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We develop an analytical approach for studying the ferromagnetic resonance (FMR) frequency shift due
to dipolar interactions and surface effects in two-dimensional arrays of nanomagnets with (effective) uniaxial
anisotropy along the magnetic field. For this we build a general formalism on the basis of perturbation theory
that applies to dilute assemblies but which goes beyond the point-dipole approximation as it takes account of the
size and shape of the nanoelements, in addition to their separation and spatial arrangement. The contribution to
the frequency shift due to the shape and size of the nanoelements has been obtained in terms of their aspect ratio,
their separation, and the lattice geometry. We have also varied the size of the array itself and compared the results
with a semianalytical model and reached an agreement that improves as the size of the array increases. We find
that the red-shift of the ferromagnetic resonance due to dipolar interactions decreases for smaller arrays. Surface
effects may induce either a blue-shift or a red-shift of the FMR frequency, depending on the crystal and magnetic
properties of the nanoelements themselves. In particular, some configurations of the nanoelements’ assemblies
may lead to a full compensation between surface effects and dipole interactions.
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I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Today there are various sophisticated ways of fabricating
and characterizing arrays of magnetic nanoelements of tunable
magnetic properties that are of interest in practical applications
such as magnetic recording, hyperthermia, catalysis, and so on.
In fundamental and theoretical research, these achievements
are welcome as they meet a long-standing demand for well-
defined structures with controllable parameters such as the
size, the shape, and spatial organization. On the other hand,
experimental techniques of characterization and measurements
have known great progress with regards to spatial and tem-
poral resolution, thus further bridging the gap between the
nanometer and macroscopic scales. Ferromagnetic resonance
(FMR) [1–8] is one of such very precise techniques that
has been upgraded to detect the resonance of small arrays
of nanocubes with a sensitivity of 106µB. Other variants
of the FMR spectroscopy, such as the so-called magnetic
resonance force microscopy (MRFM) [9] may be used for the
characterization of cobalt nanospheres [10]. Standard FMR
theory [11], based on microwave absorption in magnetic
materials, shows that the resonance frequency is, to a first
approximation, a function of the effective field which usually
comprises the magnetocrystalline and shape anisotropy, the
exchange coupling, and the applied (static) magnetic field.
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This dependence can be used to characterize the material’s
parameters. On the other hand, these parameters can be varied
so as to control the microwave absorption properties of the
material. For instance, the dipolar interactions (DI) between
nanoelements can be modulated by the elements density. A
dipolar coupling between (parallel) elongated objects induces
an additional anisotropy with an easy axis along the DI bond
and perpendicular to the objects. In Refs. [12,13] it was
shown that the direction of the effective anisotropy can be
tuned parallel or perpendicular to the nanoelements axes by
varying the concentration. This two-way relationship between
the FMR characteristics and the system’s physical parameters
is usually based on analytical expressions that provide the
resonance frequency as a function of the material’s parameters
(anisotropy constants, exchange, and dipolar couplings). In
the case of an array of interacting magnetic nanoelements,
such analytical expressions cannot be obtained in a closed
form and one has to resort to some approximation, e.g., that
of weak interactions (which can experimentally be tuned, for
instance, for core-shell nanoparticles [14]), or equivalently of
dilute assemblies. Accordingly, one can apply perturbation
theory and derive approximate expressions for the resonance
frequency of the interacting assembly, taking into account
the size and form of both the nanoelements and the array,
in addition to the (effective) anisotropy and applied dc field.
As the size decreases surface effects (SE) start to play a
critical role in the magnetic properties of the nanomagnets,
especially in monodisperse assemblies with oriented effective
anisotropy. For ratios of the surface anisotropy constant Ks

to the exchange coupling J smaller than unity (Ks/J < 1)
[15–17], the spin configuration within the nanomagnet may
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be considered as quasicollinear [18,19]. Then, an effective
model for the (macroscopic) net magnetic moment of the
nanomagnet can be built and which properly accounts for the
magnetic properties (static and dynamical) of the nanomagnet
[18–21]. Using this model, we extend our analytical study by
including the effects of both dipolar interactions and surface
anisotropy and their competition (see Sec. III). Therefore, the
main objective of this work is to (i) derive the correction to
the resonance frequency due to DI using perturbation theory,
beyond the point-dipole approximation, i.e., taking account
of the shape and size of the nanoelements (or dipoles) and
(ii) derive the shift of the resonance frequency due to surface
effects using the effective model for each nanoelement [18,19].
Then, we apply this formalism to the prototypical case of an
array of thin disks and derive the corresponding approximate
expression for the frequency shift induced by DI. Next, we
analyze the contribution from surface anisotropy to the FMR
frequency and compare with the DI-induced shift.

Another general approach has been developed in Ref. [22]
for studying the collective dipolar (or magnonic) spin-wave
excitations in a two-dimensional array of magnetic nanodots,
in the absence of magnetocrystalline anisotropy. Other similar
works and approaches can be found in the literature [23–25]
which deal with collective effects in assemblies of nanoele-
ments. In this work we adopt a general but simple approach
that allows us to take into account surface effects as well as
dipolar interactions and to study their competition, in dilute and
monodisperse assemblies with oriented magnetocrystalline
(effective) uniaxial anisotropy. Moreover, for practical reasons
related with the possibility to compare with experiments,
we focus on FMR resonance and provide explicit analytical
expressions for the frequency shift induced by dipolar in-
teractions and surface anisotropy. As was discussed above,
today several experimental groups [5,6,8,10,23–30] are able to
fabricate well-organized and almost monodisperse assemblies
of cobalt or iron-oxide nanoparticles and aim at measuring their
ferromagnetic resonance frequency and resonance field. It is
then desirable to have at least approximate but simple analytical
formulas to compare with the experimental results and to infer
rough estimates of the most relevant physical parameters, such
as the elements size and separation.

This paper has been organized as follows. In Sec. I, we
define the system and its energy, focusing on the contribution
from the dipolar interactions. In Sec. II, we present our general
formalism in a matrix form and derive the final expression
for the frequency shift due to DI. Next, this formalism is
applied to a two-dimensional (2D) array of nanomagnets and
explicit expressions are then given for the various contributions
to the energy and for the frequency shift, in particular in
the case of thin disks. We also discuss the contribution that
stems from the size and shape of the nanoelements, which
adds up to the contribution that obtains within the point-dipole
approximation. In Sec. III, we present the effective model for
angular isolated nanoelement and discuss the surface contri-
bution to the frequency shift. Section IV shows some results
of the comparison between the numerical and semianalytical
calculations of the frequency shift. We also discuss the effect
of the array size on the difference in frequency shift between
the results of the two approaches. Finally, we discuss the
competition between DI and surface effects in two situations

with a positive or negative contribution from the latter. The
paper ends with our conclusions and two short Appendices.

A. Energy

Here, we define the systems targeted by this study and
discuss the various contributions to their energy, with a special
focus on the dipolar interactions. For simplicity, the discussion
of the contribution to the energy from the nanoelement surface
anisotropy is postponed to Sec. III.

