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1.  Introduction

In recent decades the development of potential technological 
applications of magnetic nanoparticles, such as magnetic 
imaging and magnetic hyperthermia, has triggered a new 
endeavor for a better control of the relevant properties of such 
systems. In particular, synthesis and growth of crystalline 
nanoparticles have reached such a high level of skill and know-
how as to produce well defined 2D and 3D arrays of nanoclus-
ters of tailored size, shape and internal crystal structure [1–6]. 
On the other hand, experimental measurements on nanoscale 
systems are a step behind inasmuch as they still do not provide 
us with sufficient space-time resolutions for an unambiguous 
interpretation of the observed phenomena that are commonly 
attributed to finite-size or surface effects. Nonetheless, ferro-
magnetic resonance (FMR), which is a well known and very 
precise technique for characterizing bulk and layered magnetic 

media [7–9], benefits from a renewed interest in the context 
of nanomagnetism. Indeed, some newly devised variants of 
the FMR technique [10–15] combine the study of dynamic 
magnetic properties by FMR with the elemental specificity 
of the chemical composition of the particles. For instance, 

these techniques can be employed to detect the ferromagnetic 

resonance of single Fe nanocubes with a sensitivity of 106
Bµ  

and element-specific excitations in Co-Permalloy structures. 
Another variant of ferromagnetic resonance spectroscopy is 
the so-called magnetic resonance force microscopy (MRFM) 
[16]. It has recently been used for the characterization of cobalt 
nanospheres [17]. These techniques hold the prospect of pro-
viding a better resolution of the surface properties at the level 
of a single (isolated) magnetic nanoparticle. For the benefits of 
theoretical work, these experiments could provide the missing 
data for resolving the surface response to a time-dependent 
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magnetic field, and thus contribute to assess the validity of 
surface-anisotropy models. In particular, measurements of the 
absorbed power in FMR experiments on ‘isolated’ particles or 
dilute assemblies of nanoparticles could serve these purposes. 
Indeed, this is a standard observable that is routinely measured 
in such experiments. From the theory standpoint, it is a well 
known (dynamic) response of a magnetic system that can be 
computed by various well established techniques, analytical 
as well as numerical.

In the present work we consider a box-shaped nanocluster 
modeled as a many-spin system with free boundary condi-
tions, subjected to a time-dependent (small-amplitude) magn
etic field. The systems considered here are chosen to model, 
to some extent, Fe nanocubes studied by several groups [3, 5, 
6, 10, 18]. Our main objective is to distinguish and assess the 
role of surface and core contributions to the FMR absorption 
spectra. For this we focus on the simple system of an isolated 
(ferromagnetic) nanocube and study its intrinsic proper-
ties, thus ignoring its interactions with other nanocubes that 
would be included in an assembly and its interactions with the 
hosting matrix. As shown by Sukhov et al [19], this assump-
tion is fully justified in the case of dilute samples. Obviously, 
real systems of magnetic nanoparticles are far more complex. 
Indeed, Fe nanoparticles may present a variety of morpholo-
gies and internal structures, especially in a core/shell configu-
ration where one observes an antiferromagnetic layer coating a 
ferromagnetic system [20–22]. However, the system we adopt 
is simple enough to illustrate our study in a clear manner but 
rich enough to capture the main physics we are interested in. 
Furthermore, the methods we develop here are quite versatile 
and can be extended to a given magnetic nanoparticle with 
arbitrary physical parameters.

Consequently, the energy of the nanocluster considered here 
includes the Zeeman energy, the (nearest-neighbor) spin–spin 
exchange coupling and on-site anisotropy (core and surface). 
We also allow for the possibility that exchange interactions 
involving one or more sites in the surface outer shell to be dif-
ferent from those in the core or at the interface between the core 
and the surface. Upon solving the (undamped) Landau–Lifshitz 
equation (LLE) we compute the absorbed power of such sys-
tems. Then, the LLE equation is linearized around the equilib-
rium state of lowest energy and the ensuing eigenvalue problem 
is solved to infer the full spectrum (eigenfrequencies and eigen-
functions) of all spin-wave excitations. Finally, by comparison 
with the absorbed power of a given mode, we can determine the 
separate contributions of core and surface of the nanocluster.

The paper is organized as follows: in the next section we 
present our model and computing methods. We give the model 
Hamiltonian and then describe the two numerical methods we 
used to compute the full spin-wave spectrum (eigenfrequen-
cies and eigenvectors) and the absorbed power. In section 3 
we present and discuss our results for the effects of size and 
surface anisotropy on the absorbed power. This section ends 
with a discussion of Fe nanocubes for which we give orders 
of magnitude and speculate on the possibility to observe the 
calculated peak in the absorbed power. An appendix has been 
added on a toy model of a three-layer system in order to illus-
trate, in a simpler manner, how the various branches in the 

spin-wave dispersion can be associated with spins of a given 
type (core or surface) in the system.

2.  Model and methods

2.1. The Hamiltonian

We model the magnetic nanocluster as a system of N  classical 
spins si, with | | =s 1i , with the help of the Hamiltonian

,ex an= +H H H� (1)

where

J s s
1

2 i j
ij i jex

,
∑= − ⋅H� (2)

is the ferromagnetic Heisenberg exchange interaction and anH  
the anisotropy contribution. We assume only nearest-neighbor 
interactions (nn), Jij  =  J  >  0 for i j, nn∈  and zero otherwise. 
However, we use a numerical method that allows us to con-
sider different exchange couplings between the core and sur-
face spins according to their loci. More precisely, we may 
distinguish between core–core (Jc), core–surface (Jcs) and 
surface–surface (Js) exchange coupling. The anisotropy term 
in equation  (1) is assumed to be uniaxial (along the z axis) 
with constant D  >  0 for core spins and of Néel’s type with 
constant DS for surface spins. More precisely, the anisotropy 
energy is local (on-site), so that i ian an,= ∑H H , and given by

D i

D i

s e

s u

, core

1

2
, surface.

i

i z

j
i ij

an,

2

S
nn
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⎧
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⎪
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=

− ⋅ ∈

⋅ ∈
∈

H� (3)

Here uij is the unit vector connecting the surface site i to 
its nearest neighbor on site j. Néel’s anisotropy arises due 
to missing nearest neighbors for surface spins. In particular, 
for the simple cubic lattice and xy surfaces (perpendicular to 

the z axis), the Néel anisotropy becomes D si i zan,
1

2 S ,
2= −H . 

This means that for D 0S>  the spins tend to align perpend

icularly to the surface, while for D 0S<  the surface spins tend 
to align in the tangent plane. In a box-shaped nanocluster 
the Néel anisotropy on the edges along the z axis becomes 

D s si i x i yan,
1

2 S ,
2

,
2( )= − +H  or, equivalently, D si i zan,

1

2 S ,
2=H . As 

such, for D 0S>  the edge spins tend to align perpendicularly 
to the edges. On the other hand, it is easy to check that Néel’s 
anisotropy vanishes at the corners and in the core of a box-
shaped nanocluster.

