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Systematic computation of crystal-field multiplets for x-ray core spectroscopies
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We present an approach to computing multiplets for core spectroscopies, whereby the crystal field is constructed
explicitly from the positions and charges of surrounding atoms. The simplicity of the input allows the consideration
of crystal fields of any symmetry and in particular facilitates the study of spectroscopic effects arising from
low-symmetry environments. The interplay between polarization directions and the crystal field can also be
conveniently investigated. The determination of the multiplets proceeds from a Dirac density functional atomic
calculation, followed by the exact diagonalization of the Coulomb, spin-orbit, and crystal-field interactions for the
electrons in the open shells. The eigenstates are then used to simulate x-ray absorption spectroscopy and resonant
inelastic x-ray scattering spectra. In examples ranging from high-symmetry down to low-symmetry environment,
comparisons with experiments are done with unadjusted model parameters as well as with semiempirically
optimized ones. Furthermore, predictions for the RIXS of low-temperature MnO and for Dy in a molecular
complex are proposed.
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I. INTRODUCTION

X-ray absorption spectroscopy (XAS) and resonant in-
elastic x-ray scattering (RIXS) measurements act as a local
probe for various excitations in materials. In particular, the
spectra exhibit prominently the features associated with atomic
multiplets generated by open d and f shells. Brought by the
development of synchrotron light sources, a lot of progress
has been made in the past few years in RIXS, a review of
which is found in Ref. 1. It is now established that XAS
and RIXS, especially in the soft x-ray regime,2 have become
the tools of choice to investigate transition-metal compounds.
Typical examples are the titanates,3–8 the vanadates,9–11 and
the cuprates in the hard12 and soft x-ray regimes.13,14 Lately the
increased resolving power of the instruments has allowed the
observation of multiparticle excitations15–19 arising in inelastic
x-ray experiments.

As the complexity of experiments increases and the range
of materials investigated expands, it has been felt that there is
the need for an easy tool relating the energy and polarization
dependence of the observed spectra to the properties of crystal-
field atomic multiplets.

It has been known since early on that the energy levels
of the electrons in an open shell form multiplets under
the effect of the electron-electron interaction, the spin-orbit
coupling, and the crystal field.20 While many aspects of the
splitting can be discussed from a central field model and
symmetry considerations alone, a quantitative approach from
first principles requires the use of computers. A review of the
pioneering developments in computation is given in Cowan’s
book.21 The early application of Cowan’s approach concerned
the spectra of atoms in the ultraviolet and visible ranges.
An important further step was the inclusion of relativistic
corrections to the atomic radial functions,22 which was used
together with a second variation treatment of intermediate
coupling involving spin-orbit splitting and electron-electron
interaction.

It was realized in the early 1980s that atomic core
spectroscopies such as x-ray photoemission spectroscopy,
XAS, RIXS, and similar spectra can show multiplet structure

signatures when open d or f shells are involved.23–25 An early
theoretical study of atomic multiplet splitting in a cubic crystal
field has been published by van der Laan et al.,26 followed up
by de Groot et al.,27 for 3d transition-metal compounds.

Spectroscopic studies are typically applied to solid-state
compounds and therefore should, in principle, take into
account hybridization effects. Parameterized model Hamilto-
nians are used to couple levels with a conduction band28 and to
include charge transfer from the selected configurations of the
ligands.29 The inclusion of charge-transfer effects in multiplet
calculations is required in order to reproduce with accuracy
the spectra of compounds with high ligand hole character.30

It has, however, been pointed out that the simple crystal-field
model explains a large range of experiments.31 The present
study concentrates solely on the effects of the crystal field of
any symmetry.

Atomic multiplet codes based on Cowan’s pioneering
work32,33 make intense use of symmetry considerations. Start-
ing from the LS atomic symmetry standpoint, the intermediate
coupling arising from spin-orbit coupling is included, followed
by the point-group symmetries for the crystal field. The crystal
field is entered in parameterized form, which depends on
the point group in consideration. A somewhat simpler and
more general method, where the crystal field is specified via
parameters in a matrix, has also been reported.34 Recently,
Zhang et al.35 rationalized counterintuitive crystal-field fit
parameters using a point-charge model with variable ion
positions.

In the present paper we focus on intra-atomic electron-
electron interactions of relativistic atoms in a general crystal
field and its effect on XAS and RIXS spectra. The crystal envi-
ronment of the atom of interest, rather than being characterized
by symmetrized matrix elements, is entered explicitly via the
positions and charges of the neighboring atoms. The input is
therefore straightforward and requires no prior knowledge of
point-group symmetry. The multiplet levels are calculated by
determining the electron-electron and spin-orbit interactions,
as well as the effect of the crystal-field point charges for
the relevant core and valence shells in a determinantal basis.
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The spin-orbit matrix elements and the radial wave functions
are obtained from the solution of the atomic central field
Dirac equation in the density functional theory formalism.
The resulting eigenvalue problem is solved using standard
diagonalization methods.

The paper is organized as follows. The approach to calculat-
ing multiplets with the point-charge model defining the crystal
field is presented in Sec. II. The XAS and RIXS spectra most
commonly studied today are dominated by dipolar transitions
caused by the interaction of polarized light with the relevant
core and valence electrons of the atom. A brief reminder of
the standard theoretical treatment for XAS and RIXS and the
selection rules is given is Sec. III. The application of the present
approach to both well-known high-symmetry and less familiar
low-symmetry cases will be demonstrated is Sec. IV for XAS
and in Sec. V for RIXS. Summary, conclusions, and outlook
follow in Sec. VI.

II. ATOMIC MULTIPLETS FOR GENERAL
CRYSTAL FIELD

The general theory of atomic multiplet is described ex-
tensively in Refs. 20,21,31, and 36. Within the point-charge
model, the relevant interactions for the electrons in the open
shells are the intra-atomic electrostatic interactions, the spin-
orbit coupling, and the effect of the crystal field. Considering n

electrons in the open shells of an atom and Nions point charges
Qm at position Rm from the atom, the multiplet Hamiltonian
is given by

Hmult =
n∑
i,j

e2

|ri − rj | +
n∑
i

εi + Vxtal. (1)

The third term Vxtal is the crystal-field interaction in the crystal
field potential Vxtal,

Vxtal(r) =
Nions∑
m=1

Qm

|r − Rm| . (2)

The first term in Eq. (1) is the electron-electron Coulomb
interaction. The second is a single electron operator accounting
for the kinetic energy and spin-orbit interaction; this term is
drawn from the solution of the atomic, central field Dirac
equation, a point that is discussed further below in this
section. A typical case involving a transition metal will require
considering the multiplets arising from opening a hole in the
2p shell and promoting an electron in an incomplete 3d shell,
so that all the electrons in 2p and in the 3d shells will be
included in Eq. (1).

The bulk of this part of the paper addresses some aspects of
the implementation of the three terms of Eq. (1). The Hilbert
space is presented first. Then, starting with the central field
atomic equation, we discuss the spin-orbit coupling, the crystal
field, and the effect of ionization. A comparison with other
existing approaches is conducted at the end the section.

A. The Hilbert space

The focus of this paper lies in calculating multiplets
involved in soft x-ray absorption and emission processes.
The wave functions are antisymmetrized products of the spin

orbitals of the electrons in the atomic open shells, so the
dimension of the Hilbert space is, in the present model,

N (l,k) = [2(2l + 1)]!