Consider a monodisperse array of magnetic nanoelements
each (of volume V ) carrying a magnetic moment mi =
misi , i = 1, . . . ,N , of magnitude mi = MsV and direction
si , with |si | = 1, Ms being the saturation magnetization. The
energy (in SI units) of the magnetic moment mi is given by

Ei = E
(0)
i + EDI,i , (1)

where E
(0)
i is the energy of the noninteracting nanoelements

that comprises the Zeeman and (effective) anisotropy energies,
and the second term EDI is the DI contribution. The total energy
of the system is E =

∑N
i=1 Ei .

For two magnetic nanoelements carrying macroscopic mo-
ments mi and mj , located at two arbitrary sites i and j , the
dipolar interaction reads (in SI units)

EDI,i,j ≡
( µ0

4π

)
mi · Dij · mj , (2)

where Dij is the corresponding tensor [see Eq. (12)]. Summing
over all pairwise interactions, avoiding double counting, yields
the energy of a magnetic moment at site i due to its interaction
with all other moments in the assembly with the corresponding
energy

EDI,i ≡
( µ0

4π

) ∑

j<i

mi · Dij · mj . (3)

If one denotes by Rij the distance between the sites i and
j and uses mi = misi ,mj = mj sj , we see that EDI,i scales as
m2/R3. Next, we may introduce the distance d as the nearest-
neighbor interparticle separation, or the “superlattice” param-
eter, and write Rij = rij d where now rij is a dimensionless
parameter, which is calculated as usual using only the integer
indices used to locate a site on a given lattice. More precisely, a
site i on discrete 2D lattice, for instance, can be located using its
coordinates xi,yi ∈ R or by the corresponding integer indices
ix,iy ∈ N. Then, Rij =

√
(xi − xj )2 + (yi − yj )2 while rij =√

(ix − jx)2 + (iy − jy)2 = Rij/d. Therefore, when dealing
with DI on a superlattice, it is quite natural to introduce the
parameter

λ ≡
( µ0

4π

)m2

d3
(4)

to characterize the strength of the DI in the system since the
dipolar energy in Eq. (2) scales with λ.

In the next section, we will apply our formalism to specific
situations where the expressions of all contributions to the
energy can be explicitly written.

In this work, we develop a general formalism that can be
applied to an arbitrary system of interacting arrays of nanomag-
nets. However, here it will be applied to the specific case of

224407-2



FERROMAGNETIC RESONANCE OF A TWO-DIMENSIONAL … PHYSICAL REVIEW B 97, 224407 (2018)

FIG. 1. A pair of magnetic nanoelements belonging to the 2D
array (in the yz plane), of diameter D = 2R, height L, and separation
d . The standard system of spherical coordinates (θ,ϕ) is also shown
together with the setup of the magnetic field H and (magnetocrys-
talline) anisotropy easy axes e.

a two-dimensional monodisperse array of nanomagnets, with
the main objective to derive explicit expressions for the FMR
frequency shift induced by the DI and SE. These calculations
are based on perturbation theory for a dilute assembly but are
valid for nanomagnets of arbitrary size and shape, thus going
beyond the simple point-dipole approximation (PDA). On the
other hand, in Sec. III we discuss in detail surface effects that
come into play when the size of the nanoelements becomes
small enough (with the number of surface atoms exceeding
50%). In the framework of the effective model discussed
earlier, we will discuss how the expressions in this section are
extended to include the contribution from surface anisotropy.

To summarize, our simplification only refers to (i) a col-
lective condition which assumes that the assembly is diluted.
That is to say, the center-to-center distance between the
nanoelements is much larger than the linear dimension of
the nanoelements. (ii) An intrinsic condition requiring that
the magnetic state of the nanoelements is nearly saturated
by the applied magnetic field. Now, the geometry of the
nanoelements themselves or that of the sample (i.e., the
assembly thereof) are brought in by the dipolar tensor D and
the distribution of the distances rij .

Therefore, we consider a 2D array of magnetic nanoele-
ments which we assume to be lying in the yz plane, for
mathematical convenience. The applied magnetic field and the
(magnetocrystalline) uniaxial anisotropy easy axes ei are all
directed along the x axis, i.e., H = Hex and ei = ex for all
i = 1, . . . ,N . As shown in Fig. 1, we adopt the usual spherical
coordinates for the magnetization orientation

si =

⎧
⎨

⎩

six = sin θi cos ϕi = s⊥
i cos ϕi ,

siy = sin θi sin ϕi = s⊥
i sin ϕi ,

siz = cos θi = cos θi ,
(5)

with |si | = 1.
In Eq. (1), the energy density E

(0)
i of an isolated nanoele-

ment (ignoring its SE) is given by

E
(0)
i = −µ0Ms H · si − K2(si · ei)2 + Edemag, (6)

where K2 is the magnetocrystalline (uniaxial) anisotropy
constant, ei the uniaxial anisotropy easy axis directed along
the x axis (see Fig. 1). The term Edemag in Eq. (6) is the

magnetostatic energy density

Edemag = −µ0

2
Ms Hd · si = µ0

2
M2

s si N · si , (7)

where N is the demagnetization tensor and Hd the demagne-
tizing field.

A rigorous evaluation of the demagnetization tensor for
uniformly magnetized particles with cylindrical symmetry was
provided in Ref. [31] using elliptical integrals [see Eq. (74)
therein]. However, as already emphasized earlier, our goal
here is to derive an approximate analytical expression for the
FMR frequency shift due to DI. Now, FMR measurements are
performed under a dc magnetic field that is strong enough for
saturating the magnetic system, and this leads to a smoothing
out of the spin noncollinearities that usually occur in a magnetic
system, especially when its aspect ratio differs from unity. In
addition, in our system setup, the external magnetic field is
applied in the direction of uniaxial anisotropy, thus leading
to a strong effective field along the cylinder axis. In such a
situation, the calculations of the demagnetizing field greatly
simplify, as is exemplified by Eqs. (26) and (27) of Ref. [32].
Consequently, after averaging over the sample’s length, the
following approximate expression for the demagnetization
factors for a nanoelement with cylindrical symmetry about the
x axis (as is the case here) is obtained [33]:

Nx = (1 + δ) −
√

1 + δ2,

Ny =Nz = 1
2 (

√
1 + δ2 − δ),

where δ ≡ R/L, with R being the radius of the cylinder and L
its length (or thickness). In particular, for a very long cylinder
with R ≪ L (δ ≪ 1), the longitudinal demagnetization factor
Nx → 0 while the transverse factors Nz = Ny → 1/2. In the
opposite limit, for a very thin disk, R ≫ L (δ ≫ 1), Nx → 1,
and Nz = Ny → 0.

Therefore, using |si | = 1 the demagnetizing energy density
becomes (up to a constant)

Edemag = µ0

2
M2

s (Nx − Nz)s2
i,x . (8)

The effective field Heff,i = − 1
Ms

δE
(0)
i /δsi , normalized with

respect to the anisotropy field

µ0HK = 2K2

Ms

, (9)

namely, Heff,i −→ heff,i ≡ Heff,i/HK , and upon dropping the
index i (for simplicity), reads as

heff = [h + ksx + hdsx]ex, (10)

where h ≡ H/HK, hd ≡ −µ0Ms(Nx − Nz)/HK , and k (=0
or 1) is a label merely introduced for keeping track of the
contribution from magnetocrystalline anisotropy.