For the sake of simplicity, and for an easier comparison 
with experiments on iron nanocubes, for instance, the sys-
tems investigated in the present work are boxed-shaped 
with N N Nx y z= × ×N  with a simple cubic lattice. In this 
case, the surface anisotropy (SA) favours an ordering along 
the shortest edges of the particle if D 0S>  and along the 
longest ones otherwise. Indeed, for an atom on the edge 
in the x direction, for instance, we have 4 neighbors with 
u e u e u e u e, , ,ij x ij x ij y ij z= = − = = −  and thereby (using 

| | =s 1i ) we obtain si
D D

i xan, 2 2 ,
2S S→  +H .
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2.2.  Excitation spectrum and absorbed power: computing 
methods

Since surface anisotropy is much stronger than the core 
anisotropy and the fraction of surface spins for nanoclusters 
is appreciable, SA strongly influences the spin-wave spectrum 
of the cluster. Experimentally, the most accessible modes are 
the spin-wave modes that couple to the uniform ac field, as in 
magnetic-resonance experiments. In the absence of SA, only 
the uniform-precession mode is seen in the magnetic reso-
nance. The effect of SA is twofold. First, the uniform (or nearly 
uniform) precession frequency is modified by SA; it increases 
or decreases depending on geometry. Hence, combining 
magnetic-resonance experiments with the corresponding 
theoretical results provides a means for estimating the sur-
face-anisotropy constant. Second, in larger clusters exchange 
stiffness becomes less restrictive and different groups of spins 
(such as the core and surface spins) can precess at different 
frequencies and this leads to several resonance peaks.

In this section  we describe two complementary methods 
we have used to compute the spin-wave spectrum and the 
absorbed power. The first method consists in linearizing  
the (undamped) Landau–Lifshitz equation (LLE) around the 
equilibrium position and then solving the ensuing eigenvalue 
problem to obtain the eigenfrequencies and the corresponding 
eigenvectors (spin-wave modes). This method is quite ver-
satile as it can be applied to any nanocluster with arbitrary 
size, shape and energy parameters. In the case of box-shaped 
nanoclusters this method is compared with the results of linear 
spin-wave theory obtained in [23, 24]. The second numerical 
method used here consists in directly solving the LLE using 
the technique of symplectic integrators [25, 26]. As will be 
seen later these two methods are in a very good agreement.

2.2.1.  Linearization of the Landau–Lifshitz equation: normal 
modes of a nanocluster.  Here we deal with the numerical 
solution of the Landau–Lifshitz equation (LLE) of motion

t

s
s H s s H

d

d
,i

i i i i ieff, eff,  ( )λ= × − × ×�� (4)

where the effective field is defined by δ=− +HH i seff, i  
µg tHB ( ), with g being the Landé factor and Bµ  the Bohr mag-

neton, λ the dimensionless damping parameter and tH( ) the 
time-dependent magnetic field. In the following we set 0λ =  
(Larmor equation) to avoid artificial effects. Internal spin-
wave processes in the particle can provide a natural damping 
of spin waves, especially for larger particles and non-zero 
temperatures. For nanosize particles, spin-wave modes are 
essentially discrete [23, 24], while damping requires quasi-
continuous excitation branches to satisfy energy conserva-
tion in spin-wave processes. In addition, we do not include 
thermal excitation via stochastic Langevin fields in the model. 
Thus we expect that the spin wave modes of our particles are 
undamped. In other words, in this work, we are not seeking 
the precise result for the microwave absorption. We use these 
calculations to find positions of spin-wave peaks and compare 
them with a second approach. Our numerical experiment is 
short-time whereas damping comes into play at longer times 
that we are not considering here.

One of the goals of the present work is to assess the role 
of the surface contribution to the energy spectrum of a single 
nanocluster or to a given physical observable that is easily 
accessible experimentally, e.g. the absorbed power. So, before 
we compute the relevant observable, it is necessary to com-
pute the eigenvectors and eigenenergies of the system. Then, 
it is our aim to try to attribute the various peaks in the energy 
spectrum to the core or surface contributions and to estimate 
the corresponding statistical weight. The eigenvalue problem 
by linearizing the LLE (4) around the equilibrium state 

si i
0

1, ,{ }( )
= … N . This has been done in the system of spherical 

coordinates in order to reduce the number of equations from 
3N  to 2N . The main steps of our formalism are summarized 
in appendix A. More precisely, we write s s si i i

0( )δ = − , for 
i 1, ,= … N , and expand the first derivative of the energy E 
(or the effective field) to 1st-order in siδ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H s s H s s H s .i i
j

j j ieff,
0

eff,
0

1
eff,

0∑δ δ ∇+ = + ⋅
=

N

( ){ } { } { }( ) ( ) ( )

� (5)
Then, inserting this into the LLE (4) leads to

t
i

s
s

d

d
, 1, ,i

j
ij j

1

( ) [ ]∑
δ

δ= = …
∼

=

H I N
N

� (6)

where ik
∼
H  is the pseudo-Hessian defined in equation  (A.4) 

and

0 1
1 0

⎜ ⎟
⎛
⎝

⎞
⎠≡ −I

is a matrix that results from the vector product of si with the 
effective field H ieff, . The solution of equation (6) can be sought 
in the form t ts s 0 exp ik k( ) ( ) ( )δ δ ω= , leading to the eigenvalue 
problem

1 si 0,
j

ij j
1

( )∑ ω δ− =
∼

=

H I
N

� (7)

whose solution yields the excitation spectrum of the nano-
cluster. Accordingly, the eigenvalue problem (7) is then 
solved numerically for an arbitrary N -spin nanocluster by 

diagonalizing the 2 2×N N  matrix with elements ij[ ]∼ αβ
H I . 

This is done in the absence of the time-dependent magnetic 
field tH( ) so that the effective field involved here is given by 
H i seff, iδ= − H.

In order to evaluate the contributions of the surface and 
core spins to the eigenvector (or mode) skδ , we introduce the 
corresponding ‘spectral weight’. For this purpose, we first 
write the eigenvector skδ  of wave vector k as

fs s0 0k
i

ki i
1

( ) ( )∑δ δ=
=

N

� (8)

with fki are the eigenfunctions of the matrix [ ]∼HI . For later use 
the equation above can be rewritten as

s e0k
i x y z

ki i
1 , ,

( ) ∑ ∑δ =
α

α α

= =

D
N

� (9)
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where e e e, ,i x i y i z, , ,{ } is the local Cartesian frame and ki
αD  are 

the corresponding coefficients.
Then, we may define the spectral weight (per site) associ-

ated with the core and surface spins as follows

W
N

f
1 1

k
i

ki
s,c

s,c core,surface

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑= × | |

∈N

with the normalization condition N W N W 1k
s

k
c

s c+ = , where 
N Nc s( ) is the number of core (surface) spins.

In [24] the eigenfunctions fki were calculated analytically 
using the finite-size spin-wave theory for a boxed-shaped 
particle. This yields a benchmark for the numerical results 
obtained here and helps interpret them. The spin-wave exci-
tations were treated perturbatively as small deviations of the 
spins si from the direction n of the particle’s net magnetic 
moment, namely s ni iπ+� , with n 0iπ⋅ = . The eigenfunc-
tions were then obtained in the form

f f fk
ix iy iz

ix kx iy ky iz kz i
, ,

, , ,( )∑π π= × ×� (10)

with

f i k x y z
2

1
cos 1 2 , , ,i k

k
, [( / ) ]

δ
α=

+
− =α α

α
α α� (11)

and k n

N
=α

πα
α

, in the case of free boundary conditions, as 
adopted here. Comparing equation (10) with equation (8) we 
see that the variables kπ  used in [24] are in fact identical to the 
variables skδ  defined in equation (8).

