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Abstract
Motivated by various spin-1/2 compounds like Cs2CuCl4 or κ-(BEDT-TTF)2

Cu2(CN)3, we derive a Raman-scattering operator à la Shastry and Shraiman for
various geometries. For T = 0, the exact spectra are computed by the Lanczos
algorithm for finite-size clusters. We perform a systematic investigation as a
function of J2/J1, the exchange constant ratio: ranging from J2 = 0, the
well known square-lattice case, to J2/J1 = 1 the isotropic triangular lattice.
We discuss the polarization dependence of the spectra and show how it can be
used to detect precursors of the instabilities of the ground state against quantum
fluctuations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Highly frustrated magnetic systems are highly susceptible to quantum spin fluctuations and
instabilities towards competing ground states. The triangular Heisenberg antiferromagnet with
spin S = 1/2 constitutes a paradigm of that class of system. In that context, it is interesting that
experimental investigations of the Cs2CuCl4 [1] and κ-(BEDT-TTF)2Cu2(CN)3 [2] materials,
which can both be described as a first approximation by a triangular lattice with spatially
anisotropic exchange couplings, indicate exotic behaviours. Exotic behaviours include either
the realization of a spin-liquid ground state or a magnetically ordered phase with a magnetic
excitation dispersion strongly renormalized compared to the classical spin-wave. Indeed, recent
numerical studies based on series expansion [3] have found that frustration manifests itself
rather directly in the spin excitations of archetype models of two-dimensional frustrated spin
systems. A softening of the magnon excitations in a broad region of the reciprocal q space
is observed as a quantity, f , which parameterizes the level of frustration, is increased. Since,
within a semi-classical picture, the effect of frustration is to bring about the effect of competing
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Figure 1. Geometry of the lattice and polarization vectors. Left: the dashed lines represent
the coupling J2, and the thick lines are for the exchange coupling J1. Right: definition of the
polarization vectors by two angles φ and θ .

ground states, it is expected that the spin excitations out of a semi-classical long-range ordered
ground state are direct tell-tale indicators of the presence of frustrating interactions. In this
paper we explore the possibility that frustration can also be investigated via the two-magnon
density of states at zero wavevector measured by polarized inelastic magnetic Raman scattering.

The rest of this paper is organized as follows. In the first section we present the derivation
of the scattering operator, then we discuss its form for various polarizations. In the last part we
present the associated Raman spectra obtained by exact-diagonalization of finite-size clusters.

2. Scattering operator

We first consider the Hubbard model on the anisotropic triangular lattice:

H = HK + HU =
∑

〈i, j〉,σ
ti j

(
c†

i,σ c j,σ + h.c.
)

+ U
∑

i

ni,↑ni,↓ (1)

where ti j is the hopping from a site i to a neighbouring site j , σ is the spin degree of freedom,
and c and c† are the usual annihilation and creation operators. For the case considered here,
there are two distinct hopping integrals, t1 and t2, along the corresponding directions shown in
figure 1.

At half-filling and in the large-U limit, the system is described (to second order in t/U )
by an effective spatially anisotropic Heisenberg Hamiltonian:

Heff =
∑

〈i, j〉
Ji j Si · S j (2)

where the different exchange coupling along each direction is due to the difference in the
hopping amplitude, i.e. J1 = 4t2

1 /U , J2 = 4t2
2 /U .

Raman scattering consists of an incoming photon (of energy ωi) scattered into an outgoing
photon (of energy ωf), involving different manifolds of electronic states having zero or one
double-occupancy. These transitions depend on the polarizations (referred as Ein and Eout) of
the incoming and outgoing photons. Following the early work of Fleury and Loudon [4] and
Shastry and Shraiman [5], we derive an effective scattering spin Hamiltonian describing this
problem. The α-component of the electronic hopping current operator is

jα(q) = i
∑

r,ν=±(e1,e2,e3)

(
∂εk

∂kα

)
eiq·(r+ ν

2 )
[
c†
σ (r + ν)cσ (r) − c†

σ (r)cσ (r + ν)
]

(3)

where q = kf − ki is the momentum transfer, and εk the band energy. In what follows we take
the most general set of polarization vectors, as shown in the right panel of figure 1:

cos φ x̂ + sin φ ŷ

cos θ x̂ + sin θ ŷ.
(4)
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The Raman scattering process involves an energy transfer 
 = ωf −ωi, the momentum transfer
being set to zero. Therefore, we restrict ourselves to the assumption kf ≈ ki ≈ 0, and we have

j · Ein = i cos φ

[
−t1

(
c†

r cr+e1 − h.c.
) − t2

2

(
c†

r cr+e2 − h.c.
) + t1

2

(
c†

r cr+e3 − h.c.
)]

− i

√
3

2
sin φ

[
t2

(
c†

r cr+e2 − h.c.
) + t1

(
c†

r cr+e3 − h.c.
)]

j · Eout = i cos θ

[
−t1

(
c†

r cr+e1 − h.c.
) − t2

2

(
c†

r cr+e2 − h.c.
) + t1

2

(
c†

r cr+e3 − h.c.
)]

− i

√
3

2
sin θ

[
t2

(
c†

r cr+e2 − h.c.
) + t1

(
c†

r cr+e3 − h.c.
)]

.

