Optimizing correctly-rounded reciprocal square roots
for embedded VLIW cores
Claude-Pierre Jeannerod‡ 1, 2 and Guillaume Revy2, 1
1INRIA Grenoble - Rhône-Alpes (Arénaire project-team, LIP, ENS Lyon) 2Université de Lyon

1. Introduction

\begin{itemize}
 \item Context & Motivation
 \begin{itemize}
 \item Implementation of an efficient software support for IEEE 754 floating-point arithmetic on integer processors
 \item set of correctly-rounded mathematical operators, handling of subnormal numbers, and handling of special inputs
 \item development of the FLIP library \cite{1} for the binary32 floating-point format
 \end{itemize}
 \item Purpose of our work
 \begin{itemize}
 \item Software implementation of correctly-rounded reciprocal square root \((x^{-1/2})\) → 20 cycles
 \item frequently-used in digital signal processing \cite{2, 3, 4}
 \item correctly-rounded implementation recommended by the latest revision of the IEEE 754 standard \cite{5, 6, 7}
 \item Optimized for the binary32 format and the ST231 core
 \item Correctly-rounded RoundToEven (rounding to nearest)
 \item Extension of our innovative polynomial evaluation-based method introduced in \cite{4} for square root
 \item Efficiency achieved by exploiting at best the instruction-level parallelism (ILP) of the ST231
 \end{itemize}
 \item Example of application
 \begin{itemize}
 \item Typical use of reciprocal square root = 3D vector normalization
 \[
 \mathbf{v} = \mathbf{v}/\|\mathbf{v}\|
 \]
 \item with \(\mathbf{v} = (x, y, z)\)
 \item Without reciprocal square root:
 \[
 1 \rightarrow \text{sqrt}(23 \text{ cycles}) \rightarrow 3 \text{ div}(3 \times 32 \text{ cycles}) = 119 \text{ cycles}
 \]
 \item With reciprocal square root:
 \[
 1 \rightarrow \text{r sqrt}(29 \text{ cycles}) \rightarrow 3 \text{ mul}(3 \times 21 \text{ cycles}) = 92 \text{ cycles}
 \]
 \item Latency reduction by over 21 \%
 \end{itemize}
\end{itemize}

2. ST231 architecture and compiler

\begin{itemize}
 \item ST231, a 4-issue VLIW 32-bit embedded integer architecture
 \begin{itemize}
 \item 4 parallel ALUs / 2 parallel pipelines \(32 \times 32 \rightarrow 32\)-bit multipliers
 \item 1 leading zero counter
 \item Predicate execution --- select instruction to remove branch penalty
 \item 64 general purpose 32-bit registers / 8 1-bit branch (condition) registers
 \end{itemize}
 \item ST231 Compiler
 \begin{itemize}
 \item Open64 compiler technology
 \item Instruction level parallelism extractor and scheduler
 \item Select-based d-conversion --- straight-line assembly code
 \item Sequences of select instructions instead of costly control flow
 \item Linear Assembler Optimizer (LAO): generates schedule very close to the optimal
 \end{itemize}
\end{itemize}

3. Some properties of reciprocal square root

\begin{itemize}
 \item Handling of special operands \(x \in (-\infty, 0, \infty, \pm \infty, \pm \text{NaN})\)
 \begin{itemize}
 \item Filter out special operands using the standard binary interchange encoding format
 \item Compute special results required by \cite{2} in parallel with the generic case
 \end{itemize}
 \item Positive finite operand \(x\) (precision \(p \geq 2\))
 \begin{itemize}
 \item Input: binary32-floating-point number \(x = m \cdot 2^e\), with \(m \cdot 2^{-p} \leq x < 2^p\)
 \item \(e' \in \mathbb{N}\) with \(|e' - p + 1| < \ell\) and \(m' = m \cdot 2^{-p} \cdots m_{p-1}\)
 \item Output: \(RN(x^{-1/2}) = \text{correct rounding-to-nearest of } x^{-1/2}\)
 \item \(\varepsilon = 2^p\) and \(RN(x^{-1/2}) = RN(x)^{-1/2}\), and \(\ell \in \{0, 2\}\) and \(\varepsilon \leq d \leq \varepsilon\)
 \item Two useful properties
 \begin{itemize}
 \item \(x^{-1/2}\) falls in the range of normal floating-point numbers
 \item \(x^{-1/2}\) cannot be halfway between two consecutive floating-point numbers
 \end{itemize}
 \end{itemize}
\end{itemize}

4. How to approximate the exact value \(\ell\)?

\begin{itemize}
 \item Existing method in FLIP 0.3: multiplicative method
 \begin{itemize}
 \item Initial approximation: degree-3 univariate polynomial
 \item Refinement by Goldschmidt’s iteration \cite{8}
 \end{itemize}
 \item Our approach: one-sided truncated approximation \cite{4}
 \begin{itemize}
 \item Approximation of \(\ell\) from above by \(v = 2^{-2p} - \ell\) \(\ell < 2^{-2p} - 1\)
 \item Computation of \(u\) = truncation of \(v\) after \(p\) fraction bits
 \item Approximation of \(\ell\) = result of the evaluation of a single bivariate polynomial
 \(P(u, \ell) = 2^{-p} + v \cdot \ell\)
 \(v \in \mathbb{Q}\) a degree-9 truncated Remez approximant computed with Sollya
 \item How to evaluate \(P(u, \ell)\) efficiently?
 \begin{itemize}
 \item Horner’s rule: 38 cycles, no ILP exposure
 \end{itemize}
 \end{itemize}
 \item Efficient and certified parenthesisation automatically generated using CGPE \cite{5}
 \begin{itemize}
 \item Reduction of evaluation latency
 \[
 \rightarrow 13 \text{ cycles on unbounded parallelism, 14 cycles on ST231}
 \]
 \item Evaluation error checked with Gappa
 \[
 \rightarrow \text{ensure correct rounding}
 \]
 \item How to deduce \(RN(\ell)\) from the approximation \(\ell\)?
 \begin{itemize}
 \item Deduce \(RN(\ell)\): decide whether \(u > \ell\), which is equivalent to
 \[
 u^{-1} > 2^{-2p} - 1 \quad \text{with} \quad 2^{-2p} > 1
 \]
 \[
 u, \ell \quad \text{and} \quad 2^{-2p} \quad \text{exactly representable with 32 bits}
 \]
 \item Computing the first 64 bits of the exact product are enough
 \item Test done on the first 32 bits of the exact product
 \end{itemize}
 \item CGPE generation flowchart
 \begin{itemize}
 \item Problems
 \begin{itemize}
 \item evaluate \(P(u, \ell)\)
 \item \[
 \sum_{i=0}^{3} a_i \ell^i
 \]
 \item evaluation error no larger than \(u\)
 \item exploit at best the ILP of the ST231
 \end{itemize}
 \item Gappa certificate
 \item ST231 features
 \item \(P(u, \ell)\) evaluation code
 \end{itemize}
\end{itemize}

6. Validation and performances

\begin{itemize}
 \item Exhaustive comparison with Glibc and MPFR
 \item Performances on ST231
 \begin{itemize}
 \item 32-bit VLIW cores (with Hardware Floating-Point Unit)
 \end{itemize}
 \item Interest of the specialization of the reciprocal square root operator
 \begin{itemize}
 \item Code sequence used for computing \(x^{-1/2}\)
 \item Number of floating-point operations
 \item Control flow instructions
 \item latency
 \item Speedup
 \end{itemize}
 \item Some references
 \begin{itemize}
 \end{itemize}
\end{itemize}