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Efficiency of Reproducible Level 1 BLAS

Chemseddine Chohra⋆, Philippe Langlois⋆ and David Parello⋆

Univ. Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques,
F-66860, Perpignan. Univ. Montpellier II, Laboratoire d’Informatique Robotique et

de Microélectronique de Montpellier, UMR 5506, F-34095, Montpellier. CNRS.

Abstract. Numerical reproducibility failures appear in massively par-
allel floating-point computations. One way to guarantee the numerical
reproducibility is to extend the IEEE-754 correct rounding to larger com-
puting sequences, as for instance for the BLAS libraries. Is the overcost
for numerical reproducibility acceptable in practice? We present solu-
tions and experiments for the level 1 BLAS and we conclude about the
efficiency of these reproducible routines.

1 Introduction

Numerical reproducibility is an open question for current high performance com-
puting platforms. Dynamic scheduling and non-deterministic reduction on mul-
tithreaded systems affect the operation order. This leads to non-reproducible
results because the floating-point addition is not associative. Numerical repro-
ducibility is important for debugging and for validating results, particularly if
legal agreements require the exact reproduction of the execution results. Failures
have been reported in numerical simulation for energy science, dynamic weather
forecasting, atomic or molecular dynamic, fluid dynamic — see entries in [7].

Solutions provided at the middleware level forbid the dynamic behavior and
so impact the performances — see [10] for TBB, [13] for OpenMP or Intel MKL.
Note that adding pragmas in the source code avoids memory alignment effects
onto reproducibility. A first algorithmic solution has been recently proposed
in [4]. Their summation algorithms, ReprodSum and FastReprodSum, guaran-
tee the reproducibility independently from the computation order. They return
about the same accuracy as the performance optimized algorithm only running
a small constant times slower.

Correctly rounded results ensure numerical reproducibility. IEEE754-2008
floating-point arithmetic is correctly rounded in its four rounding modes [5].
We propose to extend this property to the level 1 routines of the BLAS that
depend on the summation order: asum, dot and nrm2, respectively the sum of
the absolute values, the dot product and the vectorial Euclidean norm. Recent
algorithms that compute the correctly rounded sum of n floating-point values
allow us to implement such reproducible parallel computation. The main issue is
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to investigate whether the running-time overhead of these reproducible routines
remains reasonable enough in practice. In this paper we present experimental an-
swers to this question. Our experimental framework is significant of the current
computing practice: it consists in a shared memory parallel system with several
sockets of multicore x86 processing units. We apply standard optimization tech-
niques to implement efficient sequential and parallel level 1 routines. We show
that for large vectors, reproducible and accurate routines introduces almost no
overhead compared to their original counterparts in a performance-optimized
library (Intel MKL). For shorter ones, reasonable overheads are measured and
presented in Table 4.1. Since Level 1 BLAS performance is mainly dominated
by the memory transfers, additional computation does not significantly increase
the running time, especially for large vectors.

The paper is organized as follows. In Section 2, we briefly present some
accurate summation algorithms, their optimizations and an experimental per-
formance analysis to decide how to efficiently implement the level 1 BLAS. The
experimental framework used throughout the paper is also described in this part.
Section 3 is devoted to the performance analysis of the sequential implementation
of the level 1 BLAS routines. Section 4 describes their parallel implementations
and the measure of their efficiency. We conclude describing the future develop-
ments of this ongoing project towards efficient and reproducible BLAS.

2 Choice of Optimized Floating-Point Summation

Level 1 BLAS subroutines mainly rely on floating-point sums. It exists several
correctly rounded summation algorithms. Our first step aims to derive optimized
implementations of such algorithms and to choose the most efficient ones. In the
following, we briefly describe these accurate algorithms and then, how to opti-
mize and to compare them.

