⊆ {x ∈ R2 | L(x) ≤ 2} ⊆
{x ∈ R2 | ‖x‖22 ≤ 2}. The sets R (discretized version) and
{x ∈ R2 | L(x) ≤ 2} are depicted at Figure 1a. Then we en-
ter into policy iteration algorithm. From Eq. (25), we define
w0 by w0

1 = 2.0000, w0
2 = 2.0000, w0

3 = 2.0000. Then we
compute the image of w0 by the relaxed semantics FR(w0)
using semidefinite programming (see Eq. (20)). We check
that w0 is not a fixed point of FR and then the initial policy

150

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

1(a) First overapproximation found by (PSD)

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

1(b) Final overapproximation found by policy iterations

Figure 1: (Discretized) R in yellow and initial (Fig. 1a) and
last overapproximations (Fig. 1b) of R.

π0((i, j), l, w0) is the vector λ extracted from the optimal so-
lutions (λ, Y, Z) of the semidefinite programs involved in the
computation of FR(w0). For example, for (1, 3) ∈ Sw and
l = 1, π0((1, 3), 1, w0) = (0.0000, 0.0000, 0.0430)ᵀ, where the
first two zeros are the Lagrange multipliers associated to M1

and M2 and 0.0430 is the Lagrange multiplier associated to
M(L1). We compute the smallest fixed point associated to
π0 using the LP (27):

w1
1 = 1.1036, w1

2 = 1.2443, w1
3 = 2.0000

Moreover, at each step k, policy iterations provides auxil-
iary values which represent the overapproximations of the

polyhedra R ∩ Xi ∩ Ai−1
(Xj) by ellipsoids of the form

{x ∈ R2 | x2
1 ≤ wkij,1, x

2
2 ≤ wkij,2, L(x1, x2) ≤ wkij,3}. For

example, for k = 0:

w11,1 = 0.0000, w11,2 = 0.0000, w11,3 = 0.0000
w13,1 = 0.0573, w13,2 = 0.0213, w13,3 = 0.0213
w14,1 = 0.3012, w14,2 = 0.1447, w14,3 = 0.1447

Note that we found that for (i, j) = (1, 1), w1
ij,1 = w1

ij,2 =

w1
ij,3 = 0 which means that R ∩X1 ∩ A1−1

(X1) is reduced
to the singleton (0, 0). The invariant found is depicted at
Figure 1b. Finally, we find after two iterations that for all
k ∈ N, x2

1,k ≤ 1, x2
2,k ≤ 1.2443 and L(x1,k, x2,k) ≤ 2.

5.2 A (piecewise) affine example
We now consider the following PWA: X0 = [0, 3] × [0, 2]

and for all k ∈ N:

xk+1 =

{
A1xk + b1 if T (xk) < c
A2xk + b2 if T (xk) ≥ c

with

A1 =

(
0.4197 −0.2859
0.5029 0.1679

)
, b1 =

(
2.0000
5.0000

)
,

A2 =

(
−0.0575 −0.4275
−0.3334 −0.2682

)
, b2 =

(
−4.0000
4.0000

)
T =

(
3.0000 8.0000

)
and c = −3.0000

By Prop. 2, Sw = I2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and In =
{2}. Using Problem (PSD), we compute the wPQL function
L characterized by:

P 1 =

(
2.9888 −1.7890
−1.7890 8.0295

)
, q1 =

(
−14.7283
−94.1347

)
and

P 2 =

(
2.7192 2.0930
2.0930 6.1110

)
, q2 =

(
5.5737
−16.4198

)
and the invariant found is {x ∈ R2 | L(x) ≤ 58.1165} and
an upper bound over the square Euclidian norm of the state
variable is 286.4932. We run the policy iteration to get fi-
nally after 4 iterations the following bound vector:

w1 = 41.8956, w2 = 31.4449, w3 = 58.1165

corresponding to the invariant set {x ∈ R2 | x2
i ≤ wi, L(x) ≤

w3}.
We obtain interesting information during policy iterations.