The normal modes of a magnetic nanocluster have been 
studied by many authors (see [27, 28] and references therein). 
On the other hand, the ferromagnetic resonance of ensembles 
of magnetic nanoparticles in the macrospin approximation 
has also been studied numerically using the Landau–Lifshitz 
equation [19, 29]. In the present work we use similar methods 
(analytical and numerical) with the main objective here to 
investigate the effects of surface anisotropy on the resonant 
absorption by the spin-wave modes in box-shaped nanoclusters.

2.2.2.  Solution of the Landau–Lifshitz equation by symplectic 
methods.  In these numerical calculations we set J  =  1, 

1=� . For simplicity, we consider only cases in which the 
spins in the equilibrium state are collinear and directed along 
the z axis. This assumes that the surface anisotropy does not 
exceed a certain critical value. Typically we have D  =  0.01 
and D 0.1S = . The ac field is applied along the x axis, if not 
stated otherwise. The results of this method will be compared 
to those of the previous methods.

Among many existing solvers of systems of ordinary 
differential equations, we employ a method making explicit 
rotations of spins around their effective fields (see [25, 26] 
and many references therein). This method conserves the spin 
length and, in the absence of anisotropy, it also conserves the 
energy. Since anisotropy is much weaker than the exchange 
interaction, the energy non-conservation is weak. The evo
lution operator of the system corresponding to the time 
interval t∆  can be written in the exponential form

U L Le , .L t

i
i

1

ˆ ˆ ˆˆ ∑= =∆

=

N

� (12)

There is no explicit formula for eL tˆ∆  since the precession of 
one spin changes the effective fields on the others. However, 
the action of the operators eL tiˆ ∆  describing the rotation of an 
individual spin around its effective field with all other spins 
frozen, can be worked out analytically. In the absence of 
anisotropy this is simply the precession around a fixed field 
that conserves both spin length and the energy. In the presence 
of anisotropy the effective anisotropy field changes as the spin 
is precessing, thus an analytical description of this precession 
is possible but cumbersome. However, since the anisotropy 
field is much smaller than the dominating exchange field, one 
can use the anisotropy field at the beginning of the interval t∆ , 
making only a small error. Representing the precession of all 
spins in the system as a succession of individual precessions 
induces errors growing with t∆ . This error can be reduced 
by using a generalization of the second-order Suzuki–Trotter 
decomposition he e e eA B h Ah Bh Ah2 2 3( )( ˆ ˆ) ˆ / ˆ ˆ /= ++ O  that, in our 
case, has the form

U e e e e e e e eL h L h L h L h L h L h L h L h1, 2 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= … …− −N N N N� (13)

with h t 2/≡∆ . That is, all spins are rotated around their 
respective effective fields in succession in some order. Then 
the procedure is repeated in the reversed order. The effective 
field on the next spin is updated because of rotation of the pre-
vious spin. In the presence of a time-dependent field, the best 
choice is to take the values of the latter in the middle of the 
two series of successive rotations, that is, at t 4/∆  and t3 4/∆ . 
Our implementation of this method in Wolfram Mathematica 
(compiled) is rather efficient and will be confirmed by agree-
ment between the results obtained by equations (15) and (16) 
for a not too small time step, typically t 0.1∆ = .

We would like to emphasize that the approaches (analyt-
ical and numerical) presented above are complementary and 
render the same results for box-shaped clusters. However, the 
(numerical) method presented in section 2.2.1 is quite versa-
tile as it allows us to compute the excitation spectrum of a 
nanocluster of arbitrary shape and model Hamiltonian.

2.2.3.  Definition and computing method of the absorbed 
power.  The power absorbed by a spin system in the presence 
of a uniform ac magnetic field is defined as

P t
t

t g t
t

t
s

H1
d

1 d

df

t

i
iabs

0
B

acf

( ) ( ) ( ) ( )
∫ ∑µ= − ⋅

N� (14)

where the integration is performed over time from the initial 
instant t  =  0, at which all spins are in their (initial) equilib-
rium state, to the final time tf. Here, t ts sTri i( ) [ ( ) ]ρ≡  where 
ρ is the density matrix of the ferromagnet. Then, the response 
of the spin system to a time-dependent field is defined by the 
difference s t s t si i i 0( ) ( )δ ≡ −α α α , with s sTri i0 0( )ρ=α , 

0ρ  being the density matrix of the unpurturbed ferromagnet. 
However, in our calculations tf spans several periods, i.e. 
tf  =  nT and as such, we can replace tsi ( ) by s ti ( )δ  since 
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the contribution of the constant term vanishes. Therefore, the 
absorbed power becomes

sP
t

t g t tH
1

d
1 ˙ .

f

t

i
iabs

0
B ac

f

( ) ( ) ( )∫ ∑µ δ= − ⋅
N� (15)

On the other hand, since our model is conservative, the 
absorbed energy should also be given by the change (per 
time) of the energy of the system, leading to the equivalent 
definition

P
t

t
1

0 .
f

fabs [ ( ) ( )]= −
N
H H� (16)

We use both formulae for the absorbed power that serve as a 
check on the numerical calculations.

In order to clarify the expected form of the absorbed power 
that we will compute numerically for magnetic nanoparticles, 
let us first consider the simple case of a damped harmonic 
oscillator driven by an oscillating force, i.e.

x x x h t¨ 2 ˙ sin ,0
2

0 ( )ω ξ ω+ Γ + =� (17)

where a coupling constant ξ is introduced for generality. Solving 
this equation with the initial conditions x x0 ˙ 0 0( ) ( )= =  and 
calculating the absorbed power for times t N Tf T= , T 2 /π ω= , 
NT being the number of cycles, with the help of equation (15) 
(note that equation (16) cannot be used in the damped case), 
one obtains different results in different measurement time 
ranges. At short times the result is that for the undamped har-
monic oscillator,

P

h

t t

t
t

2

1 cos
, 1.

f f

f
f

abs

0
2

2 0

0
2

[( ) ]
[( ) ]

ξ
ω ω

ω ω
=

− −

−
Γ �� (18)

The width of the corresponding peak decreases with the mea-
surement time as t1 f/ω∆ ∼ , while its height grows linearly 
with tf, so that its integrated intensity is independent of time. 
At long times a Lorentzian peak is formed around the (effec-
tive) angular frequency 0ω̃  with

P

h
t

2
, 1.f

abs

0
2

2

0
2 2( ˜ )

ξ
ω ω

=
Γ

− + Γ
Γ �� (19)

The latter formula is what is used in magnetic resonance 
experiments. However, in numerical calculations on magn
etic nanoparticles it is inconvenient to perform a very long 
integration of the equations  of motion trying to measure 
damping that can be very small or zero. Equation (18) that 
requires a relatively short computation (we mainly use 
NT  =  10) is fully sufficient in finding the positions of reso-
nance peaks and their intensities (parametrized by the cou-
pling constant ξ in the oscillator model). In contrast to the 
harmonic oscillator, SW modes in magnetic particles become 
non-linear at high excitation thus leading to saturation and 
distortion of the results. For this reason, in numerical calcul
ations we have to use the amplitude of the ac field H0 as 
small as possible without loss of precision in equations (15) 
and (16).