All floating-point computations satisfy the IEEE754-2008. Let fl(
∑

pi) be
the computed sum of a length n floating-point vector p. The relative error of the
classical accumulation is of the order of u · n · cond(

∑
pi), where cond(

∑
pi) =∑

|pi|/|
∑

pi| is the condition number of the sum. u is the machine precision
that equals 2−53 for IEEE754 binary64.

2.1 Some Accurate or Reproducible Summation Algorithms

Algorithm SumK [9] reduces the previous relative error bound as if the classical
accumulation is performed in K times the working precision:

|SumK(p)−
∑

pi|

|
∑

pi|
≤

(n · u)K

1− (n · u)K
· cond(

∑
Pi) + u. (2.1)

SumK replaces the floating-point add by Knuth’s TwoSum algorithm that com-
putes both the sum and its rounding error [8]. SumK iteratively accumulates
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these rounding errors to enhance the final result accuracy. The correct round-
ing could be achieved by choosing a large enough K to vanish the effect of the
condition number in (2.1) — but in practice this latter is usually unknown.

Algorithm iFastSum [16] repeats SumK to error-free transform the entry vector.
This distillation process terminates returning a correctly rounded result thanks
to a dynamic control of the error.

Algorithms AccSum [12] and FastAccSum [11] also rely on error-free transfor-
mations of the entry vector. They split the summands, relatively to max |pi|
and n, such that their higher order parts are then exactly accumulated. This
split-and-accumulate steps are iterated to enhance the accuracy up to return a
faithfully rounded sum. These algorithms return the correctly rounded sum and
FastAccSum requires 25% less floating-point operations than AccSum.

HybridSum [16] and OnlineExact sum [17] exploit the short range of the floating-
point number exponents. These algorithms accumulate the summands with a
same exponent in a specific way to produce a short vector with no rounding error.
The length of the output vector of this error-free transform step is the exponent
range. HybridSum splits the summands such that floating-point numbers can be
used as error-free accumulators. OnlineExact uses two floating-point numbers to
simulate a double length accumulator. These algorithms then apply iFastSum to
evaluate the correctly rounded sum of the error-free short vector(s).

ReprodSum and FastReprodSum [4] respectively rely on AccSum and FastAcc-
Sum to compute not fully accurate but reproducible sums independently of the
summation order. So numerical reproducibility of parallel sums is ensured for
every number of computing units.

2.2 Experimental Framework

Table 2.1 describes our experimental framework. Aggressive compiler options as
-ffast-math are disabled to prevent the modification of the sensitive floating-
point properties of these algorithms. Rounding intermediate results to the bi-
nary64 format (53 bit mantissa) and value safe optimizations are provided with
-fp-model double and -fp-model strict options. Runtimes are measured in
cycles with the hardware counters thanks to the RDTSC assembly instruction.
We display the minimum cycle measures over more than fifty runs for each data.
Condition dependant data are computed with the dot product generator from
[9]. We compare our solutions to the well optimized but non-reproducible MKL
BLAS implementation [6].

2.3 Implementation, Optimization and Test

For a fair comparison, all algorithms are manually optimized by a best effort
process. AVX vectorization, data prefetching and loop unrolling are carefully
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Table 2.1: Experimental framework
Software

Compiler ICC 14.0.2
Options -O3 -axCORE-AVX-I -fp-model double -fp-model strict

-funroll-all-loops

Parallel library OpenMP 4.0
BLAS library Intel MKL 11

Hardware

Processor Xeon E5 2660 (Sandy Bridge) at 2.2 GHz
Cache L1: 32KB, L2: 256KB, shared L3 for each socket: 20MB
Bandwidth 51.2 GB/s
#cores 2 × 8 cores (hyper-threading disabled)

combined to pull out the best implementation of each algorithm. Moreover, some
tricks improve the exponent based table access in HybridSum and OnlineExact,
see for instance Alg. 2.1 for the latter and [1] for details.