At step k = 0, when we select the initial policy, the SDP
solver returns for all l = 1, 2, 3, FR11,l(w

0) = −∞ and from

Prop. 7 this implies that supx∈R∩X1∩f1−1(X1) p(A
1x+b1) is

not feasible hence (1, 1) /∈ Sw. At the iteration step k = 1,
the SDP solver provides for all l = 1, 2, 3, FR21,l(w

1) = −∞
and from Prop. 7 this implies that (2, 1) /∈ Sw. Finally,
Sw ⊆ {(1, 2), (2, 2)}. Recalling that 1 /∈ In, we conclude
that the system state variable only stays in X2 and thus the
system is actually equivalent to a constrained affine system.
This information is computed automatically.

6. CONCLUSION AND FUTURE WORKS
We have developed a method to compute automatically by

semi-definite programming precise bounds over the reach-
able values set of a piecewise affine system. The method
combines weak piecewise quadratic Lyapunov functions to
generate a first overapproximation and policy iterations used
to reduce the initial overapproximation.

Future works could be to design a repartitioning method
in order to improve the feasibility of Problem (PSD). In the
same direction, we could use SOS programming to rewrite
copositive constraints. Also, future works should contain
the study of the optimality of the presented policy itera-
tions algorithm (providing the most precise overapproxima-
tion considering bounding the square of coordinates vari-
ables or not).

7. REFERENCES
[1] A. Adjé. Policy iteration in finite templates domain.

In Numerical Software Verification (NSV 2014), 2014.

151

[2] A. Adjé and P.-L. Garoche. Automatic Synthesis of
Piecewise Linear Quadratic Invariants for Programs.
In Verification, Model Checking, and Abstract
Interpretation - 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015.
Proceedings, pages 99–116, 2015.

[3] A. Adjé, S. Gaubert, and E. Goubault. Coupling
Policy Iteration with Semi-Definite Relaxation to
Compute Accurate Numerical Invariants in Static
Analysis. Logical Methods in Computer Science, 8(1),
2012.

[4] X. Allamigeon. Static Analysis of Memory
Manipulations by Abstract Interpretation —
Algorithmics of Tropical Polyhedra, and Application to
Abstract Interpretation. PhD thesis, École
Polytechnique, Palaiseau, France, November 2009.

[5] A. Auslender and M. Teboulle. Asymptotic Cones and
Functions in Optimization and Variational
Inequalities. Springer Science & Business Media, 2006.

[6] H. Bazille, O. Bournez, W. Gomaa, and A. Pouly. On
The Complexity of Bounded Time Reachability for
Piecewise Affine Systems. In Reachability Problems:
8th International Workshop, RP 2014, Oxford, UK,
September 22-24, 2014. Proceedings, pages 20–31,
Cham, 2014. Springer International Publishing.

[7] I. M. Bomze, W. Schachinger, and G. Uchida. Think
Co(mpletely)positive ! Matrix Properties, Examples
and a Clustered Bibliography on Copositive
Optimization. Journal of Global Optimization,
52(3):423–445, 2012.

[8] S. Bundfuss and M. Dür. An Adaptive Linear
Approximation Algorithm for Copositive Programs.
SIAM J. on Optimization, 20(1):30–53, March 2009.

[9] A. Costan, S. Gaubert, E. Goubault, M. Martel, and
S. Putot. A Policy Iteration Algorithm for Computing
Fixed Points in Static Analysis of Programs. In
Computer aided verification, pages 462–475. Springer,
2005.

[10] P. H. Diananda. On Non-negative Forms in Real
Variables Some or All of Which are Non-negative.
Mathematical Proceedings of the Cambridge
Philosophical Society, 58:17–25, 1 1962.

[11] Gang Feng. Stability Analysis of Piecewise
Discrete-time Linear Systems. IEEE Transactions on
Automatic Control, 47(7):1109, 2002.

[12] Giancarlo Ferrari-Trecate, Francesco Alessandro
Cuzzola, Domenico Mignone, and Manfred Morari.
Analysis of Discrete-time Piecewise Affine and Hybrid
Systems. Automatica, 38(12):2139–2146, 2002.