In the limit of a strong exchange coupling all spins are 
collinear and can be considered as a single (macro-) spin 
with an effective anisotropy stemming from the core and 

the surface. In this approximation, the contribution of sur-
face anisotropy is of first order in DS and depends on the 
particle’s shape. For the case D 0S>  and oblate particles 
in the xy plane, the effective SA has an easy axis in the z 
direction. For prolate particles or for D 0S<  the z direction 
becomes a hard axis of the effective SA. For particles of 
cubic (or spherical) shape the first-order contribution of the 
SA cancels out. However, there is a second-order contrib
ution  ∼D JS

2/  that has a form of cubic anisotropy and which 
favours an orientation of the particle’s spin along the (1,1,1) 
direction of the simple cubic lattice. Indeed, this orientation 
leads to the largest deviations from the collinear state that 
lower the total energy [30]. Considering the precession of 
the macrospin (the particle’s net magnetic moment) in the 
effective field, to first order in DS, one obtains the resonance 
frequency

ω =

× +
−

+
−⎡

⎣⎢
⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

�
N

N

N N

D

D

D

N N N D

D

N N N

2

1 1 .
x y z y x z

0
core

S

core

S

core

( ) ( )�
(20)

Indeed, for the cubic shape, N N Nx y z= =  and the effect of 
DS vanishes. For D 0S>  and oblate particles (N N N,x y z> ) the 
resonance frequency increases, while for D 0S>  and prolate 
particles the precession mode softens. We have not calculated 
the second-order effect of SA on 0ω  but the form of the effec-
tive cubic anisotropy to second order in DS suggests that the 
precession mode will soften for any sign of DS, for the orienta-
tion of spins along z axis.

3.  Results and discussion

3.1.  Surface and core contributions to the energy spectrum

The procedure to determine the weight of surface and 
core spins in the energy spectrum has been described in 
section  2.2.1. In order to compare the spectral weights 
inferred from the analytical expressions in equation  (10) 
et seq to those obtained by the numerical method, we con-
sider a box-shaped particle with a simple cubic lattice. In 
order to avoid spurious effects that could be due to highly 
symmetric systems we chose to investigate a particle with 
sides of different lengths, e.g. N N N13, 11, 7x y z   = = = . In 
figure 1 we present a plot of the spectral weight as a func-
tion of the energy ω�  (here 1=� ) in units of the nearest-
neighbor exchange coupling J, with J J J Jc cs s= = = . We 
have considered a static magnetic field along the x axis and 
a (uniform) uniaxial anisotropy for both the core and sur-
face spins with a common easy axis along the z direction 
and anisotropy constant D/J  =  1. The large core anisotropy 
D  =  J is merely introduced in order to shift the whole spec-
trum by 2J and thereby to highlight the uniform mode. We 
can see that the numerical results fully agree with the spec-
tral weight inferred from the analytical eigenfunctions in 
equation (10). The full spin-wave spectrum of such many-
spin systems is rather complex as it exhibits many branches, 
and thence does not lend itself to a simple interpretation of 
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the various involved excitations. To that end, we have con-
sidered a representative, though much simpler, system that 
consists of three coupled spin layers for which the excita-
tion spectrum can be computed, with the possibility to dis-
entangle the contributions of the surface and core layers. 
This is done in appendix B. The major difference is that the 
three-layer toy model exhibits only three branches and we 
can see that the surface spins dominate the low-frequency 
excitations. On the other hand, the various branches of the 
many-spin system correspond to different modes running 
in the k  −  space of a simple cubic lattice. For instance, 
a quick inspection of figure  B2 shows that the surface is 
dominant away from the Brillouin zone center. In addition, 
the effect of the surface exchange coupling (Js) has been 
checked for the same particle without external magnetic 
field or anisotropy. We have seen that at low excitation ener-
gies, the spectral weights of the surface spins are always 
higher than those of the core spins. However, as Js increases 
the branches of excitations that preferentially involve sur-
face spins merge with other branches and thus decrease the 
surface contribution. This effect is more clearly seen in the 
framework of the toy-model as shown in figure B2.

3.2.  Absorbed power

3.2.1.  Box-shaped nanoparticles.  To see how our numerical 
method of section 2.2.2 is implemented, we start with a small 
particle containing 160 ( 8 5 4= × × ) spins that is flat in the 
xy plane, with the anisotropy axis in the z direction and the ac  
field applied along the x axis (if not stated otherwise). The 
magnetic-resonance (MR) peak in figure 2 (left panel) is seen 
at J 0.0174/ω =�  that is far to the right of the peak position 

J 0.0045/ω =�  obtained for D 0S = . This can be understood 
as the result of xy planes having a larger area, their stabilizing 
action for D 0S>  is stronger than the destabilizing action of 
other surfaces, in a qualitative agreement with equation (20). 
One can see that increasing the pumping time from NT  =  10 
to NT  =  30 makes the resonance peak narrower and higher, in 

accord with equation  (18). Moreover, one can see the zeros 
of Pabs and small satellite maxima between them. All the 
numerical work presented below uses NT  =  10, as this is suf-
ficient to find the positions of the resonance maxima. This is 
a shape effect indicating that the precession of spins is elliptic 
rather than circular. In such cases parametric resonance can 
be observed. Thus for the same particle, we also performed 
a parametric-resonance calculation, directing the ac field in 
the spin direction z. The results showing the initial stages of 
the exponential parametric instability at the double frequency 
of the MR peak J 0.0347/ω =�  are shown in figure 2 (right 
panel). The parametric-resonance peak has a different structure 
and its growth accelerates with the pumping time. However, 
the parametric resonance requires a much stronger amplitude 
of the ac field and longer pumping times, as compared with 
MR peaks. In the sequel we will only concentrate on the latter.

In order to identify the contributions from the core and 
surface spins in the absorbed power we have investigated 
a cluster with a similar aspect ratio as the cluster with 
13 11 7 1001× × =  spins see figure  3, studied in figure  1 
and for which the diagonalization method presented in sec-
tion  2.2.1 allows for a discrimination between the contrib
utions from the core and surface.

Taking the (space) Fourier transform of the spin si(t) in 
equation (15) we obtain the power absorbed by the k 0=  mode

sP
t

t g t t

t
t g s t t

H

e H

1
d ˙

1
d ˙ .

k

k

f

t

f

t

x y z

abs
0

B 0 ac

0
B

, ,
0 ac

f

f

( ) ( ) ( )

( ) ( ) ( )

∫

∫ ∑

µ δ

µ δ

= − ⋅

= − ⋅
α

α
α

=

=
=

�
(21)

Then, setting k 0=  in equation (9)

s et s 0 e ek k k
t

j x y z
j j

t
00 0

i

1 , ,
,

ik k0 0( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑δ δ= =α ω

α

α α ω
= =

= =
=

= =D�
N

�

� (22)

we obtain

2 4 6 8 10 1 4
0
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Surface (Numerics)
Core (Analytics)
Core (Numerics)

hx /J = 0.001W
s,c

ω

D/J = 1

h /J

Figure 1.  Spectral weight of spin-wave excitations in a box-shaped particle of size × ×13 11 7 and uniform uniaxial anisotropy, in a 
magnetic field along the x direction.
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∫ ∑ ∑ µ= − ⋅ω
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Now, since the vectors e j
α are all parallel to each other, i.e. 

e ej =
α α, the equation above simplifies into the following form

∫ ∑ ∑µ= − ⋅ω
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(24)

which suggests that we can introduce the power absorbed by 
the degree of freedom (mode) corresponding to the comp
onent x y z, ,α = . Indeed, we can write

eP
t

t g tH
1

d e ˙ .k
j

j
f

t
t

0abs
1

,
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i
B ac

k
f
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This in turn can be rewritten as

kP C P0 k k0 0abs( )= = ×α α α
= =

�� (26)

where

Ck k
j

j0 0
1

,∑≡α α
=

=
=D

N

� (27)

is the statistical weight of the k 0=  mode and

eP
t

t g tH
1

d e ˙ .k
f

t
t

0
0

i
B ac

k
f

0 ( )∫ µ≡− ⋅
α ω α
=

=� �
� (28)

This means that the absorbed power (per mode) is propor-
tional to the sum of the coefficients of the wave-functions. 
As such, instead of calculating the absorbed power as 
defined by equation (15) we can calculate and plot the coef-
ficients Ck 0

α
= .