The angular frequency of an isolated nanoelement is
given by ω(0) = γHeff , with γ ≃ 1.76 × 1011 (T s)−1 being
the gyromagnetic ratio. Since, in the present setup, the
minimum-energy state of the nanomagnet corresponds to
having its magnetic moment along the x axis, we have ω(0) =
ωK (h + k + hd), where ωK ≡ γHK . Thus, for convenience we
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also introduce the dimensionless angular frequency

ϖ (0) ≡ ω(0)

ωK

= h + k + hd. (11)

In the following, we shall measure all frequencies in units of
ωK , i.e., ϖ ≡ ω/ωK .

B. Dipolar interactions beyond the point-dipole approximation

For a pair of magnetic nanoelements belonging to the 2D
array, as shown in Fig. 1, the DI interaction was obtained in
this horizontal configuration in Ref. [34] (see also Ref. [23]).
It is given by

EDI ≡ EDI

2K2V
= 1

2

N∑

i=1

N∑

j=1,

j ̸=i

ξij si · Dij sj , (12)

where

Dij = Jij − (2 + *ij )r̂ ij r̂ ij

r3
ij

is the usual DI dyadic and r̂ ij the unit vector connecting the
sites i and j , i.e., r̂ ij = r ij /rij . Jij is the diagonal matrix

Jij =

⎛

⎝
*ij 0 0
0 1 0
0 0 1

⎞

⎠

and *ij is a function of the size and shape of the nanoelements
as well as their separation [see Fig. 1 (right)]. It is defined by
[23,34]

*ij (ηij ,τ ) ≡ J h
d (ηij ,τ )

Ih
d (ηij ,τ )

(13)

with

Ih
d (η,τ ) = 16η2τ

∫ ∞

0

dq

q2
J 2

1 (q)J1(2ητq)
[

1 − (1 − e−2qτ )
2qτ

]
,

J h
d (η,τ ) = 16η3τ

∫ ∞

0

dq

q2
J 2

1 (q)J0(2ητq)(1 − e−2τq). (14)

J0 and J1 are the well-known Bessel functions. We have
also introduced the following geometrical or “aspect-ratio”
parameters

ηij ≡ rij d

L
, τ ≡ L

2R
. (15)

Note that rij d is the center-to-center distance between the pair
of nanoelements on sites i,j , with d being the (superlattice)
step of the array (rij are dimensionless real numbers). Finally,
the DI coefficient ξij , appearing in Eq. (12), is given by [see
Eq. (4)]

ξij ≡ λ

2K2V
Ih

d (ηij ,τ ). (16)

Now, we discuss the equilibrium state of the system. In
general this is obtained by minimizing the total energy of
the system with respect to all degrees of freedom. In the
present case, we would have to minimize the energy (1),
summed over the whole lattice, with respect to the 2N

angles θi ,ϕi , i = 1, . . . ,N . In general, it is well known to the
numerical-computing community that minimization of such a
multivariate function is a formidable task that requires a lot
of efforts and high computing powers. Apart from the latter,
one of the reasons is that there are no “automatic” algorithms
for finding the absolute minimum of the function and for each
situation, one has to guide the solver through some prescribed
path(s). Since the interactions are pairwise, one could also
proceed by obtaining the energy minima for a dimer and then
sum over the lattice. The equilibrium state of a dimer with DI
in several configurations of anisotropy and applied field were
thoroughly studied in Ref. [34] and the various extrema were
found in a closed form. However, it is clear that for interactions
of arbitrary intensity the state of an (N + 1)-body system does
not necessarily include the state of the N -body system. For this
reason the states obtained in Ref. [34] cannot just be extended
to the array studied here by summing over the lattice index. As
such, and as stated earlier, we resort to an analytical treatment
based on a few simplifying assumptions. Accordingly, we first
assume that the DI are weak enough as to allow for such an
extension. In fact, in FMR measurements, the applied magnetic
field is usually strong enough as to saturate the magnetic state
of the system, and this leads to the nearly linear branch of
the resonance frequency as a function of the amplitude of the
applied field. This is the situation that we adopt here. Usually,
the DI in such a 2D array (oblate assembly) favor a net magnetic
moment in the plane of the array. However, the strong effective
anisotropy and the (relatively) strong magnetic field are parallel
to each other and perpendicular to the array’s plane, and should
then lead to a reorientation of all magnetic moments towards
their direction. For this reason, the setup in Fig. 1 leads to the
equilibrium state θi = π

2 , ϕi = 0, i = 1, . . . ,N .
The effects of dipolar interactions in ordered and disordered

low-dimensional nanoparticle assemblies have been studied
by many authors [35]. In dense assemblies, the DI lead
to various local magnetic orders that depend on the lattice
structure [35,36]. Under some conditions, they may also induce
long-range order leading to the so-called superferromagnetic
state [28]. Obviously, the situation we consider here is quite
different in that the concentration we assume is not high enough
as to lead to the onset of assembly-wide collective states. In
addition, as argued earlier we assume that the DI do not modify
the equilibrium state as determined by a competition between
the applied field and the anisotropy. However, even such a
weak intensity of DI would be important to the dynamics of
the assembly since then the energy barriers and thereby the
relaxation rates would be affected.

II. FMR SPECTRUM: GENERAL FORMALISM

In this section, we present the general formalism we have
developed in order to derive approximate analytical expres-
sions for the shift of the FMR frequency induced by dipolar
interactions.

A. Landau-Lifshitz equation and FMR eigenvalue problem

The time evolution of the magnetization orientation si is
governed by the damped (norm-conserving) Landau-Lifshitz
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equation (LLE)

dsi

dtr
= −si × heff,i + α si × (si × heff,i), (17)

where heff,i now comprises both the free and interacting parts
of the system’s energy. α (!1) is the phenomenological damp-
ing parameter and tr is the (dimensionless) time defined by
tr = t/ts , where ts = ω−1

K is the nanoelement’s characteristic
timescale.

In order to compute the spectrum of the system excitations,
we may proceed by linearizing the LLE (17) about the equilib-
rium state. Indeed, we assume that the equilibrium state, which
minimizes the system’s energy, denoted by {s(0)

i }i=1,...,N , has
been determined with the help of some analytical or numerical
technique. Then, we may write si ≃ s(0)

i + δsi and transform
the differential equation (17) into the following equation [37]:

d(δsi)
dτ

=
N∑

k=1

[HikI(α)]δsk, i = 1, . . . ,N (18)

with the (pseudo-)Hessian

Hik[E] ≡
(

∂2
θkθi

E 1
sin θi

∂2
θkϕi

E
1

sin θk
∂2
ϕkθi

E 1
sin θk sin θi

∂2
ϕkϕi

E

)

(19)

whose matrix elements are second-order derivatives of the
energy with respect to the spherical angles of (θi ,ϕi) that
determine the direction si . All these matrix elements are
evaluated at the equilibrium state {s(0)

i }i=1,...,N . The symbol
∂2
αkβi

stands for the second derivative with respect to the angles
αk,βi . The matrix

I(α) ≡
(

α −1
1 α

)

stems from the double cross product in Eq. (17).
Next, one may seek solutions of Eq. (18) in the form δsk =

δsk(0) ei0τ leading to the following eigenvalue problem:

N∑

k=1

[HikI(α) − i01]δsk = 0 (20)

whose set of roots {0n}1!n!N yields the system’s eigen-
frequencies fn = −i 0n

2π
= ωn

2π
, where ωn is the real angular

frequency (in rad/s). Here, 1 is the identity matrix with matrix
elements 1µν

ik = δikδ
µν .