1: Declare arrays C1 and C2

2: for i in 1:n do

3: exp = exponent(pi)
4: FastTwoSum(C1exp, pi, C1exp, error)
5: C2exp = C2exp + error

6: end for

7: S = iFastSum(C1 ∪ C2)
8: return S

(a) Before optimization

1: Declare array C

2: Declare distance of prefetch
3: for i in 1:n (Manually unrolled) do

4: prefetch(pi+distance);
5: exp = exponent(pi)
6: FastTwoSum(C2exp, pi, C2exp, error)
7: C2exp+1 = C2exp+1 + error

8: end for

9: S = iFastSum(C)
10: return S

(b) After optimization

Alg. 2.1: Optimization of algorithm OnlineExact(p, n)

Figures 2.2a and 2.2b present the runtime measured in cycles divided by the
vector size (y-axis). Vector lengths vary between 210 and 225 (x-axis) and two
condition numbers are considered : 108 and 1032.

It is not a surprise that HybridSum and OnlineExact are interesting for larger
size vectors. These algorithms produce one or two short vectors (length = 2048
in binary64) whose distillation is of constant time compared to the linear times
of the data preprocessing step (exponent extraction) or also, of the successive
error free transformations in the other algorithms. Moreover they are very less
sensitive to the conditionning of the entry vector. Shorter size vectors benefit
from the other algorithms, especially from FastAccSum while their conditionning
remains small.

In the following we take advantage of these different behaviors according to
the size of the entry vector. We call it a “mixed solution”. In practice for the
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Fig. 2.2: Runtime/size for optimized summation algorithms

level 1 BLAS routines, FastAccSum or iFastSum are useful for short vectors
while larger ones benefit from HybridSum or OnlineExact as we will explain it.

3 Sequential Level 1 BLAS

Now we focus on the sum of the absolute value vector (asum), the dot product
(dot) and the 2-norm (nrm2). Note that other level 1 BLAS subroutines do not
suffer neither of accuracy nor of reproducibility failures. In this section, we start
with sequential algorithms detailling our implementations and their efficiency.

3.1 Sum of Absolute Values

The condition number of asum equals 1. So SumK is enough to efficiently get a
correctly rounded result. According to (2.1), K is chosen such that n ≤ u1/K−1.

Figure 3.1a exhibits that the correctly rounded asum costs less than 2× the
optimized MKL dasum. Indeed K = 2 applies for the considered sizes. Note that
K = 3 is enough until n ≤ 235, i.e. until 256 Terabyte of data.

3.2 Dot Product

The dot product of two n-vectors is transformed into a sum of a 2n-vector with
Dekker’s TwoProd [3]. This sum is correctly rounded using a “mixed solution”.
Short vectors are correctly rounded with FastAccSum. For large n, we avoid to
build and read this intermediate 2n-vector: the two TwoProd results are directly
exponent-driven accumulated into the short vectors of OnlineExact. This ex-
plains why this latter is interesting for shorter dot products than what we can
expect from Section 2.3.

Figure 3.1b shows this runtime divided by the input vector size — the con-
dition number is 1032. Despite the previous optimizations, the overcost ratio
compared to MKL dot is between 3 and 6. This is essentially justified by the
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additional computations (memory transfers are unchanged). If a fused-multiply-
and-add unit (FMA) is available, the 2MultFMA algorithm [8] that only costs
2 FMA (compared to the TwoProd’s 17 flop) certainly improves these values.
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Fig. 3.1: Runtime/size for sequential asum, dot and nrm2.

3.3 Euclidean Norm

It is not difficult to implement an efficient and reproducible Euclidean norm.
Reproducibility is ensured by the correct rounding of the sum of the squares
and then by the correct rounding of the IEEE-754 square root. Of course this re-
producible 2-norm is only faithfully rounded. Hence a “mixed solution” is similar
to the dot one.

Here the MKL nrm2 is not used as the comparison reference since we measure
very desapointing runtimes for it. We implement a non-reproducible simple and
efficient 2-norm with the optimized MKL dot (cblas_ddot). We named it nOrm2.