[2(2l + 1) − k]! k!
(3)

for a shell labeled by the quantum numbers (n, l) and
containing k electrons. For instance, 5 electrons in a p shell
gives N (1,5) = 6 determinants; 2 electrons in a d shell gives
N (2,2) = 45 determinants. If more than one shell is opened,
each shell being independent, the overall size is given by
the product N = ∏

i Ni . The case of transition metals can
be handled easily on today’s standard desktop computers. The
largest Hilbert spaces in present-day soft x-ray applications are
found in the case of lanthanides, for which d → f transitions
with an open f shell occur. An example could be Gd3+ in the
ground-state configuration 3d94f 7, with a final-state matrix
dimension of 34 320. The generation and diagonalization
of this size of matrices remain, however, still tractable on
contemporary architecture with sufficient memory.

B. Relativistic electron orbitals and energies for a single atom

Computing atomic multiplet levels requires central field
model orbitals and energies. Previous atomic multiplet calcu-
lations, including the more recent approaches,34 are usually
based on the nonrelativistic Schrödinger equation. In this
work the Dirac equation has been preferred, since it naturally
includes spin-orbit coupling effects.

In the absence of crystal field, the Dirac equation is written
in a formal way as follows:

HD�i = εi�i ; HD = cα · p + βmc2 + V (r); (4)

α =
(

0 σ

σ 0

)
; β =

(
12 0

0 −12

)
, (5)

where σ are the Pauli matrices and V (r) is a spherically
symmetric field which can be decomposed as follows:

V (r) = −Z

r
+ Vs(r) + Vxc(r). (6)

The first term is the electrostatic attraction by the nuclear
charge Z and VS is the static potential:

Vs(r) = 1

r

∫ r

0
ρ(x)4πx2dx +

∫ ∞

r

ρ(x)

x
4πx2dx. (7)

In the multiplet code developed for the present work the
Dirac equation is solved for the neutral atom (see Sec. II C),
within the density functional theory37 and using a local density
functional approximation Vxc(r). The radial wave functions
and eigenvalues εi are used to compute the matrix elements of
Eq. (1). For light elements, the nonrelativistic limit of the radial
wave functions can be retrieved by performing a weighted
average of the radial term over the shell. For the examples
shown in this work the crystal field matrix elements have also
been calculated in this limit.

For the application to XAS and RIXS the Dirac equation
has to be solved twice: once in the ground state and once with
an electron moved from a core shell to a valence shell.
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C. Spin-orbit coupling and Coulomb term

As mentioned above, the eigenvalues εi of the Dirac
equation are used to build a diagonal operator that, by default,
accounts for the effect of spin-orbit coupling [second term in
Eq. (1)]. All the electrons of the participating core and valence
shells contribute to the spin-orbit operator.

Such an operator includes the kinetic energy, but also
contains the contribution of the central symmetric part of the
electron-electron interaction, which, in principle, is already
addressed by the first term (Coulomb term) in Eq. (1).

Double counting can be partially prevented by considering
the following standard expansion that applies to the Coulomb
term in Eq. (1),

1

|r1 − r2| =
∞∑

k=0

4π

2k + 1

k∑
m=−k

rk
1

rk+1
2

Ym
k (θ1,φ1)∗Ym

k (θ2,φ2),

(8)

with r1 < r2. Replacing the sum
∑∞

k=0 with
∑∞

k=1 in the ex-
pansion of Eq. (8) effectively removes a spherically symmetric
term corresponding to Vs in Eq. (7) and part of the exchange
interaction Vxc.

Alternatively, and this is the approach used in all the
examples presented in this paper, the radial term in the matrix
element of the Coulomb interaction is averaged over the shell,
thereby effectively removing unwanted contributions.

It is seen from comparisons with x-ray spectroscopic
experiments in Secs. IV and V that this straightforward
approach to spin-orbit coupling delivers a good first-principle
prediction of the L3-L2 edge splitting.

D. Crystal field as point-charge ligands

Unlike group-theoretical approaches to calculating mul-
tiplet levels, the present work accounts for crystal-field
splitting by explicitly including the electrostatic interactions
of neighboring point charges with the open shells of the atom.
The crystal field is then computed together with the direct and
exchange Coulomb interactions and the spin-orbit coupling
Eq. (1).

The advantage of treating the crystal field as point-charge
ligands is twofold: (i) The position of each ion is given as
input in the program without having to resort to symmetry, and
(ii) the crystal field arising from charges at experimental atomic
positions leads to a reasonable prediction with often sufficient
accuracy for interpretation without using a fitting parameter.

The purpose of the charges is to recreate the proper
symmetry of the crystal. It is natural to take as a starting point
the oxidation state, or the formal charges, the latter reflecting
the level of band filling in insulators. Usually, however, either
fail to reproduce correctly the actual charge distribution in the
solid, and it would be legitimate to treat the charges assigned
to equivalent atoms as fitting parameters. This exercise
has not been carried through in the examples discussed in
this work.

An example of input is given in Table I for the monoclinic
tenorite (CuO), where the Cu has six nearest neighbors
forming a distorted octahedral environment. The positions of
the neighbor O atoms are taken from the Inorganic Crystal
Structures Database (ICSD), entry No. 69758. A formal charge

TABLE I. Positions and charges of the crystal field for Cu2+ in
monoclinic tenorite CuO. The oxygen coordinates x,y,z and distance
r to Cu are given in Å, the charges in units of e. For comparison,
the cubic polymorph of CuO has six oxygen atoms at a distance of
r = 2.12 Å.

x y z r Charge

1.3304 0.5617 −1.2461 1.910 −2.0
0.9001 1.1298 1.2836 1.930 −2.0
−1.0143 −1.1517 −1.2461 1.980 −2.0
−1.4446 −0.5836 1.2836 2.020 −2.0
0.9001 −2.2970 1.2836 2.780 −2.0
−1.0143 2.2751 −1.2461 2.790 −2.0

of −2e was allocated to each O atom. The ground-state
configuration of Cu2+ is 2p63d9. This information, together
with the elements of Table I, are the only input required in the
code. In that particular case, and in the nonrelativistic (NR)
limit, the splitting of levels originates solely from the crystal
field. The output of the code is represented graphically in
Fig. 1. The first column on the left shows the levels for Cu2+ in
octahedral symmetry. This structure exists and is a polymorph
of CuO in a cubic phase (ICSD 61323), where the six O atoms
are forming an octahedron at a distance of 2.12 Å to the Cu.
If the crystal field of Table I is considered instead (column 2),
the energy levels originally ascribed to the t2g (threefold
degenerate) and eg (twofold degenerate) orbitals in the cubic
case split into three and two further levels, respectively.

The convergence with increasing numbers of ions as ligands
is illustrated by the columns 2–5 in Fig. 1, with, respectively,
6, 16, ≈500, and ≈1600 closest ions considered. While
the explicit symmetry breaking induced by the crystal field
is already accounted for by the six closest oxygen atoms,
the addition of the second shell of ions (16 closest ions)
is necessary to reach a better qualitative agreement with
the limit. In the particular example of monoclinic CuO, the
convergence is achieved for most practical purposes with about
500 ions.
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FIG. 1. Multiplet levels of Cu2+ in CuO calculated with the
present code in the NR limit. Column 1, cubic octahedral environment
(six O atoms); columns 2–5, monoclinically distorted environment
built up of the 6, 16, ≈500, and ≈1600 closest ions, respectively.
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FIG. 2. Radial part of the d-wave function for Ti as a function of r

in atomic units: The tail of the wave function shrinks with increasing
ionization.