In the general case of an array of nanoelements with
arbitrary DI, it is not possible to determine the system’s exact
equilibrium state {s(0)

i }i=1,...,N that minimizes the total energy
of the system, including the (core and surface) anisotropy, the
DI, and the applied field. In addition, it is not an easy matter
to solve the eigenvalue problem (20) in its full generality. Of
course, these tasks can be numerically accomplished to some
extent. However, as stated earlier, our objective here is to obtain
an analytical expression for the FMR frequency. In order to do
so, we restrict ourselves to the case of dilute assemblies of
nanomagnets and, as such, we solve the eigenvalue problem
(20) using perturbation theory that we present now.

B. DI correction to FMR frequency: Perturbation theory

In the following we only consider the undamped case, i.e.,
with α = 0 [see Eq. (17)], we present our formalism in the
general case. As we have seen, the excitation spectrum can
be obtained by diagonalizing the matrix Hik(α) ≡ HikI(α) of
matrix elements

Hµν
ik (α) =

∑

ρ=θ,ϕ

Hµρ
ik Iρν(α).

A word is in order regarding the various indices. The problem
being studied here is an array of magnetic moments located
at the nodes of a superlattice. Hence, there are two kinds of
indices. The first one, using the Greek letters µ,ν,ρ, refers
to the components of a magnetic moment in the system of
spherical coordinates and thus assumes the values θ,ϕ. The
second index, using the Roman letters i,j,k, refers to the lattice
site and assumes the values 1, . . . ,N . Therefore, the full “phase
space” is a direct product of the two subspaces corresponding
to the two kinds of variables. Likewise, the matrices involved
in these calculations are tensor products of the corresponding
submatrices.

If we focus on dilute assemblies with relatively weak DI,
we can write the total energy as the sum of the energy of the
noninteracting assembly and the interaction contribution, i.e.,
E = E (0) + EDI, with E ≡ E/(2K2V ) and similarly for each
contribution. Then, the pseudo-Hessian Hik(Ei) can also be
correspondingly split as follows:

Hµν
ik (α) = Fµν

ik + 3
µν
ik , (21)

where Fik is the contribution in the absence of interactions
given by the same matrix as in Eq. (19), upon substituting
E (0) for E , and multiplied by I(α). Thus, F = H[E (0)]I(α).
Similarly, 3ik is the DI contribution given by the matrix in
Eq. (19), with substitution of EDI for E , multiplied by I(α), i.e.,
3 = H[EDI]I(α). For later use, we introduce the two matrices
F ≡ H[E (0)], 4 ≡ H[EDI].

It is understood that wherever they appear all matrix ele-
ments have to be evaluated at the equilibrium state {s(0)

i }i=1,...,N
with s(0)

i = (1,0,0). In the situation of relatively weak coupling
considered here, we make the further assumption that the
equilibrium state is not altered by the dipolar interactions. More
precisely, we assume that the main equilibrium of the system
is set up by the competition between the strong (effective)
anisotropy and the external dc magnetic field. Of course, the DI
of arbitrary strength would change both the energy minima and
saddle points of the system, and thereby significantly change its
dynamics. Here, we restrict ourselves to the situation where the
DI only contribute through the second term in Eq. (21), which
is regarded as a correction to the first term. This assumption
is experimentally relevant for dilute assemblies. For instance,
it has been demonstrated [14] that interparticle interactions
in assemblies of core-shell (Fe3O4/SiO2) nanoparticles can be
tuned by modifying the thickness of the shell.

Therefore, in spin components the LLE (18) reads as

d
(
δs

µ
i

)

dt
=

∑

ν=θ,ϕ

N∑

k=1

[F(1 + F−13)]µν
ik δsν

k . (22)
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Regarding the various indices discussed above, the matrix F of
the noninteracting array can be written as F = F2×2 ⊗ 1N×N ,
or in components Fµν

ik = (Fµν
2×2)

i
δik = δikH[E (0)]µν

ii I(α). Us-
ing the matrix F introduced earlier, the matrix F explicitly
reads as

Fik = δik

(
F

θϕ
ii −F θθ

ii

F
ϕϕ
ii −F

ϕθ
ii

)
⊗ 1.

Note that the 2 × 2 matrix above has two eigenvalues
±iϖ

(0)
i , where ϖ

(0)
i is the (normalized) resonance frequency

of the magnetic moment at site i in the noninteracting case.
In fact, for the monodisperse assemblies considered here, all
these frequencies are identical, i.e., ϖ

(0)
i ≡ ϖ (0), defined in

Eq. (11). Hence, det F =
∏N

i (ϖ (0)
i )

2 = (ϖ (0))2N .
On the other hand, the matrix 3 introduced above and which

contains the DI contribution can also be written explicitly to
some limit. Again, using the matrix 4 introduced earlier, the
2 × 2 diagonal block of the matrix 3 = H[EDI]I(α) reads as

(
4

θϕ
ii −4θθ

ii

4
ϕϕ
ii −4

ϕθ
ii

)
, i = 1,2, . . . ,N . (23)

One should note that these DI matrix elements with identical
lattice sites are not equal to zero even if they correspond to
pairwise interactions. Indeed, in the most general situation,
the second derivatives of the energy are given by

∂2
θiθk

E = δik[si · −eθi
· (eθi

· ∇i)]heff,i

− (1 − δik)eθi
· [eθk

· ∇k]heff,i ,

∂2
ϕkϕi

E = δik sin θi[(sin θi si + cos θi eθi
)

− sin θi eϕi
· (eϕi

· ∇i)]heff,i

− (1 − δik) sin θi sin θk eϕi
· [eϕk

· ∇k]heff,i ,

∂2
θkϕi

E = −δik[cos θi eϕi
· + sin θi eϕi

· (eθi
· ∇i)]heff,i

− (1 − δik) sin θi eϕi
· [eθk

· ∇k]heff,i ,

∂2
ϕkθi

E = −δik[cos θi eϕi
· + sin θi eθi

· [eϕi
· ∇i]]heff,i

− (1 − δik) sin θk eθi
· (eϕk

· ∇k)heff,i . (24)

Explicit expressions for the DI energy only are given in
Appendix A. Note then that because of the first term in each
line of Eq. (24), the second derivatives 4

µν
ii do not vanish even

for the DI contribution, and using (19) and (A1) we do see that
4

µν
ii ̸= 0. However, we stress that the DI contribution to heff,i

contains a sum over the whole lattice except (for the site i) and
thus the DI coefficient entering heff,i involves a sum over j with
j ̸= i. Obviously, the matrix 3 has also nonzero off-diagonal
blocks which are of the same form as in (23) but with distinct
indices i,k = 1,2, . . . ,N , i.e., i ̸= k.