The memory transfer cost dominates the computing one for dot and nOrm2:
compared to dot, nOrm2 halves the memory tranfer volume, performs the same
number of floating-point operations and runs twice faster, see Figures 3.1b
and 3.1c. As previously mentionned, the “mixed solution” dot product is still
computation-dominated. This justifies that the previous dot ratios prohibitively
double for our sequential nrm2.

4 Reproducible Parallel Level 1 BLAS

Now we consider the parallel implementations. As in the previous section, parallel
asum relies on parallel SumK while parallel dot and nrm2 derive from a parallel
version of a “mixed solution” for the dot product. We start introducing these two
parallel algorithms. Then we derive the parallel reproducible level 1 BLAS and
perform its performance analysis.
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4.1 From Parallel Sums to Reproducible Level 1 BLAS

Parallel SumK. It derives from the sequential version and has already been
introduced in [15]. It consists in 2 steps. Step 1 applies the SumK algorithm on
the local data without the final error compensation for every K iterations. Hence
it returns a K-length vector S such that (Sj)j=1,K is the sum of the jth layer in
SumK applied to the local subvector. Step 2 gathers these K-length vectors to
the master unit and applies the sequential SumK.

Parallel dot “mixed solution”. Every n-length entry vector is splitted within P
threads (or computing units) and N denotes the length of these local subvectors.
The key point is to perform efficient error-free transformations of these N -vectors
until the last reduction step. This consists in a 4 step process presented with
Fig. 4.1 for P = 2. Steps 1 and 2 are processed by the P threads with local
private vectors. Step 1 is similar to the sequential case and produces one vector
of size = 2N or 2048 or 4096: TwoProd transforms short N -vectors into a 2N -
one while this latter is not built for larger entries but directly exponent-driven
accumulated into the size-length vector as for HybridSum or OnlineExact. Step
2: the size-length vector is distillated (as for iFastSum) into a smaller vector
of non overlapping floating-point numbers. Step 3: every thread fuses this small
vector into a global shared one. Step 4 is performed by the master thread that
computes the correctly rounded result of the global vector with FastAccSum.

!
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!
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Y

n/P

TwoProd
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exponent

accumulation

!
"

size = 2n/P

or 2048
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"

TwoProd
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exponent

accumulation

!
"

!
"

Gather

local data 

in a shared

vector

!
"

P 40

FastAccSum

Distillation

Rdot

Distillation

Fig. 4.1: Parallel dot “mixed solution”

Let us remark that the small vector issued from Step 2 is at most of length
40 in binary64. Hence the distillation certainly benefits from cache effect. The
next fusing step moves accross the computing units these vectors of length 40 in
the worst case. This induces a communication over-cost especially for distributed
memory environments. Nevertheless it introduces no more reduction step than
a classic parallel summation.
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The Reproducible Parallel Level 1 BLAS. The reproducible parallel Rasum de-
rives from parallel SumK as in Sect. 3.1. The parallel dot “mixed solution” gives
reproducible parallel Rdot and Rnrm2. In practice, the parallel implementation
of the Step 1 differs from the sequential one as follows.

For shorter vectors, iFastSum is prefered to FastAccSum to minimize the Step
3 communications. For medium sized vectors, HybridSum is prefered to Online-
Exact for Rdot to minimize the Step 2 distillation cost. Otherwise OnlineExact
is chosen to minimize the exponent extraction cost.