E. Semiempirical parameters

The assumption behind the crystal field model is that the
atom under consideration is surrounded by point charges and is
itself in a particular ionized state. The ionization has a major
impact on the radial part of the wave functions of an atom.
Moreover, the radial wave functions will be affected by the
bonding environment of the atom. The latter consideration is
the origin of the introduction of semiempirical parameters. As
the radial functions enter in both the calculation of the crystal
field and the Coulomb term, the sensitivity of these terms to
the formal ionization state is addressed below.

An atom give rise to different radial wave functions
according to the degree of ionicity. The reduced screening
felt by the remaining electrons of a positively charged atom
leads to the contraction of the radial wave functions around
the nucleus. As illustrated in Fig. 2 for the case of Ti, the
expectation value 〈r〉 in the Ti3+ ion varies by about 30%
compared to the neutral titanium ion.

An estimation of the effect of the contraction of the radial
function can be given as follows. For an open d shell in
a NR limit, the only contribution to level splitting comes
from the anisotropic densities with a purely k = 4 multipolar
character. Equation (8) implies that the crystal-field splitting
scales with the power of the anisotropic density. As the radial
wave function becomes sharper with increasing ionization,
the crystal-field splitting for a shell of angular momentum
l scales as 〈r+2l〉. On the other hand, the electron-electron
interaction scales like 〈r−1〉. As a consequence, if the wave
function does actually extend further than anticipated, the
crystal-field strength would be underevaluated, whereas the
Coulomb interaction would be overevaluated.

A comparison with experimental spectra indicates that a
better correspondence is achieved if the radial functions of
the neutral atom with integral ionic charge number is used,
rather than those of the positively charged ion. Moreover, self-
consistent band-structure calculations suggest that the charge
density around atoms in a solid is close to that of neutral
atoms. All the examples presented in this paper have therefore
been obtained with radial functions calculated from the neutral
atom.

Further comparisons with experiments show, unsurpris-
ingly, that an even better match can be made if the matrix
elements of the Coulomb interaction, the spin-orbit coupling,
and the crystal field are allowed to vary. A scaling of these
elements can be seen as a way to adjust the radial functions
to the hybridization environment encountered in the solid. As
is seen in examples below, it is usually necessary to scale the
crystal field up and the Coulomb interaction down. From the
discussion in the paragraph above, this suggests that the neutral
atom radial wave functions still fall off too rapidly.

An empirical correction to the ionic model is therefore
done in our code via the parameters Scoul, Sxtal, and Ssoc, which
scale the respective terms in the Hamiltonian Eq. (1). The
crystal-field scaling may also incorporate a global adjustment
to the chosen charges. We call “raw” the multiplet results
or spectra calculated using formal charges or oxidation
states, respectively, and crystallographic neighbor positions,
all scaling parameters being set to unity.

The model of a single ion in an ionic environment ignores
charge transfer from ligands, band effects, and collective
excitations. It has nonetheless been successfully applied to
the calculation of multiplet-dependent spectral features.38

Ghiringhelli et al. compared the crystal-field model to the
single impurity Anderson model for a prototype transition
metal oxide, MnO, in a cubic environment. They found that
both models agree well in that part of the spectra determined
by local effects. The multiplet approaches26,27 based on
Cowan’s work21 use Hartree-Fock parameters (which include
relativistic corrections). These values are usually scaled down
by 70% to 80% to compensate for the neglect of configuration
interactions in the Hartree-Fock theory. The effective crystal-
field parameters are adjusted to experiments. The present
approach makes use of the DFT-LDA results of the relativistic
Dirac equation. In principle, it delivers the multiplet structure
without the need of parametrization; if fitting to experiments
is required, the scaling parameters and possibly the charges
can be adjusted.

F. Results and comparison

In the presence of a cubic crystal field and in the NR limit,
the energy levels of one electron in a d atomic orbital split into
a fourfold degenerate eg and a sixfold degenerate t2g orbital
(including spins). In this case, the cubic crystal field splitting
is well defined as the energy difference between the eg and the
t2g levels. This value is also often named 10Dq in the literature,
and is taken as an effective parameter fitted to experiments.27

In Ref. 27, the authors estimated that for transition metals,
the crystal-field splitting would typically vary between 0 and
2.5 eV. They point out that the splitting found by examining
optical spectroscopy experiments correspond to the final state
splitting, which can, in principle, differ from that of the ground-
state initial value.

As the present work deals with low as well as high
symmetry, a characteristic crystal-field splitting (CXS) is
defined, which expresses the strength of the crystal field
splitting. For cubic symmetry the CXS is equivalent to the
cubic crystal field splitting. In the present approach, the CXS
can be easily determined for a cubic field by evaluating the
central atom in a d1 or d9 configuration in the NR limit. In the
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TABLE II. Multiplets of the ground state 2p63d1 of LaTiO3.
Eigenvalues are given in eV for unscaled (raw) contributions to the
Hamiltonian Eq. (1) and with scaling determined from fitting to XAS
data,41 as explained in the text. The degeneracy deg (including spin)
is indicated for the cubic39 and orthorhombic40 ligands fields.

Cubic Orthorhombic

Deg Raw Deg Raw Scaled

2 −1.200 −1.500
2 −0.849 −1.062

Crystal field 6 −1.083
2 −0.735 −0.919

(NR limit) 4 1.624
2 1.327 1.659

2 1.458 1.822

4 −0.027 4 −0.027 −0.025
Spin-orbit

6 0.018 6 0.018 0.017

2 −1.200 −1.500

4 −1.092 2 −0.850 −1.062
Crystal field

2 −1.065 2 −0.735 −0.919
+ spin-orbit

4 1.624 2 1.327 1.659

2 1.458 1.822

example of Cu in cubic geometry, as can be seen in Fig. 1, the
unscaled, raw result of the calculation gives CXS = 0.6 eV.
In the monoclinic structure the strength of the crystal field
can be taken as the energy difference between the barycenter
of the two lowest levels and that of the three highest levels,
which gives 1.9 eV. Alternatively, one can take the CXS as
the difference between the highest of the two lowest and the
average of three highest levels, which amounts to 0.7 eV (for
the ≈500 ions case).

A well-studied example is Ti3+ in LaTiO3, in its 2p63d1

ground-state configuration. Once thought of as a perfect
cubic perovskite,39 LaTiO3 has been characterized a number
of times; a later powder diffraction study40 detected small
orthorhombic distortions to the octahedral environment. The
multiplet results of our code for LaTiO3 in the idealized cubic
structure39 (ICSD 28908) and with orthorhombic distortions40

(ICSD 98414) is presented in Table II. The formal charges
La3+, Ti3+, and O2− were allocated to the ions. The raw,
“first-principles” eigenvalues are obtained with, as sole input,
the specification of Ti as the atom under consideration, its
ground-state configuration 2p63d1, and the crystal field as
described above. For both structures all charges within 20 Å
of the Ti atom were included. The first row is obtained by
considering only the Coulomb interactions and the crystal
field in the NR limit. As expected, the cubic crystal field
causes a t2g-eg split, giving CXS = 2.7 eV. The effect of the
spin-orbit coupling, without the crystal field (second row in
Table II), is to split levels by 45 meV. The combination of
cubic crystal field and spin-orbit coupling has the effect of
splitting the t2g level by 27 meV (third row in the table). With
the orthorhombic field (column labeled orthorhombic raw)
all the levels are already split by the crystal field in the NR

case. The inclusion of spin-orbit interactions (third row in the
figure) has only a minute effect on the levels. Taking CXS as
the energy difference between the highest negative value and
the average of the positive value, we find CXS = 2.1 eV in the
orthorhombic case.