Now, we introduce the new tensor 5 ≡ F(1 + F−13),

det 5 = det F × det(1 + F−13), (25)

and set to compute its determinant. Similarly to ϖ (0)
n (the

eigenvalues of F) we introduce the eigenvalues ϖn as the res-
onance frequencies with the index n running through all the
2N (collective) modes of the interacting system. This leads to
det 5 =

∏N
n=1 ϖ 2

n . Then, let us examine the last determinant
in Eq. (25). The product F−13 scales with the ratio λ/H ,
i.e., the ratio of the DI intensity λ = ( µ0

4π
)m2/d3 to the static

magnetic field H . This ratio is obviously small for a dilute
assembly, especially for standard FMR measurements where
the dc field is usually taken strong enough to saturate the
sample (usually between 0.3 and 1 T). Hence, it is justified
to make an expansion with respect to F−13. For this, we
apply the logarithm and use the expansion log (1 + x) ≃ x
(for operators) together with the identity log det A = Tr log A.
Doing so, we obtain

N∑

i=1

log ϖ 2
i ≃

N∑

i=1

log
(
ϖ

(0)
i

)2 + Tr[F−13]

= 2N log ϖ (0) + Tr[F−13]. (26)

In order to compute the trace above, we only need to collect
the (block) diagonals of the matrix F−13 whose first block is
as follows (showing only the diagonal elements):

1
(ϖ (0))2

(
−F

ϕθ
ii F θθ

ii

−F
ϕϕ
ii F

θϕ
ii

)(
4

θϕ
ii −4θθ

ii

4
ϕϕ
ii −4

ϕθ
ii

)

= 1
(ϖ (0))2

(
F θθ

ii 4
ϕϕ
ii − F

ϕθ
ii 4

θϕ
ii ∗

∗ F
ϕϕ
ii 4θθ

ii − F
θϕ
ii 4

ϕθ
ii

)

and thereby we obtain

Tr[F−13] = 1
(ϖ (0))2

N∑

i=1

[
F θθ

ii 4
ϕϕ
ii −

(
F

ϕθ
ii 4

θϕ
ii + F

θϕ
ii 4

ϕθ
ii

)

+F
ϕϕ
ii 4θθ

ii

]
.

Thus, Eq. (26) becomes

1
N

N∑

i=1

log ϖi = log ϖ (0) + 1
2N (ϖ (0))2

N∑

i=1

[
F θθ

ii 4
ϕϕ
ii

−
(
F

ϕθ
ii 4

θϕ
ii + F

θϕ
ii 4

ϕθ
ii

)
+ F

ϕϕ
ii 4θθ

ii

]
.

Next, it is quite reasonable to drop the sum on the left-hand side
of the equation above as long as one considers nanoelement
arrays which are large enough and spatially isotropic. Then,
upon expanding with respect to the small parameter ϖi/ϖ

(0)

! 1, we obtain the final expression for the DI-induced fre-
quency shift 6ϖDI ≡ ϖ − ϖ (0):

6ϖDI ≃ 1
2ϖ (0)

1
N

N∑

i=1

[
F θθ

ii 4
ϕϕ
ii −

(
F

ϕθ
ii 4

θϕ
ii + F

θϕ
ii 4

ϕθ
ii

)

+F
ϕϕ
ii 4θθ

ii

]
. (27)

We recall here again that the various matrix elements appearing
above are second derivatives of the energy with respect to
the system coordinates, evaluated at the equilibrium state
{s(0)}, with s(0) = (1,0,0). In some particular situations of
anisotropy and field setup, the matrix 3 can be explicitly
computed, thus directly rendering the correction to the FMR
frequency. Accordingly, in the next section we give explicit
results for the specific case of nanoelements with effective
uniaxial anisotropy along the field direction.
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C. FMR frequency of a 2D array of nanomagnets

1. DI-induced frequency shift

Now, we come to the evaluation of the matrix elements
appearing in Eq. (27). For the noninteracting case we have

Fii =
(

∂2
θi
E (0)

i
1

sin θi
∂2
θiϕi

E (0)
i

1
sin θi

∂2
ϕiθi

E (0)
i

1
sin2 θi

∂2
ϕi

E (0)
i

)

=
(

ϖ (0) 0
0 ϖ (0)

)
.

For the DI contribution, both derivatives ∂2
θi
EDI and ∂2

ϕi
EDI

survive in Eq. (27) when evaluated at the equilibrium state
(θi = π/2,ϕi = 0), whereas the cross derivatives vanish. Con-
sequently, we obtain

4θθ
ii = 4

ϕϕ
ii = −

(
λ

2K2V

) N∑

j=1,

j ̸=i

Ih
d (ηij ,τ )

r3
ij

*ij .

Next, using (13) and introducing the geometrical factor κ as
the ratio of the interelement separation d to their diameter D =
2R, i.e., κ = d/D [see Eq. (4)], we may rewrite the result above
as follows:

4θθ
ii = 4

ϕϕ
ii = − A

κ3

N∑

j=1,

j ̸=i

J h
d (ηij ,τ )

r3
ij

,

where we have introduced the material-dependent constant

A ≡
( µ0

4π

)m2/D3

2K2V
=

( µ0

8π

) M2
s V

K2D3
.

Then, substituting this result in Eq. (27), we arrive at the
explicit DI correction to the FMR (dimensionless) angular
frequency ϖ of the array of nanomagnets

6ϖDI ≃ − A

κ3
× 1

N

N∑

i=1

N∑

j=1,

j ̸=i

J h
d (ηij ,τ )

r3
ij

. (28)

2. 2D array of nanodisks

The DI correction to the FMR frequency given in Eq. (28)
is an implicit expression that depends on various parameters
pertaining both to the nanoelements themselves (size, shape,
energy) and to the assembly (spatial arrangement and shape).
In particular, the nanoelements’ separation d enters this expres-
sion via the integral J h

d (ηij ,τ ) and the parameter κ . In order to
derive an explicit (analytical) expression for the frequency shift
in terms of the nanoelements’ separation d (or the parameter
κ), one has to (numerically) compute the integrals Ih

d (η,τ ) and
J h

d (η,τ ). However, this can also be analytically done in some
limiting cases of the parameters η and τ , namely, τ ≪ 1 for thin
disks (or platelets) or τ ≫ 1 for long cylinders (or wires). By
way of illustration, in this work we perform these calculations
in the case of thin disks.