For a clearer analysis of the modes appearing in the 
absorbed power spectrum, we first focus on the case of a box-
shaped sample with the same exchange constant everywhere, 
namely J J J Jc cs s= = = , and without any anisotropy. All the 
spins are then identical and the excitation spectrum is given 
by a single energy band in the k-space as in equation  (10). 
Hence, each mode can be unequivocally labeled by its wave-
vector k only. According to the definition of the coefficients 
Ck
α, the power can only be absorbed when the field couples to 

Figure 2.  Absorbed power in a × ×8 5 4 cubic particle. Left panel: magnetic resonance peak at /ω =� J 0.0174 for two different pumping 
times. The vertical dotted line shows the position of the peak for =D 0S . Right panel: parametric resonance peak at the double frequency 

/ω =� J 0.0347.

Figure 3.  Absorbed power in a × ×13 11 7 cubic particle. Left panel: low-frequency peak. The vertical dotted line shows the position of 
the peak for =D 0S . Right panel: both low-frequency peaks (far left) and high-frequency peaks.
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the uniform mode, i.e. for C 1k 0 =
α
= . On the other hand, for all 

other values of the wave-vector k it can be easily shown that

C
N ksin

sin
0.k

x y z
k0

, ,
2( )

( )
∏= =α

α

α α
≠

=
α� (29)

In contrast to this simple case, for a system with different 
types of local environments, as a consequence of an inhomo-
geneous exchange coupling (J J Jc cs s≠ ≠ ), or of different types 
of on-site anisotropies (surface and core), different energy 
bands appear in the k-space. This can be easily understood in 
the framework of the toy model presented in appendix B and 
shown in figure B2. The analysis of such a situation requires an 
additional band index (�) in order to label each mode of energy 

k,ω ��  and coefficients Ck,
α
�. Consequently, the absorbed power 

can be attributed to the non-uniform modes at k 0= . This is 
shown in figure 4 which presents the spectral weight and the 
wave-function coefficients Ck,

α
� in the low-frequency regime, 

with a surface anisotropy D J 0.1S/ = . The upper panel shows 
the weights of the core and surface spins for all low frequency 
modes. The middle and lower panels respectively present the 
weights of the power-absorbing modes and the coefficient 
Ck,
α
�, normalized by that of the uniform mode (k 0= =� ). 

We can see that the peaks in the absorbed power in figure 3 
(for D J 0.1S/ = ) coincide with the peaks in black in figure 4, 
i.e. the peaks obtained for an ac field applied along the x axis. 
The peaks in black obtained for J 0.24, 0.54, 0.88/    ω =�  in 
figure 4 are not seen in figure 3 because the intensities of these 
peaks are too low compared to the satellites obtained from 
the absorbed power, described in section 2.2.3. The first peak 

J 0.017/ω =�  (in figure 3) corresponds to the uniform mode. 
The latter corresponds to an equal contribution (50%) to the 
spectral weight from the core and surface spins. Indeed, we 
have checked that this is in agreement with the lowest energy 

mode shown in figure 4 for which the core and surface spectral 
weights coincide (see middle panel). Since the contribution of 
both core and surface spins is at its maximum in this case, the 
low-energy peak in figures 3 and 4 exhibits the highest inten-
sity. The higher-frequency peaks in black correspond to the 
non-uniform mode (k 0, 0 = >� ) due to the anisotropy and 
therefore they occur with a lower intensity. These peaks have 
a dominant contribution from the surface spins (see table 1).

The peaks in cyan in figure  4 are obtained for a time-
dependent field along the y axis. These peaks appear with 
the same frequencies as the peaks in black but with different 
intensities. In addition, the contributions from the surface and 
core spins may vary from one type of peaks to the other.

For the same nanocluster and in accordance with 
equation  (20), in figure 3 the position of the low-frequency 
peak shifts to the right as DS increases from zero (compare 
with the vertical line at D 0S = ). However, a further increase 
of SA reverses this tendency, as can be seen from the curve 
D J 0.2S/ = . This mode softening can be attributed to the 
second-order effect of surface anisotropy. On the other hand, 
in the high-frequency part of the spectrum one can observe 
three peaks that could be attributed to three different types 
of the nanocluster facets with different local environment (or 
effective fields). Note that the positions of the peaks are nearly 
the same for D J 0.1S/ =  and D J 0.2S/ = , which hints at the 
predominant exchange origin of these modes.
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Figure 4.  Spectral weight of spin-wave excitations in a box-shaped particle of size × ×13 11 7. Upper panel: spectral weight for the low 
frequency region. Middle panel: weights for ≠α

= �C 0k 0, . The lower panel corresponds to the coefficient α= �Ck 0,  for the different components 
of the spins defined in equation (26), normalized to that of the uniform mode = =�k 0.

Table 1.  Contributions to the spectral weight from the surface 
and core spins for the cluster × ×13 11 7 with / =D J 0.1S  and a 
time-dependent field applied along the x axis (i.e. black peaks of 
figure 4).

/ω� J 0.017 0.33 0.79 1.18

Surface (%) 50 60 70 60
Core (%) 50 40 30 40
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3.2.2.  Size effect and application to nanocubes.  The invest
igation of size effects in general (i.e. without any rotational 
symmetry) is a rather involved task since upon increasing 
the size the number of modes increases and their degeneracy 
makes it difficult to disentangle their contributions to the 
spectral weight. This is one of the reasons for which we have 
decided to focus on cubic samples. In fact, today samples of 
(iron) nanocubes are routinely investigated in experiments 
since their synthesis has become fairly well controlled.

Accordingly, the results for the absorbed power for the 
8 8 8× ×  particle (512 spins) are shown in figure 5. One can 
see a strong peak at J0.0039ω =�  that corresponds to nearly 
coherent precession of all spins in the particle. Because of 
the second-order effect of SA [30] this peak is shifted to the 
left from its position for D 0S = , shown by the vertical dotted 
line at D J2 0.00840 core/ω = =� N N . Note that the first-order 
formula, equation (20), does not capture this effect. Here one 
cannot use D J 0.2S/ =  because further shift of the peak to the 
left renders the collinear spin configuration along the z axis 
unstable.