The scaled results for LaTiO3 are shown in Table II
along the original, raw values for the orthorhombic geometry.
The scaling parameters were obtained by fitting to XAS
experiments41 (see results in Sec. IV), which gave Scoul = 0.7,
Sxtal = 1.25, and Ssoc = 0.915. The corrected CXS now has
a value of 2.7 eV (2.1 eV unscaled). In the scaled case the
splitting of the t2g level is of about 0.14 and 0.4 eV. These
values agree well with the measurements and LDA-based,
Wannier function projection calculations of Ref. 41.

III. XAS AND RIXS THEORY

XAS and RIXS involve processes whereby an x-ray photon
is absorbed by a core electron, which is promoted into a valence
shell. The resulting core-hole and valence configuration, in
general, gives rise to a multiplet structure. In the present work
the ground state and core-hole state are determined using the
multiplet Hamiltonian Eq. (1), as sketched in Sec. II.

XAS measures the decay products of the core-hole.1 In
RIXS measurements the system returns to the ground state by
emitting a photon. The standard theoretical formulation for the
calculation of the signal intensity of XAS and RIXS is stated
below, as well as the dipolar approximation used in both cases.
Last, a brief reminder of the polarization effects and selection
rules is given.

A. XAS intensity formula

The XAS absorption spectra is simulated the usual way31

with the Fermi Golden rule,

I (ω) ∝
∑

i

|〈ψi |Ô|ψ0〉|2δ(h̄ω + E0 − Ei), (9)

where h̄ω is the energy of the absorbed photon, |ψ0〉 refers
to the ground-state, and E0 to its eigenvalue, which is often
degenerate. |ψi〉 and Ei are, respectively, all the possible
eigenvectors and energies of the excited, core-hole state. The
transition operator Ô is treated in the dipolar approximation,
briefly exposed in Sec. III C, and depends on the polarization
of the incoming light εin (Sec. III D).

Intrinsic effects as well as the finite experimental resolution
lead inevitably to the broadening of the sharp δ peak of Eq. (9).
The spectral broadening here is approximated by a Lorentzian.
Equation (9) becomes

I (ω) ∝
∑

i

|〈ψi |Ô|ψ0〉|2 �i/π

(h̄ω + E0 − Ei)2 + �2
i

. (10)

An intrinsic contribution to the Lorentzian broadening comes
from the finite lifetime of the core-hole state. A typical
L2,3 core-hole linewidth for transition metals varies between
0.2 and 0.4 eV.42 The different level of hybridizations of
the states involved may, however, be reflected in a varia-
tion of the vibrational and dispersional broadening of the
peaks.43
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If �i ≡ � is taken as a constant, the relative intensities of the
simulated peaks may differ from that observed in experiments.
A Gaussian experimental broadening can be applied as well if
a better fit to experiment is sought; this has not been done in
the examples shown in this work.

The multiplet levels of the excited core-hole state are given
with respect to the energy difference between the total energy
of the single neutral atom in the ground state and in the
excited state, which in the present case is determined within
the LDA-DFT approximation. The absolute energy position of
the multiplets is not determined with sufficient accuracy and,
compared to experiments, tends to shift the peaks to a lower
energy by an amount of the order of the percent. It is usual to
align the calculated spectrum to the measured one, and this has
been systematically done in this work for the XAS spectra.

B. RIXS intensity formula

RIXS processes involve the creation and subsequent radia-
tive deexcitation of a core hole. With the incoming photon
energy h̄ωin close to an absorption edge, the RIXS intensity
is approximated, using the Kramers-Heisenberg formula,44 by
the resonant term

I (
,ωin) =
∑
f

∣∣∣∣∣
∑

i

〈ψf |O′†|ψi〉〈ψi |O|ψ0〉
Ei − E0 − h̄ωin − i�i

∣∣∣∣∣
2

× δ(Ef − E0 − h̄
). (11)

Details on the second-order perturbation theory leading to
Eq. (11) can be found in the review Ref. 1. h̄
 is the energy
loss, that is, the energy difference between the incoming and
outgoing photon. During the first stage of the process a core
electron is promoted from the ground-state |ψ0〉 of energy E0

into an excited, core-hole intermediate state |ψi〉 of energy Ei .
The probability of this transition depends on the polarization
of the incoming light and is determined by the dipolar operator
O. The deexcitation from the intermediate to a final state |ψf 〉
of energy Ef occurs via the emission of a photon of energy
h̄ωf and depends on the polarization of the outgoing photon, as
given by the operatorO′ (see Sec. III D). The core-hole lifetime
�i , as above in the XAS case, is often taken as a constant. The
δ function in Eq. (11) is also broadened by the finite lifetime of
the final state |ψf 〉 and experimental resolution. A Lorentzian
function is usually used in lieu of the δ function, as is the case
for the present work.

The experimental RIXS spectra also contain broad fluo-
rescence lines which mainly come from the emission from
intermediate states with finite lifetimes which are not taken into
account in the multiplet calculation. Nonlocal contributions are
also ignored in this study for the present.

C. Dipolar approximation

The incoming photon is defined by its polarization ε and
its wave vector k. After expanding the vector potential in
plane waves, and in the limit k · r � 1, the matrix elements in
Eqs. (9) and (11) can be obtained as

〈ψi |ε · peik·r|ψ0〉 ∼ 〈ψi |ε · p(1 + ik · r − · · · |ψ0〉. (12)

The dipole approximation consists in keeping only the first
term, such that the operator is given by

Ô = ε · p = ε · [r,H] ∝ ε · r. (13)

Using an expansion on the Ym
1 , we finally obtain

Ô ∝ r
(
ε1Y

1
1 + ε0Y

0
1 + ε−1Y

−1
1

)
, (14)

where the coefficients εi represent the projection of the
polarization vectors on the Ym

1 basis.
At the dipolar approximation level the selection rules for

the transition between states are the following:

�l = ±1; �s = 0; �J = 0, ±1; . . . . (15)

In the present code these rules are automatically included
through the computation of Gaunt coefficients formed by
combining the spherical harmonics of Eq. (14) and that of the
wave functions of the matrix elements in Eqs. (9) and (11). The
weights of the Gaunt coefficients are given by the polarization
projections. The polarization has therefore a discriminating
effect on the transitions.

D. Polarization effects

The approach presented in this work is well suited to the
study of polarization effects in low symmetry. The polarization
of the photon is given in the same frame of reference as the ions
forming the crystal field, and therefore any possible geometries
can be analyzed quantitatively. An example is shown in Fig. 3
for an atom in a planar environment. The four ions forming the
crystal field are expressed in the local (x,y,z) basis, and so is
the polarization of the incoming and outgoing photon. In most
RIXS experiments the polarization of the outgoing photons is
currently not recorded, and only the detection direction bout of
the beam is known. The signal is simulated by the incoherent
superposition of intensities contributed by the polarizations
orthogonal to the detection direction. A similar superposition
is done in the case of unpolarized photons, or experiments
done on powder samples.