For thin disks (τ ≪ 1), the integrands in Eq. (14) decay to
zero for q " 3. Hence, we can expand the exponential in these
integrals up to the first order and then expand the integrals in

powers of 1/κ (for κ > 1). This yields

J h
d (κij ,τ ) ≃ 1 + 9

16κ2
× 1

r2
ij

,

Ih
d (κij ,τ ) ≃ 1 + 3

16κ2
× 1

r2
ij

, (29)

and

*(κij ,τ ) = J h
d (κij ,τ )

Ih
d (κij ,τ )

≃ 1 + 3
8κ2

× 1
r2
ij

. (30)

To be specific, we consider the FeV disks of Ref. [38] with
D = 600 nm, L = 26.7 nm, and a center-to-center separation
d = 1600 nm, we have τ = 1/(2δ) = L/D = 0.0445, η =
d/L ≃ 60, and thereby κ = ητ = d/D = 2.667. Therefore,
the condition for the validity of the results above, i.e., κ > 1,
is satisfied even in the most unfavorable case.

Consequently, we obtain the frequency shift

6ϖDI ≃ − A

κ3

[
C3 + 9

16κ2
C5

]
, (31)

where we have introduced the lattice sum

Cn ≡ 1
N

N∑

i=1

N∑

j=1,

j ̸=i

1
rn
ij

.

We thus have to evaluate two lattice sums, the well-known one
[39] C3 ≡

∑N
i

∑N
k,k ̸=i [1/(N r3

ik)], which is equal to C3 ≃ 9,

and the other C5 ≡
∑N

i

∑N
k,k ̸=i [1/(N r5

ik)], equal to C5 ≃ 5.1,
both in the thermodynamic limit.

We may then rewrite Eq. (31) as follows (assuming C3 ̸= 0,
i.e., excluding spheres and cubes):

6ϖDI ≃ 6ϖPDA

(
1 + 9

16κ2

C5

C3

)
, (32)

where we have singled out the contribution 6ϖPDA ≡
−(A/κ3)C3 that obtains within the PDA. As such, we see more
explicitly the correction to the FMR frequency due to the size
and shape of the nanomagnets. Both contributions in Eq. (32)
are in the form of a dipolarlike term multiplied by a lattice sum.
While the PDA term 6ϖPDA scales with the nanoelements’
separation d as 1/d3, the term that stems from size and
shape effects scales with d as 1/d5. The power 5 here arises
from the three-dimensional space coordinates of the individual
nanoparticles, plus the two space dimensions arising from the
shape of the disks, for which the thickness is ignored (in the
current thin-disk approximation). Likewise, the expansions of
the shape integrals (29) and (30) also exhibit a point-dipole
contribution together with a two-dimensional shape correction
that scales as 1/κ2. In Fig. 2 we plot the relative difference
between 6ϖDI and 6ϖPDA, namely, δϖPDA = |6ϖDI−6ϖPDA|

6ϖDI
.

The results confirm that, for not-too-dense assemblies, i.e.,
for 2.5 ! κ ! 3, there is a variation (δϖPDA ≃ 5%) of the
frequency shift due to the fact that the nanomagnets are not
simple point dipoles. This variation should be accessible to
experiments. Obviously, for very dilute assemblies (κ " 7) the
PDA provides a correct description of the physics up to an error
less than 1%.
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FIG. 2. Relative variation of the frequency shift between PDA
and cylindrical nanomagnets δϖPDA = |6ϖDI−6ϖPDA |

6ϖDI
as a function of

the distance κ .

III. SURFACE EFFECTS

In this section we discuss the impact of surface effects on
the results obtained above. In an assembly of nanomagnets,
the intrinsic features of the latter, such as surface anisotropy
(SA), are generally smoothed out by the distributions of size
and (easy-axis) orientation. However, in some situations, e.g.,
of monodisperse assemblies with oriented anisotropy, as is
considered here, SE may lead to a non-negligible contribution
to the magnetic properties of the nanoelements, especially
FMR frequency. Many examples of such assemblies have
been fabricated by several experimental groups around the
world (see the already cited works in the Introduction as
well Refs. [26,29,30,40]). Surface effects are local effects
whose study requires recourse to an atomic approach that
accounts for the local atomic environment. However, from the
computational point of view, taking account of such effects in
an interacting assembly leads to tremendous difficulties which
cannot be efficiently dealt with even with the help of optimized
numerical approaches. Nonetheless, in the limiting case of not-
too-strong surface effects, inasmuch as the spin configuration
inside of the nanomagnet can be regarded as quasicollinear,
the static and dynamic properties of the nanomagnet may be
recovered with the help of an effective macroscopic model for
the net magnetic moment of the nanomagnet. More precisely,
it has been shown that a many-spin nanomagnet of a given
lattice structure and energy parameters (onsite core and surface
anisotropy, local exchange interactions) may be modeled by
a macroscopic magnetic moment m evolving in an effective
potential [20]. The latter is, in principle, an infinite polynomial
in the components of m, but whose leading terms are of two
types: one is a quadratic and the other a quartic contribution
with coefficients K2 and K4 that strongly depend on the
microscopic parameters, as well as on the shape and size of
the nanomagnet. Here, we would like to emphasize in passing
the fact that the quartic term is a pure surface contribution,
that appears even in the absence of core anisotropy (see
Refs. [20,21]) and which may renormalize the cubic anisotropy
of the (underlying) magnetic material the nanomagnet is

made of. However, there remains the question as to how one
can distinguish this surface-induced fourth-order contribution
from the (usually weak) cubic anisotropy found in magnetic
materials. At least for thin disks where the effective anisotropy
is mostly of (boundary) surface origin, this quartic contribution
may become dominant. An example of this situation was
provided by cobalt nanodots with enhanced edge magnetic
anisotropy [41].

In this work, we assume that the uniaxial anisotropy in
Eq. (6), with coefficient K2, is an effective anisotropy that
already includes the (small) renormalization effect from sur-
face anisotropy. On the other hand, the strongest contribution
induced by surface effects is given by

E
(SE)
i = 1

2
K4

∑

α=x,y,z

s4
i,α, (33)

where K4 is a constant that scales with the square of the
surface anisotropy constant [20]. K4 may be positive or
negative, depending on the underlying magnetic material [19].
In the following, we will use the more relevant parameter
ζ ≡ K4/K2. Consequently, adding this contribution to the
free-particle energy (6) adds the term −ζ

∑
α=x,y,z m3

i,αeα to
the effective field (10) and thereby the angular frequency of
an isolated nanomagnet becomes ω(0) = ωK (h + k + hd − ζ ).
Likewise, the corresponding dimensionless angular frequency
is now given by ϖ̃ (0) = h + k + hd − ζ ≡ ϖ (0) + ϖSE [see
Eq. (11)]. We see that due to the surface anisotropy contribu-
tion, the FMR frequency of a single nanomagnet may either
increase or decrease according to the sign of ζ . In particular, it
is interesting to investigate how surface effects may make up
for the frequency red-shift induced by dipolar interactions, as
discussed earlier. Accordingly, the total frequency shift, due to
both DI and surface effects, is given by [see Eq. (31)]

6ϖ = −ϖSE + 6ϖDI = ζ − A

κ3

[
C3 + 9

16κ2
C5

]
. (34)

For instance, for ζ > 0 we see that surface anisotropy may
compete with dipolar interactions. This will be discussed in
Sec. IV B.