The lower panel of figure  5 shows similar results for a 
larger particle of 12 12 12 1728× × =  spins. Here the low-
frequency peak is shifted to the right in comparison with 
the 8 8 8× ×  particle, and which can be explained by the 
smaller fraction of surface spins. The leftmost and strongest 

of high-frequency peaks here is larger and shifted to the left. 
Note that for both of these sizes high-frequency peaks are 
much smaller than the main low-frequency peak (notice the 
difference in scale between the left and right panels). By way 
of illustration, we consider an Fe nanocube of side a 8 nm =  
[5, 6, 12, 18, 31, 32]. This corresponds to a nanocluster of size 
27 27 27× ×  particle whose absorption spectrum is shown in 
figure 6.

Although the present paper is focused on theoretical 
aspects, a few predictions can be made for realistic iron nano-
cubes studied today in many experiments. Both synthesis and 
recent experimental developments have provided systems 
with optimized structures that could be mimicked by the sim-
plified model studied here. In particular, using some oxygen 
and plasma treatment it seems that the ligands and oxide shell 
could be effectively removed, leaving us with ferromagnetic 
nanocubes, (see e.g. [18]). Would FMR measurements on such 
nanocubes become possible, the observed spectrum should 
exhibit the features described in the present work, e.g. a low-
energy peak at around 10 GHz   for the uniform mode, fol-
lowed by higher-energy excitations that couple to the latter. In 
addition, the aspect-ratio of box-shaped (non-cubic) samples 
can be figured out by this technique upon checking whether 
a parametric resonance feature appears in the spectrum. In 
regards with the values of the physical parameters taken in our 

Figure 5.  Absorbed power for × ×8 8 8 and × ×12 12 12 particles with a focus on the low-frequency peaks in the left column and the 
high-frequency peaks in the right column. The vertical dotted line shows the position of the peak for =D 0S .
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calculations, we note that the ratio of the magneto-crystalline 
anisotropy to the exchange coupling (D/J) is here taken at 
least an order of magnitude larger than in typical iron systems. 
The reason is that lower values of this ratio require much 
more time-consuming calculations while the physical picture 
remains the same. More precisely, the calculation for typical 
iron materials with D J 10 3/ ∼ −  would lead to a down-shift of 
the low-frequency peak roughly by a factor of 10 while the 
high-frequency peaks should practically remain the same.

As compared with the sizes dealt with above, here the high-
frequency peak is even larger and even more shifted to the left, 
so that the low- and high-frequency spectra can be plotted on 
the same graph. In addition, the high-frequency peak resolves 
into two peaks. The main high-frequency peak, shown in the 
right column of figure 5, can be interpreted as being due to 
the precession of the spins located near the facets of the cube. 
Since this precession mode is non-uniform (it has a non-zero 
k  =  0 component) there is exchange energy involved and this 
is why the precession frequency is high. With an increasing 
size, the exchange energy per spin in this mode decreases, and 
so does its frequency. The splitting of the main high-frequency 
peak seen for the 27 27 27× ×  particle can be explained by the 
fact that SA induces an increase of the mode stiffness at the 
two xy planes (the small peak on the right) and to a decrease 
of the mode stiffness at the four other surfaces (the big peak 
on the left).

4.  Conclusion

Through a systematic numerical investigation, backed by ana-
lytical calculations for special cases, we have studied and dis-
tinguished the role of surface and core spins in box-shaped 
magnetic nanoparticles. We have focused this work on this 
specific shape inspired by numerous experimental studies of 
iron nanocubes which are now available in well controlled 
cubic shapes and sizes. On the other hand, ferromagnetic 
resonance measurements on ‘isolated’ nanoelements has now 
become possible with the necessary sensitivity for measuring 
the absorbed power.

Accordingly, we have computed the absorbed power as a 
function of the excitation frequency and have shown that it 
is possible to attribute the different contributions of the sur-
face and those of the core spins to the various peaks obtained 
in our calculations. In particular, the low-energy peak, corre
sponding to the k 0=  mode, consists of equal contributions 
from the surface and core spins. Furthermore, in the case of 
less symmetric box-shaped samples with Néel surface aniso
tropy, we observe an elliptic precession of the spins whose 
signature can be seen in a parametric resonance experiment, 
where a small signal should be detected at twice the frequency 
of the standard magnetic resonance response.
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Appendix A.  Energy Hessian in spherical 
coordinates

At each site i of the cluster’s lattice we may define the ref-
erence system with the spherical coordinate ,i i( )θ ϕ  and basis 
basis s e e, ,i i i

( )θ ϕ  related to the Cartesian coordinates by
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Then using the gradient

θ
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we get si i i ii i
δ δθ δϕ∇⋅ = ∂ + ∂θ ϕ . This implies for an arbitrary 

function f i i( )θϕ

θ∇ ∇∂ = ⋅ ∂ = ⋅θ θ ϕ ϕf f f fe e, sin .i i ii i i i� (A.3)

Since the spin deviation skδ  can be written in terms 
of kδθ  and kδϕ  equation  (7) can be written in the basis 

e e, i 1, , 1, ,2i i
{( )} { }ξ=θ ϕ µ µ= =� �N N

. Note, however, that in 
the general case these unit vectors are not orthogonal to each 
other i.e. ,ξ ξ δ⋅ ≠µ ν µ ν. In fact, skδ  represents the usual spin-
wave deviations from the local equilibrium state of spin sk, 
which is denoted by sk

0( ). The latter represents the quantiza-
tion direction for the local algebra. It’s well known that skδ  
can be written in terms of the spin operators Sk

± which form 
a local SU(2) algebra with the usual commutation rules, i. e. 

Figure 6.  Same as in figure 5 but for the cluster × ×27 27 27.
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S S S, ii j ij i[ ] ε δ=α β αβγ γ, with εαβγ being the Levi-Civita tensor. 
In particular, spins operating on different sites commute with 
each other. This implies that the vectors skδ , or more precisely, 

the transverse vectors e e, i 1, , 1, ,2i i
{( )} { }ξ=θ ϕ µ µ= =� �N N

 can 
be represented by the vectors of the orthonormal canonical 
basis ei i 1, ,{( )} = � N  with ei i,δ=α α.

Assuming that the energy ,i i1= ∑ =E EN  is given by a general 
Hamiltonian we obtain the second derivatives of iE  in terms of 
its derivative with respect to si.
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This is the (pseudo-) Hessian of E resulting from the action 
of the (pseudo-) Hessian operator
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For a given nanocluster of given size, shape, anisotropy 
model and the applied field, one first determines the equilib-

rium state, denoted by s ,i i i i
0 0 0

1, ,
{ ( )}( ) ( ) ( )θ ϕ= = � N , where iθ  and 

iϕ  are the standard spherical angles defined with respect to the 
local basis s e e, ,i i i

( )θ ϕ  at site i.
The effective field is defined by H i iseff, iδ ∇= − = −E E, 

such that the four second derivatives read
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It is understood that all these derivatives and the pseudo-
Hessian have to be evaluated at the equilibrium state 

s ,i i i i
0 0 0

1, ,
{ ( )}( ) ( ) ( )θ ϕ= = � N .

Appendix B. Toy model

In order to achieve a simple physical picture of the contrib
utions of core and surface spins to the spectral weight, together 
with a possible comparison with the numerical method devel-
oped in section 2.2.1, we have built a toy model that captures 
the main feature we want to illustrate but which is analytically 
tractable. Accordingly, we consider a ferromagnet composed 
of 3 coupled layers as sketched in figure  B1. Each layer is 
assumed to be infinite in x and y directions.