As pointed out above, the weights of the Gaunt coefficients
are determined by the polarization. In the most general
case different polarizations will suppress or enhance other

FIG. 3. (Color online) Polarization directions with respect to
the crystal field. An incoming beam of photons of polarization εin

excites the central atom (small purple ball). The outgoing photons
that are detected along a direction bout can have any polarizations
perpendicular to it. As an example, here ε

‖
out and ε⊥

out are also parallel,
respectively perpendicular, to εin. The four ions (large red balls)
making up the planar environment of the central atom are described
in the same reference frame (x,y,z) as the polarization and beam
directions.
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transitions within the dipole approximation. Examples of the
effect of polarization directions will be given in the Secs. IV
and V.

IV. XAS SPECTRA

In this section several XAS spectra simulated with the
present code are compared with experiments. First the familiar
high-symmetry case of the SrTiO3 is reproduced. Then
the spectrum of LaTiO3 with cubic and with orthorhombic
distortions is presented. Finally, the monoclinic epidote is
discussed.

A. Cubic SrTiO3

SrTiO3 is an example of cubic perovskite with formal
charges Ti4+, Sr2+ and O2−. The XAS spectrum at the titanium
L edge will therefore involve the transitions 2p63d0 to 2p53d1.
While no multiplet structures appear in the ground state, the
Hilbert space for the core-hole state involves 60 determinants.
The multiplet levels reflect the nontrivial interplay between
the intra-atomic Coulomb interaction and spin-orbit, and the
crystal field, as is illustrated in Fig. 4(a), a raw result of the
code. An artificially small core-hole width of 0.05 has been
chosen in order to exhibit the positions of the peak more clearly.
The cubic crystal field is such that the six oxygen neighbors
are at a distance of d = 1.95 Å. In the NR limit the pure
Coulomb peak (curve 1, brown) splits in two (curve 2, purple)
upon the addition of the crystal field. In the absence of crystal
field, the spin-orbit coupling splits the peak in three (curve
3, green), as can be seen with the help of the zoom in the

FIG. 4. (Color online) XAS spectra for Ti4+ in SrTiO3 in the
2p63d0 ground-state configuration. (a) Raw results of the multiplet
code. Lines from top to bottom: Coulomb interaction in the NR
limit (1, brown); then adding crystal field (2, purple); then for
Coulomb interactions and spin-orbit coupling (3, green); and finally
for Coulomb, spin-orbit, and crystal field (4, blue). (b) Top lines
(blue), raw results of the multiplet code with all contributions and a
constant core-hole lifetime; middle line (black), experimental result
of J. Schlappa et al.;6 lower curves (red), results with rescaling of all
contributions as explained in the text. The dashed line is produced
with a constant core-hole broadening, the solid line with a broadening
increasing with increasing energy.

inset in the figure. The bottom line (curve 4, blue) is the result
after including all contributions. Figure 4(a) has been produced
from the raw results of the code without applying any rescaling.
Figure 4(b) compares the XAS intensity calculations with the
experimental measurements (middle curve, black) taken from
Schlappa et al.6 This measurement is in very good agreement
with that of other authors.3,8 The top curve (blue) is the raw
result of the code; it is the same as the bottom curve of (a), but
with a constant �i broadening of 0.2 eV, corresponding to a
realistic intrinsic core-hole lifetime value. The bottom curves
(red) are the result of rescaling with Scoul = 0.85, Sxtal = 1.3,
and Ssoc = 0.93. Keeping the core-hole broadening constant
at 0.2 eV produces the dashed line. In this particular case
the rescaling of the spin-orbit interaction has the effect of
bringing the L3 and L2 peaks slightly closer together. The
relative heights of the peaks are sensitive to the scaling of
the intra-atomic Coulomb interaction. The energy difference
between the two L3 peaks (and the two L3 peaks) depends
predominantly on the crystal-field strength and therefore
determines the rescaling of the crystal field. The agreement
with experiment can be further improved by modeling the
energy dependence of �i . The inclusion of a theoretical
approach for the core-hole lifetime is beyond the scope of
this paper, but the broadening can be empirically matched to
the experiment. The solid bottom line (red) in Fig. 4(b) was
obtained by increasing �i from 0.2 to 0.8 eV linearly with Ei

between 457 and 465 eV.
Our results compare very well with simulated spectra

produced by multiplet approaches where the crystal field is
introduced by symmetry-group parameters and strength.3

B. Cubic and orthorhombic LaTiO3

The ground-state multiplets for the Mott-Hubbard insulator
LaTiO3

45 have already been discussed in Sec. II F. The result-
ing XAS spectra are plotted in Fig. 5. The XAS spectra taken
by different authors3,5,41 present some variations, possibly
reflecting the presence of impurities in this compounds. The
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FIG. 5. (Color online) XAS spectra for Ti3+ in LaTiO3 in the
2p63d1 ground state. Top (blue) lines: raw multiplet results for cubic
crystal field (dashed), orthorhombic crystal field with polarization
along a Ti-Ti bond (solid) and along the b direction (dotted line).
Middle (black) line: experiment as reported in Haverkort et al.41

Lower (red) lines: rescaled multiplet results for the cubic crystal
field (dashed) and for the orthorhombic crystal field with polarization
along a Ti-Ti bond (solid) and along b (dotted line).
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middle curve in Fig. 5 shows the latest work.41 Both the crystal
field corresponding to the cubic (dashed line in the figure) and
to the orthorhombic structure were tested. In the latter case the
spectrum becomes sensitive to the polarization direction. Two
different polarizations were chosen for illustration purposes.
The first one (solid lines in Fig. 5) coincides with a Ti-Ti
direction for a Ti belonging to the next shell of Ti atoms.
The second polarization direction (dotted lines in the figure) is
along the crystallographic b direction of the compound. These
two polarizations were chosen for their contrasting behaviors.
These two polarizations were chosen for their contrasting
behaviors. The top curves in Fig. 5 show the raw results
of the multiplet code, the bottom those after rescaling with
Scoul = 0.7, Sxtal = 1.25, and Ssoc = 0.915. The raw result
is calculated assuming a constant core-hole broadening of
0.25 eV. The scaled results are obtained with a constant
core-hole broadening of 0.5 eV. The fits were done using
the orthorhombic crystal field. Fitting starting from the cubic
crystal field turned out to be more difficult in view of the
positioning of the middle peak; the result of the rescaling using
the parameters stated above but applied on the cubic crystal
field is also shown in the figure (bottom dashed line).

C. Monoclinic epidote

The monoclinic epidote demonstrates the applicability of
the code to low symmetry. Epidote has the generic formula
Ca2Al2(Fe,Al)(SiO4)(Si2O7)O(OH). The Fe3+ in this com-
pound is in a distorted octahedral environment formed by six
oxygen atoms. XAS spectra were taken by Henderson et al.46

on an epidote of unspecified composition for two polarizations,
one in the approximate square plane of the oxygen atoms and
the other parallel to the axial compression, named xy and z

polarization, respectively. Many epidote structural data have
been published for different Fe-to-Al ratios, but few differ
substantially to one another when used as crystal field in the
program. The latest neutron diffraction measurements47 were
chosen for the results presented here (ICSD 168464).48 The
XAS spectra for the transitions 2p63d5 to 2p53d6 are plotted
in Fig. 6. The dotted lines refer to xy polarization, the solid
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FIG. 6. (Color online) XAS spectra for Fe3+ in monoclinic
epidote in the ground-state 2p63d5. The dotted and solid lines refer to,
respectively, the xy and z polarization. Top (blue) lines, raw multiplet
code results; middle (black) lines, experimental results of Henderson
et al.;46 bottom lines, code results with rescaled values as given in the
text.

line to the z polarization. The middle curves in the figure
are the measurements of Henderson et al.,46 the top curves
the raw output of the program, and the bottom the results of
rescaling. In this case the following scaling parameters were
used: Scoul = 0.7, Sxtal = 1.8, and Ssoc = 0.915. For the bottom
curves the broadening was increased from 0.55 to 1.2 eV from
708 eV onward.