[13] S. Gaubert, E. Goubault, A. Taly, and S. Zennou.
Static Analysis by Policy Iteration on Relational
Domains. In Programming Languages and Systems,
pages 237–252. Springer, 2007.

[14] T. Gawlitza, H. Seidl, A. Adjé, S. Gaubert, and
E. Goubault. Abstract Interpretation Meets Convex
Optimization. J. Symb. Comput., 47(12):1416–1446,
2012.

[15] A. J. Hoffman and R. M. Karp. On Nonterminating
Stochastic Games. Management Science,
12(5):359–370, 1966.

[16] R. A. Howard. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, MA, 1960.

[17] M. Johansson. On Modeling, Analysis and Design of
Piecewise Linear Control Systems. In Circuits and
Systems, 2003. ISCAS ’03. Proceedings of the 2003
International Symposium on, volume 3, pages
III–646–III–649 vol.3, May 2003.

[18] D.H. Martin and D.H. Jacobson. Copositive Matrices
and Definiteness of Quadratic Forms Subject to
Homogeneous Linear Inequality Constraints. Linear
Algebra and its Applications, 35(0):227 – 258, 1981.

[19] D. Massé. Proving Termination by Policy Iteration.
Electronic Notes in Theoretical Computer Science,
287(0):77 – 88, 2012. Proceedings of the Fourth
International Workshop on Numerical and Symbolic
Abstract Domains, NSAD 2012.

[20] J. E. Maxfield and H. Minc. On the Matrix Equation
X′X = A. Proceedings of the Edinburgh Mathematical
Society (Series 2), 13:125–129, 12 1962.

[21] D. Mignone, G. Ferrari-Trecate, and M. Morari.
Stability and Stabilization of Piecewise Affine and
Hybrid systems: an LMI approach. In Decision and
Control, 2000. Proceedings of the 39th IEEE
Conference on, volume 1, pages 504–509 vol.1, 2000.

[22] T. S. Motzkin. Two Consequences of the
Transposition Theorem on Linear Inequalities.
Econometrica, 19(2):184–185, 1951.

[23] SV Rakovic, P Grieder, M Kvasnica, DQ Mayne, and
M Morari. Computation of Invariant Sets for
Piecewise Affine Discrete Time Systems Subject to
Bounded Disturbances. In Decision and Control, 2004.
CDC. 43rd IEEE Conference on, volume 2, pages
1418–1423. IEEE, 2004.

[24] M. V. Ramana and P. M. Pardalos. Semidefinite
Programming. Interior point methods of mathematical
programming, 5:369–398, 1997.

[25] P. Roux, R. Jobredeaux, P.-L. Garoche, and E. Feron.
A Generic Ellipsoid Abstract Domain for Linear Time
Invariant Systems. In Hybrid Systems: Computation
and Control (part of CPS Week 2012), HSCC’12,
Beijing, China, April 17-19, 2012, pages 105–114,
2012.

[26] P. Schrammel and P. Subotic. Logico-Numerical
Max-Strategy Iteration. In Roberto Giacobazzi, Josh
Berdine, and Isabella Mastroeni, editors, Verification,
Model Checking, and Abstract Interpretation, volume
7737 of Lecture Notes in Computer Science, pages
414–433. Springer Berlin Heidelberg, 2013.

[27] S. Schupp, E. Ábrahám, X. Chen, I. Ben Makhlouf,
G. Frehse, S. Sankaranarayanan, and S. Kowalewski.
Current Challenges in the Verification of Hybrid
Systems. In Cyber Physical Systems. Design,
Modeling, and Evaluation - 5th International
Workshop, CyPhy 2015, Amsterdam, The Netherlands,
October 8, 2015, Proceedings, pages 8–24, 2015.

[28] P. Sotin, B. Jeannet, F. Védrine, and E. Goubault.
Policy iteration within logico-numerical abstract
domains. In Automated Technology for Verification
and Analysis, pages 290–305. Springer, 2011.

[29] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific J. Math., 5(2):285–309, 1955.

[30] S. A. Vavasis. Quadratic programming is in NP.
Information Processing Letters, 36(2):73 – 77, 1990.

152