(5)

The Raman scattering operator is given by the second-order formula, |i〉 and | f 〉 being
respectively the initial and final state, |μ〉 being an intermediate state:

〈 f |Mr |i〉 =
∑

μ

[ 〈 f |j · Eout|μ〉〈μ|j · Ein|i〉
εμ − εi − ωi

+ 〈 f |j · Ein|μ〉〈μ|j · Eout|i〉
εμ − εi + ωf

]
. (6)

Following the same algebra steps as in [5], and restricting |i〉 and | f 〉 to the manifold of singly
occupied states, and intermediate states |μ〉 to the manifold of one double occupancy, we use
the identity 1

4 − Si · S j = ∑
σ,σ ′

1
2 c†

i,σ c j,σ c†
j,σ ′ci,σ ′ , and obtain the scattering operator in terms

of spin operators. We note that within our approach the total scattering operator only contains
terms of the form

Oν ∝ t2
ν

U
Si · Si+eν

. (7)

From equation (6) we find that the scattering Hamiltonian prefactors which will be in front of
equation (7) depend on the polarization vectors orientation. These prefactors are proportional
to the exchange coupling J ; therefore, in its general form, the total scattering operator will
depend on both J1 and J2.

3. Polarizations

The two angles φ and θ with respect to the x-axis (see figure 1) define the polarizations involved
in the scattering process. Therefore the scattering operator depends on a projector Pν(θ, φ) that
defines the polarization set-up. The Raman operator takes the form

HLF(θ, φ) ∝
∑

i

{J1Si · Si+e1 cos θ cos φ

+ J2Si · Si+e2 [cos(θ + φ) + √
3 sin(θ + φ) + 4 sin θ sin φ]

+ J1Si · Si+e3 [cos(θ + φ) − √
3 sin(θ + φ) + 4 sin θ sin φ]} (8)

which can be written in the compact form

HLF(θ, φ) ∝
∑

i,ν

JνPν(θ, φ)Si · Si+eν
. (9)

In order to compare with the square-lattice case, we now focus on the following polarization
geometries:

HLF

(
5π

6
,−π

6

)
∝

∑

i

J1
[
Si · Si+e1 + Si · Si+e3

]

HLF

(
5π

6
,
π

3

)
∝

∑

i

J1
[
Si · Si+e1 − Si · Si+e3

]
.

(10)
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When the diagonal bond J2 is 0, the first line of equation (10) is the A1g Raman operator, while
the second line gives the B1g Raman operator, both on a square lattice. Most importantly, we
note that the scattering operators depend on the ratio J1/J2 if one takes

HLF

(
π

6
,−5π

6

)
∝

∑

i

[
J1Si · Si+e1 + J2Si · Si+e2

]

HLF

(
π

6
,

2π

3

)
∝

∑

i

[
J1Si · Si+e1 − J2Si · Si+e2

]
.

(11)

We would like to draw the attention of the reader to the fact that the standard parallel
polarization does not give a straightforward A1g-like scattering operator as is the case for the
square lattice, but a linear combination of equations (10) and (11).

4. Results

As a first step in exploring the Raman scattering in the Heisenberg S = 1/2 anisotropic
triangular lattice antiferromagnet, we perform exact-diagonalizations for the Raman operator
equation (9). While Raman scattering studies on triangular lattice compounds like cobaltites
have been carried out [6], these have focused on phonons, and there are as yet no systematic
study of polarization-dependent electronic Raman spectra. Hence, our aim at this stage is not
to obtain a quantitative description of the scattering spectra for a specific material, but rather
to identify the key qualitative features emerging in the Raman spectrum of the anisotropic
triangular lattice, possibly to motivate Raman studies and to connect with recent neutron
data [1], NMR [2] and angle-resolved photoemission [7]. Motivated by the successes of
exact-diagonalization to identify the essential qualitative features of the Raman spectrum on
the square lattice [8, 9], and in order to compare with these well-known results, we explore
in this study the behaviour of a 16-site cluster as the frustrating J2 coupling is increased from
zero. The results are summarized in figure 2. The general trend observed in these plots is that
a softening progressively develops as the system becomes more frustrated. The bottom left
panel of figure 2 shows, for J2 = 0, the well known zero A1g Raman scattering on a square
lattice, since the scattering operator commutes with the Hamiltonian [9]. As J2 increases, the
non-commuting contribution to the scattering intensity increases and the spectrum develops
more structure. For the bottom right panel, a weak intensity is observed because the scattering
operator does not commute with the Hamiltonian even for J2 = 0.