From the three cases presented, one can see that the general
aspect and relative trend exhibited by the peaks for different
polarizations are well reproduced by the raw output of the
code. For the compounds studied here a good agreement with
the experiment could be achieved with the screening of the
Coulomb interaction, a slight adjustment of the spin-orbit
coupling strength, and an enhancement of the crystal-field
strength. The rescaling of the crystal field is, in effect, an
adjustment of the radial functions, that is, their extent through
the solid. The present scaling is therefore consistent with the
modifications required to bring the point-charge model closer
to a more realistic crystal model.

V. RIXS SPECTRA

Very few high-resolution RIXS spectra have been published
to this date and even fewer relate to structures of very low
symmetry. We have not been able to find a RIXS measurements
where the effect of the low symmetry of the crystal field could
be made unquestionably clear. We therefore demonstrate the
RIXS capabilities of our code on two high-symmetry examples
for which experimental comparison is available, MnO and
NiO. Furthermore, the case of distorted MnO is addressed,
and results for a lanthanide compound are presented.

A. Cubic MnO

The Mn L-edge measurement in cubic MnO is a popular
case for testing the resolution of the RIXS instrument. The va-
lence state of Mn is Mn2+ and corresponds to the ground-state
2p63d5. The RIXS process 2p63d5 → 2p53d6 → (2p63d5)�

offers therefore insight into a nontrivial and rich multiplet
structure. In the first place we assume that MnO has the
cubic, NaCl structure, with a Mn-O nearest-neighbor distance
of 2.22 Å. A series of measurements for several different
incoming photon energies and two different polarizations was
taken by Ghiringhelli et al.38 Figures 7(a) and 7(b) reproduce
two sets of results, at 0.7 and 3.7 eV above the L3 edge (labels
C and E in Ref. 38), respectively. In this figure, the curves
measured or calculated with the incoming photon polarization
horizontal (vertical) to the scattering plane are represented by
dotted lines (solid lines). We refer the reader to Ref. 38 for
the description of the geometrical setup. The middle (black)
lines in both panels are the experimental measurements.38

The top (blue) lines are the raw results of the code, where
a constant core-hole broadening of 0.2 eV and a constant final
state broadening of 0.1 eV was taken. Although the raw spectra
look somewhat shifted compared to the experiments, many of
the features are already present. One notes in particular that
the relative intensities for the two polarizations is reproduced.
The bottom (red) curves in (a) and (b) are the spectra obtained
after applying the scaling parameters Scoul = 0.85, Sxtal = 1.4,
and Ssoc = 1.1. The rescaled curves are in excellent agreement
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FIG. 7. (Color online) Cubic MnO: RIXS spectra for Mn2+ with
the 2p63d5 ground state. Solid lines correspond to the vertical
polarization of the incoming photon, dotted lines to the horizontal
one. Top (blue) curves, raw results of the code; middle (black)
curves, experimental results Ghiringhelli et al.;38 lower (red) curves,
results of the code with rescaling as given in the text. (a) and (b) are,
respectively, taken at 0.7 and 3.7 eV above the L3 edge.

with the experiments and compare favorably with the fitting
done with the group-theory crystal-field approach in Ref. 38.
The latter fitting gave a value for the effective CXS of 1 eV. In
order to get an estimate of the strength of the crystal field in
the present approach, the ground-state multiplet calculation is
repeated with only one d electron, in the NR limit. In that case
the eg and t2g levels clearly define CXS. Without scaling the
raw result gives CXS = 0.74 eV. When applying the scaling
parameters CXS becomes 1.03 eV, an unsurprising result since
the scaling parameters are deducted from the same fit as in
Ref. 38.

A high-resolution measurement in a slightly different
geometry and taken at a different beamline was published
3 years later.49 Figure 8(a) (top red line) shows the calculated
spectra for this particular experimental setup, with the same
scaling parameters as used for Fig. 7. The calculated spectra
reproduce faithfully the features of the experimental measure-
ment between −2 and −4 eV.

As the present approach is very well suited to exploring the
impact of different polarization directions on the spectra, we
demonstrate in Figs. 8(b) (top red curves) and 9(a) some of
their effects in the cubic structure. To that purpose hypothetical
spectra for selected incoming polarizations εin and outgoing
polarizations εout are drawn.

The top (red) curves of Fig. 8(b) show the calculated spectra
of the cubic MnO for εin along a Mn-O bond; εout is either
parallel (solid line) or perpendicular (dotted line) to εin. As
expected, the intensity of the elastic peak is weaker when εin ⊥
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FIG. 8. (Color online) Calculated MnO RIXS spectra for Mn2+

with the 2p63d5 ground state; the same scaling parameters as in Fig. 7
were applied. The incoming photon has an energy 3.6 eV above the
L3 edge, and ε in is in all cases along a Mn-O bond. (a) Results
with averages around bout: top (red) line, cubic MnO with bout as in
Ref. 49; lower solid (green) line, monoclinic MnO with bout nearly
perpendicular to εin; lower dashed (red) line, scaled cubic equivalent
(see text). (b) Results with given εout: top (red) lines for cubic; lower
(green) lines for Mn1 in monoclinic MnO; solid lines, εout ‖ εin;
dotted lines, εout ⊥ ε in (only nearly perpendicular for monoclinic).

εout; also in this case the peaks at around −3.6 eV are enhanced,
whereas those at −2.2 and −4.1 are severely reduced.

Figure 9(a) shows the effect of keeping εin ⊥ εout, but with
neither directions along any symmetry axis of the structure.
The calculations for the solid (turquoise) and dashed (maroon)
lines were performed with εin chosen deliberately away from
any bonds, namely in the (0.4, 0.5, 0.77) direction, with respect
to the unit cell vectors. The outgoing polarizations εout for
those two lines are perpendicular to εin, being, respectively,
in the (0.78, −0.62,0) and (0.35, 0.690, −0.63) direction.
For comparison, the dotted (red) curve shows εin ⊥ εout with
εin along a bond. In this situation any outgoing polarizations
perpendicular to it will produce the RIXS curve shown as the
dotted line. When the incoming polarization is away from the
symmetry axis, slightly different curves are produced even
though the outgoing polarization is at 90◦ from the incoming
one.

B. Low-temperature MnO

MnO exhibits a phase transition50 from paramagnetic to
antiferromagnetic state at 118 K. A neutron scattering study50

of MnO at 10 K shows that the distortions accompanying the
phase transition transform the structure into a monoclinic one.
Having established in the last section the sensitivity of RIXS
to the different polarization directions in the cubic case, the
question arises as to what extent these deformations could be
picked up by RIXS.

Three different Mn sites were identified in the monoclinic
structure, all of them in distorted octahedral environments with
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FIG. 9. (Color online) Calculated MnO RIXS spectra for Mn2+

with the 2p63d5 ground state; the same scaling parameters as in Fig. 7
were applied. The incoming photon has an energy 0.7 eV above the
L3 edge. (a) Cubic MnO: εin ⊥ εout, with neither εin nor εout along a
bond. (b) Top (red) curve, cubic MnO with εin and bout in two arbitrary
directions, and with the respective two directions swapped; middle
curves, monoclinic MnO with various εin and bout as given in the text
(solid green, maroon dashed, turquoise dash-dash-dotted lines) and
with the directions of the first two swapped (green dotted, maroon dot-
dot-dashed lines); lower curves, differences between curves above,
as described in the text.

six oxygen atoms as neighbors. The three distorted octahedra,
although not exactly aligned, have similar orientations. In the
cubic structure, drastic changes in the RIXS curves are ob-
served for the outgoing polarization parallel and perpendicular
to that of the incoming light [Fig. 8(b), top (red) lines]. Effects
of a similar magnitude are expected to occur in the monoclinic
structure.