The spin Hamiltonian of such a system is the Heisenberg 
model

S S S

S S S

J

J ,

l
l

i
i l i x l i y l

i
i i i

1,3
, , ,

cs ,2 ,1 ,3

∑ ∑

∑

= − ⋅ +

− ⋅ +

=
+ +H ( )

( )� (B.1)

where Si l,  is the spin at site i within the layer l, and J Jl 1,3 s≡=  
and J J2 c≡ . We restrict ourselves to the case of a ferromagnet 
with J J0, 0l cs> > . In the spin-wave approach we choose z 
as the quantization axis and perform a Holstein–Primakoff 
transformation

S S S a a S S a S S a, 2 , 2 .i l
z

i l i l i l i l i l i l i l, , , , , , , ,
† †= −− + −� �

� (B.2)

Then, we rewrite the Hamiltonian (B.1) in terms of the 
real-space magnon operators ai,l and ai l,

† . The resulting expres-
sion can be partially diagonalized after a Fourier transforma-
tion with respect to the x y,( ) directions

q
S

a a a
a
a
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q q

q q q
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J� (B.3)

where q( )J  is the coupling matrix

q
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with J J2 1 q11 33 s csγ= = − +J J ( )  and J J2 1 2q22 c csγ= − +J ( ) , 
and q qcos cosq x y

1

2
( )γ ≡ + . We use Jc as our energy scale and 

define the reduced couplings j J Jcs cs c/≡  and j J Js s c/≡ . The three 
dispersions are then given by
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(B.5)

The spectral weights are then obtained as the squares of 
the projections of the eigenvectors onto the canonical basis 
e i x y z, 1, 2, 3; , ,i iδ α= = =α α . These weights depend on 

Js

Jc

Jcs

l=1

l=2

l=3

Figure B1.  2D slab of three atomic layers with exchange couplings 
Js (surface), Jcs (core–surface) and Jc (core).
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the physical parameters such as the exchange couplings and 
anisotropy constants. Upon summing over the wave vectors 
q within the first Brillouin zone, one can plot the spectral 
weights as functions of q( )ω .

In figure B2 we present the spectral weight of the surface 
and core spins as a function of the magnon energy for the three 
energy bands, along the path q qx y= , corresponding to the 
three dispersions (B.5). The circles and squares are the results 
for a finite cluster (N N 23x y= = ) dealt with using the numer
ical method of section 2.2.1, with periodic boundary condi-
tions in the x and y directions. The full lines are the results 
obtained within the spin-wave approach presented above. The 
results in figure B2 exhibit a very good agreement between 
the numerical and analytical approaches for all values of the 
exchange parameters.

In the spin-wave calculation we consider blocks of three 
spins, belonging to layers 1, 2, 3. These blocks are coupled to 
one another by lateral (in-plane) couplings. The spin-wave dis-
persion, as shown in the inset of figure B2, has three branches: 
the lowest branch corresponds to the ferromagnetic magnon 
excitations with the 3 spins precessing in phase. By computing 
the spectral weight associated with this branch, one finds that 
the surface contribution dominates (apart from the uniform 
mode at k 0= ) because the corresponding modes require less 
energy to be excited. In contrast, the high-energy branch cor-
responds to the situation where the end spins (layers) precess 
with opposite phases. The spectral weight is then dominated 
by the core owing to a higher spin stiffness. For the par
ticular case of j 0s = , the magnon dispersion exhibits a non-
dispersive branch at 1kω =  (see inset of figure B2 (left)). This 
intermediate branch follows from the fact that the bottom and 
top layer spins are not coupled within their respective planes. 
Therefore, creating an excitation within the top or bottom 
layer is costless, leading to a mode with constant energy in 
k-space. Obviously, this branch corresponds to excitations that 
are localized at the surface. This can be seen by examining the 
spectral weight for which the core contribution vanishes.

As the surface exchange coupling increases (i.e. j 0s > ) 
more dispersion is observed and the branches start to merge 
for some magnon energies. Hence, the spectral weight changes 
both qualitatively and quantitatively: the gaps close and the sur-
face and core contributions become more and more entangled.

The calculation of the absorbed power for this system yields 
one absorption peak for the uniform mode corresponding to 
the lower energy band in figure B2. The eigenfunctions for the 
three energy bands at k 0=  are given by
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Here S1,2φ  corresponds to the surface spins and Cφ  to the 
core spin. The coefficients Ck,� of these vectors do not vanish 
(and are all equal) for the vector 1Ψ  that corresponds to the 
uniform mode. In order to obtain more absorption peaks in 
the absorbed power we can introduce a core anisotropy kc but 
no surface anisotropy. In this case the eigenfunctions corre
sponding to k 0=  are

N
k k k
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k k k
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1 9 2 ,
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� (B.7)
where N1 and N3 are normalization factors of the wave-vectors 

1Ψ  and 3Ψ  respectively. We can see that the modes corre
sponding to 1Ψ  and 3Ψ  can contribute to the absorbed power.

References

	 [1]	 Sun S, Murray C B, Weller D, Folks L and Moser A 2000 
Science 287 1989–92

	 [2]	 Lisiecki I, Albouy P A and Pileni M P 2003 Adv. Mater. 
15 712–6

	 [3]	 Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, 
González-Carreño T and Serna C J 2003 J. Phys. D: Appl. 
Phys. 36 182

	 [4]	 Lisiecki I and Nakamae S 2014 J. Phys.: Conf. Ser. 
521 012007

0 1 2 3 4 5 6 7
0

0.0005

0.001

0.0015

0.002
Surface (LLE)
Surface (SW)
Core (LLE)
Core (SW)

-3 -2 -1 0 1 2 3
k

0
1
2
3
4
5
6

ω
k

 W 
s,c

ω/J

(A)

h 0 1 2 3 4 5 6 7
0

0.0005

0.001

0.0015

0.002

Surface (LLE)
Surface (SW)
Core (LLE)
Core (SW)

-3 -2 -1 0 1 2 3
k

0
1
2

3
4
5

6

ω
k

 W 
s,c 

ωh

(B)

/J

Figure B2.  Surface and core spectral weights against the magnon energy for = =j j 1c cs  and with  ( )    ( )= =j A j B0 , 0.5s s .

J. Phys.: Condens. Matter 29 (2017) 025801

http://dx.doi.org/10.1126/science.287.5460.1989
http://dx.doi.org/10.1126/science.287.5460.1989
http://dx.doi.org/10.1126/science.287.5460.1989
http://dx.doi.org/10.1002/adma.200304417
http://dx.doi.org/10.1002/adma.200304417
http://dx.doi.org/10.1002/adma.200304417
http://dx.doi.org/10.1088/0022-3727/36/13/202
http://dx.doi.org/10.1088/0022-3727/36/13/202
https://doi.org/10.1088/1742-6596/521/1/012007
https://doi.org/10.1088/1742-6596/521/1/012007


R Bastardis et al

13

	 [5]	 Snoeck E, Gatel C, Lacroix L M, Blon T, Lachaize S, Carrey J, 
Respaud M and Chaudret B 2008 Nano Lett. 8 4293–8

	 [6]	 Mehdaoui B, Meffre A, Lacroix L M, Carrey J, Lachaize S, 
Gougeon M, Respaud M and Chaudret B 2010 J. Magn. 
Magn. Mater. 322 L49–52