IV. RESULTS AND DISCUSSION

Let us now discuss some of the results that can be inferred
from Eq. (31) for the effect of DI and Eq. (34) when SE are
included, especially in what regards the dependence of the
shift in frequency on the parameter κ , that is the ratio of the
nanoelements’ separation d to their diameter D.

A. Effects of dipolar interactions (ignoring surface effects)

For an order of magnitude and a comparison with other
theoretical models, we consider for instance the ferromagnetic
resonance of a finite 20 × 20 square array. We compare the
results from Eq. (28) with C3 = 7.50253 (for a square 20 ×
20 array) and those from the semianalytical model developed
in Ref. [42] for multiple interacting magnetic moments. The
dynamical fields arising from the dipolar coupling, which are
necessary for calculating the FMR spectra of the nanoparticle
array using the semianalytical model, are given in Appendix B.
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FIG. 3. (a) Resonance frequency of an interacting 20 × 20 square
array of FeV nanodisks as a function of the relative nanodisk
separation κ . The solid black line represents fth = (ω(0) + 6ω)/(2π ),
where the frequency shift is obtained from Eq. (28). In red circles
we present the semianalytical uniform mode, obtained from the
model of Ref. [42]. Horizontal dashed line represents the resonance
frequency in the noninteracting case. (b) Relative variation of the
frequency shifts 6ωth/ω

(0) and 6ωSA/ω(0) obtained from theory
and semianalytical calculations, respectively. δωth

SA is the difference
between the two approaches.

For the FeV disks, the thin-disk regime [L/(2R) ≪ 1]
applies and thereby the frequency shift can be calculated
using Eq. (31). The material parameters are [27,38] Ms =
1.353 × 106 A/m, H = 1.72 T,Kv = 4.1 × 104 J/m3, and
from Eq. (9) we can infer HK ≃ 0.0606 T and ωK = γHK ≃
10.67 × 109 rad s−1. Next, from Fig. 3(c) of Ref. [38] we
can read off the frequency of the isolated elements, f (0) ≃
5.35 GHz or ω(0)

exp ≃ 33.62 × 109 rad s−1. We can also com-
pute the effective field using Eq. (10). δ = R/L ≃ 11.24
leading to Nx = 0.956, Nz = 0.022, and Hd ≃ −1.59 T. Note
that for an infinitely thin disk (Nx → 1 and Nz → 0) we would
obtain |Hd | ≃ 1.7 T. Then, since H > |Hd | we may consider
the magnetic moment of the disks to be aligned along the
direction of the applied magnetic field, i.e., sx ≃ 1 and thereby
the effective field evaluates to Heff ≃ 0.193 T. This yields the
(theoretical) frequency of noninteracting nanoelements ω

(0)
th =

γHeff ≃ 33.91 × 109 rad s−1, which is in good agreement with
the experimental value ω

(0)
expt.

Now, regarding the comparison between our work and
the experiments of Ref. [38], beyond the agreement of the
orders of magnitude, an important warning is necessary. In
Fig. 4 of this reference, the authors plot the difference in
frequency between the antibinding and binding modes as a
function of the nanoelements’ separation. Apart from the fact
that only three values of the latter were available, and despite
the (apparent) qualitative agreement with our theory, it is not
possible to compare these experiments with our theory. Indeed,
as discussed earlier, our approach only renders the frequency
of the collective mode, which is here the binding mode, and
it is not possible to derive the frequency of the antibinding

0
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0.5
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0.7

3 4 5 6 7

∣∣∣∣δωth
sa

∣∣∣∣ (%)

κ

20 × 20
15 × 15
10 × 10
5 × 5

FIG. 4. Error in the relative shift in frequency as a function of the
relative distance κ for different sizes of a square array of disks.

mode as this would require the full solution of the eigenvalue
problem. On the other hand, the individual frequencies of
the two modes cannot be extracted from these experiments
because the nanodisks are not fully identical and their distances
to the sensor are not equal either.

In Fig. 3(a) we plot the resonance frequency obtained
from Eq. (31) [fth = [ω(0) + 6ω]/(2π ) (black solid line)] as a
function of the relative distance parameter κ , together with the
frequency (fSA) of the uniform resonance mode of the system
obtained from the semianalytical model [42] (red dashed line
with circles). As expected, the dipolar coupling reduces the
frequency relative to the noninteracting case (horizontal dashed
line). The shift decreases as the distance between the disks
increases, which is equivalent to a decrease in the dipolar cou-
pling. Both theoretical calculations render the same qualitative
behavior, with some quantitative discrepancies, especially for
stronger DI. This is due to the several approximations and
expansions used in the derivation of Eq. (31). Nonetheless, we
can clearly see that the difference is reduced as κ increases,
reaching a good agreement for κ " 5.

Figure 3(b) shows the variation of the relative frequency
shift |6ω|/ω(0) of each approach, and the difference δωsh

SA ≡
(6ωth − 6ωSA)/ω(0). 6ωth and 6ωSA are the absolute fre-
quency shifts induced by the dipolar coupling, obtained from
Eq. (31) and the semianalytical model, respectively. We see
that the DI induce small frequency shifts on the order of 1.5%
or even lower for the explored distances. Furthermore, we
can see that when Eq. (31) becomes a good approximation
(κ " 5), the relative frequency shifts are on the order of 0.3%.
This relative variation expressed as a percentage is below
typical relative experimental linewidths in similar systems
[linewidth 6ωlw/(2π ) ≃ 20 MHz, ω(0)/(2π ) ≃ 5 GHz [38],
thus 6ωlw/ω(0) = 0.4%]. However, increasing ω(0) (e.g., by
increasing the applied field) reduces the relative frequency shift
|6ω|/ω(0) and the error δωsh

SA. As a consequence, the validity
of our formalism [see Eq. (31)] extends to stronger interactions
(smaller κ), making it possible to reach the regime where the
predicted frequency shifts can be measured in experiments.
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FIG. 5. FMR frequency as a function of the relative nanodisk
distance κ for various surface anisotropies ζ = K4/K2.

The dependence of δωth
SA on κ for different sizes of the

array is shown in Fig. 4. It can be clearly seen that the error
decreases for smaller arrays. Indeed, decreasing the size of the
array decreases the overall dipolar contributions, thus making
the different approximations more precise. Furthermore, it can
also be seen that the error tends to stabilize as the size of the
array increases, and no important variations are expected for
arrays larger than 20 × 20.