First the hypothetical spectra with selected incoming
polarization εin and outgoing polarization εout are considered
[Fig. 8(b)]. The lower (green) curves of Fig. 8(b) show
the calculated spectra for Mn1 only, with εin along the
Mn1-O1 bond; the solid line has been obtained for εout ‖ εin,
the dotted line for εout along the Mn1-O2 bond, which is
nearly perpendicular to the Mn1-O1 direction. The comparison
between the top (cubic) and lower (monoclinic) curves of
Fig. 8(b) shows that the distortions are causing only minute
changes to the spectra. One notes that the peak originally at
−2.2 eV is shifted to the right by 80 meV, and that at 4.1 is
shifted to the left by 50 meV, accompanied by some minor
changes in height.

The predicted spectrum for monoclinic MnO for a given
εin and a detection direction bout is plotted in Fig. 8(a) as the
lower solid (green) curve. For an optimal comparison with the
cubic case, εin has been taken along the Mn1-O1 bond, and
bout along the nearly perpendicular Mn1-O2 direction. The
curve is the result of an average over the three Mn sites. In
order to show the effect of distortions, the spectrum for the
cubic structure has been recalculated with the point-charge
distances uniformly scaled down (dashed red line), so that

the crystal field of the cubic structure matches the average
of the distorted one. In effect, the cubic Mn-O distance d

has been changed so that d−3 is the same as the average
〈r−3〉 of the distorted octahedra, so that Mn-O distance is
2.212 Å instead of 2.22 Å. The differences between the solid
(green) line and the (red) dashed line therefore exemplify
the expected differences between the cubic and distorted
structures. The same types of differences between the cubic
and monoclinic can be noted as above in the discussion of
Fig. 8(b).

A more stringent test for the distortions can be worked out
by noting that in the cubic structure, the same RIXS spectrum
is obtained by exchanging the direction of the incoming polar-
ization εin with that of the unpolarized detection direction bout

for any chosen directions. An example is plotted in Fig. 9(b)
[top (red) curve]. Two directions were picked randomly, d1 =
(0.18,−,0.40,− 0.90) and d2 = (0.56,− 0.31,− 0.77) (with
respect to the unit cell vectors). The same curve is produced
by taking εin = d1 with bout = d2 and εin = d2 with bout = d1.
This is not the case for the distorted structure, for which
slightly different curves are calculated when the directions
are swapped. Some examples are shown as the middle curves
in Fig. 9(b). The solid and dotted (green) curves are produced
with d1 along the Mn1-O1 bond, and d2 along the monoclinic
crystallographic axis a; the solid curve has εin = d1 with
bout = d2, the dotted curve εin = d2 with bout = d1. The
difference between these two curves is plotted as a solid (green)
line in the lower part of the figure. A greater difference is
observed by taking d1 along a and d2 perpendicular to the
crystallographic directions a and b, which we call c′. The
relevant curves are drawn as (maroon) dashed and dot-dot-
dashed lines, with the difference plotted as a dashed line.
The middle (turquoise) dash-dash-dotted curve was calculated
with εin along b and bout along a. The difference between this
spectrum and one with εin along c′ and bout along a is shown in
the lower part of the figure as the (turquoise) dotted line. Here
the difference is greater in the lower part of the spectra. It is
expected that those tiny differences, in this case smaller than
10% of the intensity of the curve, will be very difficult to detect
experimentally.

C. Cubic NiO

Another example where a simple crystal-field model can
be applied is at the Ni L edge of NiO.51 The high-resolution
experiment of Ghiringhelli et al.49 is reproduced as the middle
(black) curve in Fig. 10. Adopting the setup described in
Ref. 49 the calculations were carried assuming cubic symmetry
for NiO with the shortest Ni-O distance at 2.09 Å. Ni in
NiO as the valance Ni2+ and the ground state is therefore
2p63d8. The top (blue) line in Fig. 10 is the raw result of
the code. The bottom line (red) is obtained by applying the
scaling parameters Scoul = 0.7, Sxtal = 2.0, and Ssoc = 0.915.
A constant core-hole broadening of 0.1 eV and final state
broadening was applied to both calculated curves. Although
again the raw curve contains the right features with the correct
hierarchy of peaks, a fairly strong rescaling of the crystal field
strength had to be applied in that case to bring the curve in
good agreement with the experiment. The CXS value can be
obtained in a similar fashion as for MnO by placing a single
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FIG. 10. (Color online) RIXS spectra for Ni2+ with the 2p63d8

ground state in NiO. Top curve (blue), raw results of the code; middle
curve (black), experimental result of Ghiringhelli et al.;49 bottom
curve (red), result of the code after scaling (see text).

d electron in the 3d shell and performing the calculation in
the NR limit. The raw multiplet result gives an unscaled CXS
of 0.51 eV and a scaled CXS of 1.03 eV. The latter value
is in complete agreement with the group-theory approach of
Ref. 51.

D. Dy phthalocyanine

Last, we use our code to predict the crystal-field ef-
fects on the RIXS spectrum of a lanthanide compound,
the “double-decker” phthalocyanine complex,52 with for-
mula C64H32Dy1N16. The multiplet levels for this structure
have been determined by Ishikawa et al. by combining
NMR measurements and ligand-field parameters modeling,53

thereby providing a point of comparison with the ground-state
multiplets calculated by our code. In the selected structure a
trivalent Dy atom sits between two planar ligands composed
of the N, C, and H atoms. Dy3+ is in the ground state
3d104f 9.

Starting without a crystal field, the energy levels for Dy3+
can be calculated and compared with those reported in the
literature for Dy IV.54 The latter are plotted in column (c) of
Fig. 11, with their corresponding J values. The columns (a)
and (b) show the lowest levels and their multiplicity, respec-
tively, with no scaling (a) and by reducing the intra-Coulomb
interaction by Scoul = 0.85 and the spin-orbit coupling by
Ssoc = 0.95 (b). The raw result of the code is in excellent
agreement with the measurements (c) for the first levels, with
a small shift upward for the higher plotted values. The match
is further improved by the application of rescaling. Two of the
calculated levels (dashed lines in the figure) were not reported
in Ref. 54; the other levels are in one-to-one correspondence
with the measurements.

As a starting point for the crystal-field charges, the
oxidation states N−3, C+4, and H+1 are a poor choice in
view of the nonionic character of this compound. A DFT
calculation indicated that the charges are close to being a tenth
of the oxidation-state values.55 As an alternative to scaling the
charges down, one can set the crystal-field scaling parameter
Sxtal to 0.1. Column (d) shows the first 54 levels calculated
with this crystal field and the scaling parameters Scoul = 0.85
and Ssoc = 0.95. One notes that the 16-fold degenerate ground
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FIG. 11. Low-lying multiplets for Dy3+ in the 3d104f 9 ground
state. (a),(b) Calculated levels in zero crystal field with, respectively,
Scoul = Ssoc = 1 and Scoul = 0.85,Ssoc = 0.95 and associated multi-
plicity. (c) Ion spectroscopy experiments54 and associated J values.
(d) Calculated multiplets in crystal field (see text) with Scoul = 0.85
and Ssoc = 0.95.

state has split under the influence of the crystal field in a
series of low-lying, 2-fold degenerate states, all very close to
zero. Ishikawa et al. found the first level at 0.004 eV and the
last at 0.068 eV; the present code is in close agreement with,
respectively, 0.008 and 0.059 eV.