	 [7]	 Vonsovskii S V 1966 Ferromagnetic Resonance: the 
Phenomenon of Resonant Absorption of a High-Frequency 
Magnetic Field in Ferromagnetic Substances (Oxford: 
Pergamon)

	 [8]	 Gurevich A G and Melkov G A 1996 Magnetization 
Oscillations and Waves (Boca Raton, FL: CRC Press)

	 [9]	 Heinrich B 1994 Ferromagnetic resonance in ultrathin film 
structures Ultrathin Magnetic Structures II ed B Heinrich 
and J Bland (Berlin: Springer) p 195

	[10]	 Tran M 2006 Structural and magnetic properties of colloidal 
Fe–Pt and Fe cubic nanoparticles Master’s Thesis Institut 
National des Sciences Appliquees de Toulouse Toulouse

	[11]	 Lee I, Obukhov Y, Hauser A J, Yang F Y, Pelekhov D V and 
Hammel P C 2011 J. Appl. Phys. 109 07D313

	[12]	 Kronast F et al 2011 Nano Lett. 11 1710–5
	[13]	 Gonçalves A M, Barsukov I, Chen Y J, Yang L, Katine J A 

and Krivorotov I N 2013 Appl. Phys. Lett. 103 172406
	[14]	 Schoeppner C, Wagner K, Stienen S, Meckenstock R, Farle M, 

Narkowicz R, Suter D and Lindner J 2014 J. Appl. Phys. 
116 033913

	[15]	 Ollefs K, Meckenstock R, Spoddig D, Römer F M, Hassel C, 
Schöppner C, Ney V, Farle M and Ney A 2015 J. Appl. 
Phys. 117 223906

	[16]	 Sidles J A, Garbini J L, Bruland K J, Rugar D, Züger O, 
Hoen S and Yannoni C S 1995 Rev. Mod. Phys. 67 249–65

	[17]	 Lavenant H, Naletov V V, Klein O, De Loubens G, Laura C 
and De Teresa J M 2014 Nanofabrication 1 2299–680

	[18]	 Trunova A V, Meckenstock R, Barsukov I, Hassel C, 
Margeat O, Spasova M, Lindner J and Farle M 2008  
J. Appl. Phys. 104 093904

	[19]	 Sukhova A, Usadel K D and Nowak U 2008 J. Magn. Magn. 
Mater. 320 31–5

	[20]	 Briático J, Maurice J L, Carrey J, Imhoff D, Petroff F and 
Vaurès A 1999 Eur. Phys. J. D 9 517–21

	[21]	 Ling T et al 2009 Nano Lett. 9 1572–6
	[22]	 Lacroix L M, Huls N F, Ho D, Sun X, Cheng K and Sun S 

2011 Nano Lett. 11 1641–5
	[23]	 Kachkachi H and Garanin D A 2001 Physica A 300 487–504
	[24]	 Kachkachi H and Garanin D A 2001 Eur. Phys. J. B 

22 291–300
	[25]	 Krech M, Bunker A and Landau D P 1998 Comput. Phys. 

Commun. 111 1–13
	[26]	 Steinigeweg R and Schmidt H J 2006 Comput. Phys. Commun. 

174 853–61
	[27]	 Grimsditch M, Leaf G K, Kaper H G, Karpeev D A and 

Camley R E 2004 Phys. Rev. B 69 174428
	[28]	 Grimsditch M, Giovannini L, Montoncello F, Nizzoli F, 

Leaf G K and Kaper H G 2004 Phys. Rev. B 70 054409
	[29]	 Usadel K D 2006 Phys. Rev. B 73 212405
	[30]	 Garanin D A and Kachkachi H 2003 Phys. Rev. Lett. 

90 065504
	[31]	 Jiang F, Wang C, Fu Y and Liu R 2010 J. Alloys Compd. 

503 L31–33
	[32]	 O’Kelly C, Jung S J, Bell A P and Boland J J 2012 

Nanotechnology 23 435604

J. Phys.: Condens. Matter 29 (2017) 025801

http://dx.doi.org/10.1021/nl801998x
http://dx.doi.org/10.1021/nl801998x
http://dx.doi.org/10.1021/nl801998x
http://dx.doi.org/10.1016/j.jmmm.2010.05.012
http://dx.doi.org/10.1016/j.jmmm.2010.05.012
http://dx.doi.org/10.1016/j.jmmm.2010.05.012
http://dx.doi.org/10.1021/nl200242c
http://dx.doi.org/10.1021/nl200242c
http://dx.doi.org/10.1021/nl200242c
http://dx.doi.org/10.1063/1.4826927
http://dx.doi.org/10.1063/1.4826927
http://dx.doi.org/10.1063/1.4890515
http://dx.doi.org/10.1063/1.4890515
http://dx.doi.org/10.1063/1.4922248
http://dx.doi.org/10.1063/1.4922248
http://dx.doi.org/10.1103/RevModPhys.67.249
http://dx.doi.org/10.1103/RevModPhys.67.249
http://dx.doi.org/10.1103/RevModPhys.67.249
http://dx.doi.org/10.2478/nanofab-2014-0006
http://dx.doi.org/10.2478/nanofab-2014-0006
http://dx.doi.org/10.2478/nanofab-2014-0006
http://dx.doi.org/10.1063/1.3005985
http://dx.doi.org/10.1063/1.3005985
http://dx.doi.org/10.1016/j.jmmm.2007.05.001
http://dx.doi.org/10.1016/j.jmmm.2007.05.001
http://dx.doi.org/10.1016/j.jmmm.2007.05.001
http://dx.doi.org/10.1007/s100530050491
http://dx.doi.org/10.1007/s100530050491
http://dx.doi.org/10.1007/s100530050491
http://dx.doi.org/10.1021/nl8037294
http://dx.doi.org/10.1021/nl8037294
http://dx.doi.org/10.1021/nl8037294
http://dx.doi.org/10.1021/nl200110t
http://dx.doi.org/10.1021/nl200110t
http://dx.doi.org/10.1021/nl200110t
http://dx.doi.org/10.1016/S0378-4371(01)00361-2
http://dx.doi.org/10.1016/S0378-4371(01)00361-2
http://dx.doi.org/10.1016/S0378-4371(01)00361-2
http://dx.doi.org/10.1007/s100510170106
http://dx.doi.org/10.1007/s100510170106
http://dx.doi.org/10.1007/s100510170106
http://dx.doi.org/10.1016/S0010-4655(98)00009-5
http://dx.doi.org/10.1016/S0010-4655(98)00009-5
http://dx.doi.org/10.1016/S0010-4655(98)00009-5
http://dx.doi.org/10.1016/j.cpc.2005.12.023
http://dx.doi.org/10.1016/j.cpc.2005.12.023
http://dx.doi.org/10.1016/j.cpc.2005.12.023
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1103/PhysRevB.69.174428
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.73.212405
http://dx.doi.org/10.1103/PhysRevB.73.212405
http://dx.doi.org/10.1103/PhysRevLett.90.065504
http://dx.doi.org/10.1103/PhysRevLett.90.065504
http://dx.doi.org/10.1016/j.jallcom.2010.05.020
http://dx.doi.org/10.1016/j.jallcom.2010.05.020
http://dx.doi.org/10.1016/j.jallcom.2010.05.020
http://dx.doi.org/10.1088/0957-4484/23/43/435604
http://dx.doi.org/10.1088/0957-4484/23/43/435604