B. Effects of dipolar interactions including surface effects

Equation (34) clearly reveals a competition between the
effects of surface anisotropy and DI on the FMR frequency. In
order to better assess the role of SE, we consider an interacting
20 × 20 array of nanodisks similar to the sample of Fig. 3.
The results are shown in Fig. 5 where we have restricted
our investigation to the case of small surface anisotropy, i.e.,
|ζ | ≪ 1 in order to remain within the limits of the effective
macrospin model (see discussion in Sec. III) [18,19]. First,
analyzing the effect of surface anisotropy alone, we see that
changing the value and sign of ζ has a large effect on the FMR
frequency, taking f (0)as a reference. Now, for 2D square arrays
the dipolar interactions tend to maintain the magnetic moments
within the plane. In contrast, depending on the sign of ζ , SE
favor a magnetic alignment along the cube facets (ζ < 0) or
along the cube diagonals (ζ > 0). Therefore, for materials with
ζ > 0 one may expect a competition between SE and DI. This
is what is observed in Fig. 5: at high densities (small κ), DI
dominate the correction to the FMR frequency and induce a
red-shift, whereas for very dilute assemblies (large κ), each
nanodisk behaves like an isolated entity and SE dominate [30]
and induce a blue-shift. At leading orders in κ , the critical value
κc marking the crossover from a red- to a blue-shift is given by
κc ≃ (AC3/ζ )1/3. This is the point where the blue line crosses
the dashed line in Fig. 5, implying that SE compensate for
the DI. For the FeV thin disks considered here, κc ≃ 3.9. This
corresponds to an interelement separation of four times the
element diameter, i.e., a center-to-center distance of2400 nm.

The value of ζ taken here is rather small as compared to the
estimates obtained by other authors in cobalt and iron-oxide el-

ements [15–17]. For such higher values (an order of magnitude
larger) of surface anisotropy, compensation of the DI effects
should occur for much closer nanoelements, or equivalently
denser assemblies. However, this reasoning cannot be taken
too far, at least in the framework of our approach, since our
treatment is limited to dilute assemblies and not-too-strong
surface disorder. Nonetheless, it does confirm the screening
effect of DI by surface disorder studied earlier by the authors
[43,44].

V. CONCLUSION

We have developed a general formalism for deriving prac-
tical analytical formulas for the shift in FMR frequency
induced by both dipolar interactions and surface disorder in
an array of magnetic nanoelements. Even though this has
been done with the help of perturbation theory, which only
applies to relatively dilute assemblies, or equivalently for
well-separated nanoelements, the general character of this
formalism resides in the fact that it applies to nanoelements
of arbitrary shape and size and, as such, it deals with the
dipolar interactions beyond the point-dipole approximation.
An analytical expression for the frequency shift induced by
dipolar interactions has been explicitly derived for an arbitrary
array of monodisperse elements, and the contribution due to
their shape and size has been singled out. Next, this formalism
has been applied to the limiting case of thin disks of FeV,
recently investigated by the technique of magnetic resonance
force microscopy. We have clearly shown that the contribution
of dipolar interactions to the FMR frequency of a 2D array of
nanoelements is a linear function of the parameter ξ which
scales as the inverse of the third power of the elements’
separation. In addition to this contribution, that obtains within
the point-dipole approximation, we also obtain a contribution
from the nanoelements’ size and shape which scale with the
inverse fifth power of the nanoelements’ separation. We have
also studied the effect of the array size on the frequency
shift and have found that the red-shift of the resonance is
smaller for smaller arrays. The effects of surface anisotropy
on the frequency shift have been taken into account with
the help of an effective macroscopic model for the isolated
nanoelements. Depending on the sign of the corresponding
contribution, which changes with the properties pertaining
to the nanoelement itself, we may obtain either a blue-shift
or a red-shift of the FMR frequency. Correspondingly, this
may lead to a competition or a concomitant effect with the
dipolar interactions. This means that surface anisotropy and
dipolar interactions provide us with a handle for adjusting the
resonance frequency of nanomagnet assemblies.
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APPENDIX A: PSEUDO-HESSIAN MATRIX ELEMENTS
FOR THE DI CONTRIBUTION

The following general expressions [37] are used in the
calculation of the second derivatives of the DI contribution

224407-10



FERROMAGNETIC RESONANCE OF A TWO-DIMENSIONAL … PHYSICAL REVIEW B 97, 224407 (2018)

with respect to the angular variables (θi ,ϕi):

∂2
θiθk

EDI = −δik

N∑

j=1

ξij (1 − δij )si · Dij · sj

+ξik(1 − δik)(eθi
· Dik · eθk

),

∂2
ϕiϕk

EDI = −δik

N∑

j=1

ξij (1 − δij )

×[(sin2 θi si + sin θi cos θi eθi
) · Dij · sj ]

+ξik(1 − δik) sin θi sin θk(eϕi
· Dik · eϕk

),

∂2
θkϕi

EDI = δik

N∑

j=1

ξij (1 − δij ) cos θi(eϕi
· Dij · sj )

+ξik(1 − δik) sin θi(eϕi
· Dik · eθk

),

∂2
ϕkθi

EDI = δik

N∑

j=1

ξij (1 − δij ) cos θi(eϕi
· Dij · sj )

+ξik(1 − δik) sin θk(eθi
· Dik · eϕk

), (A1)

with

eθi
= ∂θi

si =

⎛

⎝
cos θi cos ϕi

cos θi sin ϕi

− sin θi

⎞

⎠,

eϕi
= 1

sin θi

∂ϕi
si =

⎛

⎝
− sin ϕi

cos ϕi

0

⎞

⎠.

APPENDIX B: DYNAMICAL DIPOLAR FIELDS

The dynamical fields due to the dipolar coupling can be
calculated in the context of the model presented in [42] for the
propagation of in-plane spin waves in multilayer systems. This
model can be applied to the array of interacting nanoparticles

presented here for the zero wave vector (uniform mode).
Starting from Eq. (12) (in SI units), and following a similar
procedure as the one presented in [42], the following dipolar
dynamical fields were obtained:

Hd
xixi

= −
∑

j ̸=i

M
j
s

4πr3
ij

{
*ij cos θi cos θj + sin θi sin θj

×
[

cos ϕ−
i,j − (2 + *ij )

(
rij,xrij,y sin ϕ+

i,j

+r2
ij,x cos ϕi cos ϕj + r2

ij,j sin ϕi sin ϕj

)]}
,

Hd
yiyi

= Hd
xixi

,

Hd
xixj

= M
j
s

4πr3
ij

{
*ij sin θi sin θj + cos θi cos θj

×
[

cos ϕ−
i,j − (2 + *ij )

(
rij,xrij,y sin ϕ+

i,j

+ r2
ij,x cos ϕi cos ϕj + r2

ij,y sin ϕi sin ϕj

)]}
,

Hd
yiyj

= M
j
s

4πr3
ij

[
cos ϕ−

i,j − (2 + *ij )
(
r2
ij,x sin ϕi sin ϕj

+ r2
ij,y cos ϕi cos ϕj − rij,xrij,y sin ϕ−

i,j

)]
,

Hd
xiyj

= M
j
s

4πr3
ij

cos θi

[
sin ϕ−

i,j + (2 + *ij )

×
(
r2
ij,x cos ϕi sin ϕj − r2

ij,y sin ϕi cos ϕj

− rij,xrij,y cos ϕ+
i,j

)]
,

Hd
yixj

= − M
j
s

4πr3
ij

cos θj

[
sin ϕ−

i,j − (2 + *ij )

×
(
r2
ij,x sin ϕi cos ϕj − r2

ij,y cos ϕi sin ϕj

− rij,xrij,y cos ϕ+
i,j

)]
,

with ϕ±
i,j ≡ ϕi ± ϕj .
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