The XAS and RIXS spectra for the Dy phthalocyanine
complex calculated with these scaling parameters are plotted
in Fig. 12. The XAS in Fig. 12 shows the M5 part of
the spectra and indicates the energies at which the RIXS
spectra were calculated. The following incoming polarization
directions were used: along the crystallographic axis a (solid
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FIG. 12. (Color online) Calculated XAS and RIXS spectra for
Dy3+ with the 3d104f 9 ground state in Dy phthalocyanine. XAS:
with polarization along a (solid red line), c (dash-dotted violet line),
and C4 axis (dash-dot-dotted green line); the black dotted line is
calculated in the absence of crystal field. RIXS: solid (red) lines, εin =
bout ‖ a; dashed (turquoise), εin ‖ a, bout ‖ c; dash-dotted (violet),
εin ‖ c, bout ‖ a; dash-dot-dotted (green), εin = bout along C4 axis
of the molecule; the dotted (black) lines have been produced with
εin = bout in the absence of crystal field.
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red line), along c (dash-dotted violet line), and along the C4

axis (green dot-dot-dashed line) of the molecule. The (black)
dotted line shows the result in the absence of crystal field.
The energies B and C are, respectively, at 2.3 and 4.9 eV
from point A. The RIXS spectra were calculated for various
incoming polarizations εin and detection directions bout. The
solid (red) lines were generated for εin = bout both along the
crystallographic axis a. The dashed (turquoise) curves also had
εin along a, but bout along c, while the dash-dotted (violet) lines
took εin along c and bout along a. Setting εin = bout along the C4

axis of the molecule gives the dash-dot-dotted (green) curves.
The RIXS intensity with no crystal field (black dots) were
scaled down by a factor 8. This factor reflects the respective
degeneracy of the ground state levels with and without the
application of the crystal field. The lowest-lying states are
absorbed by the elastic peaks, but the states between 0.4 and
1 eV are visible. Another feature is the predominance of the
peak at 2.3 eV at energy B, then of the peak at 2.7 eV at energy
C, for the incoming polarization along a. Although it is likely
that the chosen scaling parameters would need some adjusting,
testing with parameters indicated that the major effect on the
RIXS spectra of Fig. 12 will appear to produce a shift of the
peaks between 2 and 4 eV along the energy axis, rather than
drastic changes in polarizations behavior.

In this section RIXS calculations on cubic MnO and NiO
were tested against measurements. The raw curves exhibited
the correct relative behavior, and very good agreement with
experiments could be achieved by applying scaling parameters.
The level of changes in the spectra caused by distortions could
be evaluated for the low-temperature MnO. Finally, the code
was applied on an f electron compound, Dy phthalocyanine.
After establishing by comparisons with measurements that
reasonable multiplets levels are obtained for the ground state,
RIXS predictions were made.

VI. CONCLUSION AND OUTLOOK

In summary, we have described an easily accessible
approach for the computation of multiplet spectra arising from
soft x-ray spectroscopies of narrow band solids. The required
input data are as follows:

(i) the element being probed (for example Ti);
(ii) the core and valence configuration of the ground state

for the shells involved in the transitions (for example, 2p63d2);
(iii) the crystal field as a list of positions and charges.

The charges can be viewed as semiempirical, with formal
charges or oxidation states as a starting guess. The central
field part of the present theory is done with a Dirac relativistic
implementation for a simple density functional and yields the

spin-orbit splitting from first principles. The electron-electron
interaction is calculated explicitly for the electrons of the open
shells. The crystal field is obtained as the resulting electrostatic
field generated by the surrounding point charges. Any crystal
field of arbitrary and unspecified symmetry can therefore be
entered without expert knowledge of group-theory notation.
Moreover, this approach allows the polarization directions
to be given in a straightforward manner with respect to the
positions of the crystal-field ions. Within the limitations of
the model and the scope of the approximations made, the
method constitutes a first-principles approach for calculating
multiplet states as well as XAS and RIXS spectra. In the
latter cases the core-hole lifetime is also required as an
input.

Our examples show that the raw, first-principles results
provide a good estimation of the multiplet structure; the correct
experimental trends are reproduced in those experiments
or part of the spectrum where the crystal field plays a
dominant role. The model of the single atom in an ionic
environment limits, however, the agreement with experiments.
This can be corrected to some extent by the introduction of
semiempirical scaling parameters that account for screening
effects, hybridization, and coupling to energy bands that are
not originally within the scope of the model. The scaling
parameter for the intra-atomic Coulomb interaction varies
typically between 0.7 and 1; a 10% adjustment of the spin-orbit
coupling has sometimes been necessary. In the examples
discussed in this paper the value of crystal field scaling
parameter has ranged from 1.0 and 2.0. These corrections to
the raw result reflect the fact that in a bonded solid, the radial
functions extend further than anticipated by the neutral atom
calculation. The crystal field correction may also include a
global adjustment to the point-charge values.

Although the use of scaling parameters leads to excellent
fits to experiments, it is necessary to build up the model and
include nonlocal contributions into the spectra. The crystal
field model for any symmetry constitutes the first step toward a
more complete approach to multiplets for core spectroscopies.

ACKNOWLEDGMENTS

We thank our present and former colleagues of the ADRESS
beamline at the Swiss Light Source, Thorsten Schmitt, Justina
Schlappa, Kejin Zhou, Claude Monney, and Luc Patthey,
for valuable inputs during our discussions. We gratefully
acknowledge D. D. Koelling for the Dirac central field radial
equation solver. We also thank C. Dallera, C. McGuiness, and
J. Nordgren for stimulating discussions and encouragement.
This work has been funded by SNF Grant No. 200021-129970.

*Present address: Laboratoire PROMES (UPR-8521), & UPVD,
Perpignan, F-66860 Perpignan.
1L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and
J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).

2G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi,
L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey,

X. Wang, and M. Grioni, Rev. Sci. Instrum. 77, 113108 (2006), and
references therein.

3M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, Y. Tokura,
Y. Fujishima, O. Strebel, M. Domke, G. Kaindl, J. van Elp, B. T.
Thole, G. A. Sawatzky, M. Sacchi, and N. Tsuda, Phys. Rev. B 44,
5419 (1991).

125133-12

http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1063/1.2372731
http://dx.doi.org/10.1103/PhysRevB.44.5419
http://dx.doi.org/10.1103/PhysRevB.44.5419


SYSTEMATIC COMPUTATION OF CRYSTAL-FIELD . . . PHYSICAL REVIEW B 85, 125133 (2012)

4T. Higuchi, T. Tsukamoto, M. Watanabe, M. M. Grush, T. A.
Callcott, R. C. Perera, D. L. Ederer, Y. Tokura, Y. Harada, Y. Tezuka,
and S. Shin, Phys. Rev. B 60, 7711 (1999).

5T. Higuchi, D. Baba, T. Takeuchi, T. Tsukamoto, Y. Taguchi,
Y. Tokura, A. Chainani, and S. Shin, Phys. Rev. B 68, 104420
(2003).
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