From the Hamiltonian in equation (2), it is obvious that the ground state will depend
on the ratio J2/J1, ranging from a Néel-like order on the square lattice when J2 = 0, to a
three sublattice long-range order for J2 = J1 [10–12]. These different types of order are
characterized by different magnon dispersions; therefore the Raman spectra are expected to
depend on J2/J1. In a recent paper, Zheng et al [3] showed, using series expansions, that the
magnon dispersion for the anisotropic triangular lattice Heisenberg model exhibits a roton-like
minimum. This local minimum sits at the (π, 0) point for a square lattice with one diagonal
bond and is getting softer as the J2-diagonal frustrating coupling increases. In the case of
the standard square lattice, for the B1g channel with crossed polarizations, the electromagnetic
field couples to excitations along the (π, 0) direction. We note from [3] that this softening is
a multi-magnon process that cannot be captured to lowest order in a 1/S expansion. However,
since we are using exact-diagonalization which, by its nature, treats processes for the length
scale considered exactly, we are able to detect indications of this softening. For specificity,
consider the B1g channel in the top left-hand panel of figure 2. A signature of the softening of
the magnon excitation is clearly manifest as the frustration ratio f = J2/J1 is increased from
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Figure 2. Exact diagonalizations on a 16-site cluster. Raman spectra for various values of (θ, φ)

and J2/J1. The bottom (top) left panel would correspond to A1g (B1g) polarization on the square
lattice in the case J2 = 0).

zero, with a shift of the spectral weight, and the main peak moving from ω ≈ 3J1 when J2 = 0
to ω ≈ 0.6J1 when J2 = 0.8J1.

5. Conclusions and perspectives

The results presented here show how frustration can dramatically alter the Raman spectrum
of an otherwise non-frustrated system. In particular, we observe a frustration-driven spectral
downshift, the landmark feature of frustrated systems. This shift is another indicator of the
frustration-induced softening of the magnon dispersion recently predicted by others. From a
strictly theoretical point of view, the analysis above sets the stage for a more complete approach.
Some exact-diagonalizations on larger clusters and a spin-wave approach including magnon–
magnon interactions, along the lines pursued for the square lattice [13, 14], are currently being
carried out.

Acknowledgments

Support for this work was provided by NSERC of Canada and the Canada Research Chair
Program (Tier I) (MG), the Canada Foundation for Innovation, the Ontario Innovation Trust,
and the Canadian Institute for Advanced Research (MG). MG acknowledges the University of
Canterbury for an Erskine Fellowship and thanks the Department of Physics and Astronomy at
the University of Canterbury, where part of this work was completed, for their hospitality.

5



J. Phys.: Condens. Matter 19 (2007) 145243 F Vernay et al

References

[1] Coldea R et al 2002 Phys. Rev. Lett. 88 137203
Coldea R et al 2003 Phys. Rev. B 68 134424

[2] Shimizu Y et al 2003 Phys. Rev. Lett. 91 107001
[3] Zheng W et al 2006 Phys. Rev. Lett. 96 057201
[4] Fleury P A and Loudon R 1968 Phys. Rev. 166 514
[5] Shastry B S and Shraiman B I 1991 Int. J. Mod. Phys. B 5 365

Shastry B S and Shraiman B I 1990 Phys. Rev. Lett. 65 1068
[6] Lemmens P et al 2006 Phys. Rev. Lett. 96 167204
[7] Qian D et al 2006 Phys. Rev. Lett. 96 216405
[8] Sandvik A W, Capponi S, Poilblanc D and Dagotto E 1998 Phys. Rev. B 57 8478
[9] Freitas P J and Singh R R P 2000 Phys. Rev. B 62 5525

[10] Weihong Z, McKenzie R H and Singh R R P 1999 Phys. Rev. B 59 14367
[11] Chung C H, Marston J B and McKenzie R H 2001 J. Phys.: Condens. Matter 13 5159
[12] Bernu B, Lhuillier C and Pierre L 1994 Phys. Rev. B 50 10048
[13] Canali C M and Girvin S M 1992 Phys. Rev. B 45 7127
[14] Chubukov A V and Frenkel D M 1995 Phys. Rev. B 52 9760

6

http://dx.doi.org/10.1103/PhysRevLett.88.137203
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.96.057201
http://dx.doi.org/10.1103/PhysRev.166.514
http://dx.doi.org/10.1142/S0217979291000237
http://dx.doi.org/10.1103/PhysRevLett.65.1068
http://dx.doi.org/10.1103/PhysRevLett.96.167204
http://dx.doi.org/10.1103/PhysRevLett.96.216405
http://dx.doi.org/10.1103/PhysRevB.57.8478
http://dx.doi.org/10.1103/PhysRevB.62.5525
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1088/0953-8984/13/22/311
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.45.7127
http://dx.doi.org/10.1103/PhysRevB.52.9760