4.2 Test and Results

The experimental framework is unchanged. Each physical core runs at most one
thread thanks to the KMP_AFFINITY variable. For every routine, we run from 1
to 16 threads on 16 cores to select the most efficient configurations with respect
to the vector size. This optimal number of threads is given in parentheses in
Table 4.1 except when it corresponds to the maximum possible ressources (16).
Intel MKL’s (hidden) choice is denoted with a ⋆.
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Fig. 4.2: Runtime/size of parallel level 1 BLAS (up to 16 threads, cond=1032)

For the next performance comparisons, optimized parallel routines are nec-
essary as references. We use the MKL parallel dot and we implement asum and
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Table 4.1: Runtime overcost for the reproducibility of parallel level 1 BLAS
Vector size 10

3
10

4
10

5
10

6
10

7

Rasum/asum 2.0 (1/1) 1.5 (4/2) 1.3 1.1 1

Rdot/mkldot 6.4 (8/⋆) 3.8 (8/⋆) 1.6 1.1 1

Rnrm2/nOrm2 9.1 (8/⋆) 7.1 (8/⋆) 3.4 1.6 1.5

Rasum/FastReprodasum 0.9 (1/1) 0.9 (4/4) 1.0 0.8 0.5

Rdot/FastReprodDot 1.5 (8/1) 1.5 (8/8) 0.9 0.7 0.6

Rnrm2/FastReprodNrm2 1.7 (8/1) 1.5 (8/8) 0.9 0.5 0.4

nrm2 parallel versions. Our parallel asum runs up to 16 MKL dasum and per-
forms a final reduction. Our parallel nOrm2 derives similarly from the sequential
nOrm2 introduced in Sect. 3.3. These implementations exhibit the best perfor-
mances in Fig. 4.2. As in Section 2.3, our implementations of ReprodSum and
FastReprodSum are optimized in a fair way using again AVX vectorization, data
prefetching and loop unrolling. The latter one is selected for the sequel.

We compare our reproducible Rasum, Rdot and Rnrm2, to the optimized
but non-reproducible reference implementations, and to the one derived from
FastReprodSum. Fig. 4.2 and Table 4.1 present these results.

Our reproducible Rasum compares very well to the optimized asum: the
initial 2× overcost tends to 1 for n about 106, see Fig. 4.2a. Compared to the
sequential cases and since it operates now on 16× smaller local vectors, our
reproducible Rdot and Rnrm2 reach their optimal linear performance for larger
entry sizes. Nevertheless the reproducible Rdot runs less than 2× slowler than
the MKL reference for vector size up to 105, see Fig. 4.2b. For the same reasons as
in the sequential case (Sect. 3.3), our reproducible Rnrm2 is not enough efficient
to exhibit the same optimal tendency. Nevertheless the Rnmr2 overhead now
reduces to the more convincing ratios compared to nOrm2, see Fig. 4.2c.

Finally our fully accurate reproducible level 1 routines compare quite favourably
to those derived from the reproducible FastReprodSum, especially for large vec-
tors: see Fig. 4.2. Those lastest algorithms read twice the entry vector and thus
suffer from cache effects for large vectors. It is not the case for our algorithms.
On the other hand, the additional computation required by OnlineExact or Hy-
bridSum benefit from the floating-point unit availability.

5 Conclusion and Future Developments

This experimental work illustrates that reproducible level 1 BLAS can be im-
plemented with a reasonable overcost compare to the performance-optimized
non-reproducible routines. Moreover our implementations offer full accuracy al-
most for free compared to the existing reproducible solutions.

Indeed the floating-point peak performance of current machines is far to be
exploited by level 1 BLAS. So the additional floating-point operations required
by our accuracy enhancement do not significantly increase their execution time.
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Of course these results are quantitatively linked to the experimental frame-
work. Nevertheless the same tendencies should be observed in other current com-
puting contexts. Work is ongoing to benefit from FMA within dot and nrm2,
to validate an hybrid OpenMP+MPI implementation on larger HPC cluster,
to port and optimize this approach to accelerators (as Intel Xeon Phi) and to
compare it to the expansions and software long accumulator of [2].

Finally there is alas no reason to be optimistic for the BLAS level 3 where
the floating-point units have no space left for extra computation. Reproducible
solutions need to be implemented from scratch, for example following [14].
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