A new binary floating-point division algorithm
and its implementation in software

Guillaume Revy
joint work with C.-P. Jeannerod, H. Knochel, C. Monat and G. Villard

Arénaire Inria Rhone-Alpes - project team
Laboratoire de I'lnformatique du Parallélisme - ENS Lyon

Groupe de travail Arénaire (LIP - ENS Lyon)
Lyon - November 21, 2008

= @ lmll- BIINRIA lip ®)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 1/34

Context and objectives

Context

v

FLIP library development
software implementation of binary floating-point division
— targets a VLIW integer processor of the ST200 family

v

> precision p, register size k, extremal exponents (min, €max)
— 2 < p < emaxand emin =1 — emax

v

description of the algorithm in terms of the parameters (k,p,emax)

v

implementation for the binary32 format = (k,p,emax) = (32,24,127)

» no support of subnormal numbers
— input/output: £0, o0, gNaN, sNaN or normal binary floating-point number

Objectives

» faster software implementation
» correct rounding-to-nearest-even (RN,)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

2/34

Outline of the talk

Properties and division algorithm

Sulfficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 3/34

Properties and division algorithm

Outline of the talk

Properties and division algorithm

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 4/34

Properties and division algorithm

Floating-point data encoding

Definition
Let = be a floating-point datum. Since subnormal numbers are not supported,
x is:

» either a special datum: 0, oo, sNaN or gNaN,

» or a normal binary floating-point number

z= (1) -m, - 2%,

with s, € {0,1}, my = Loma,1 ... Mo p—1 € [1,2) and ez € {emin, - - - , €max }-

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 5/34

Properties and division algorithm

Floating-point data encoding

Definition
Let = be a floating-point datum. Since subnormal numbers are not supported,
x is:

» either a special datum: +0, +o00, sNaN or gNaN,

» or a normal binary floating-point number

z=(=1)" -mg - 27,

with s, € {0,1}, my = Loma,1 ... Mo p—1 € [1,2) and ez € {emin, - - - , €max }-

Binary interchange encoding
Let X be the k-bit unsigned integer encoding of z: X = Zk ' X, .20

|sI Ey = €z + €max My —1=0mg1...Mgp1 |

1 bit k —p bits p—1 bits
= B, = Zz B itp—1* Zi and X; = My, p—1—i fori = O,. ..,D— 1.

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 5/34

IEEE 754 specification

Let z, y be two binary floating-point data:

z/y = (=17 -|z|/]yl,

with s, = sz XOR sy.

Properties and division algorithm

Guillaume Revy

A new binary floating-point division algorithm and its implementation in software

lyl
l=1/1y] 10 normal ~+o0 NaN
+0 gNaN +0 +0 aNaN
o] normal | oo [z[/ly] +0 aNaN
400 400 400 gNaN gNaN
NaN gNaN gNaN gNaN gNaN
Special values for lz|/lyl -

6/34

IEEE 754 specification

Let z, y be two binary floating-point data:

with s, = sz XOR sy.

Properties and division algorithm

z/y = (=17 -|z|/]yl,

ly]

ll/1vl +0 normal 400 NaN

+0 gNaN +0 +0 gNaN

|| normal 400 RN, (|z]/|y]) +0 gNaN
x

+o00 +o0 +o0 gNaN gNaN

NaN gNaN gNaN gNaN gNaN

Special values for RN, (|z|/|y]) -
= since RN, (—r) = —RN,(r), for non special inputs:

Guillaume Revy

RN (z/y) = (=1)"" - RNy (|z/y]).

A new binary floating-point division algorithm and its implementation in software

6/34

Properties and division algorithm

Efficient special input handling

Let X and Y the unsigned integers encoding |z| and |y|. How to detect if |x|
or |y| is a special input ?

Solution 1 X == 0or X > 2k~! —2r~!

’ Value or range of integer X ‘ Floating-point datum =

0 +0
[2p—1 2k—1 _2p—1) positive normal number
zkfl _ zpfl +oo
e A A 0 sNaN
[2k—1 72p—272k—1) qNaN

Floating-point data encoded by X.

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 7/34

Properties and division algorithm

Efficient special input handling

Let X and Y the unsigned integers encoding |z| and |y|. How to detect if |x|
or |y| is a special input ?

Solution 1 X == 0or X > 2k~! —2r~!
Solution 2 integer addition modulo 2* / 2’s complement representation

X keee-} 3 R LR T PP F----1
Q

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

7/34

Properties and division algorithm

Efficient special input handling

Let X and Y the unsigned integers encoding |z| and |y|. How to detect if |x|
or |y| is a special input ?

Solution 1 X == 0or X > 2k~! —2r~!

Solution 2 integer addition modulo 2* / 2’s complement representation

X k===-} ‘ e e F----1
Q ~ &
B b
/\/
n\;
X-1 F====} ‘ ek LT LT F----1
N N
// /\/ -/\
3 D
/\/

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

7/34

Properties and division algorithm

Efficient special input handling

Let X and Y the unsigned integers encoding |z| and |y|. How to detect if |x|
or |y| is a special input ?

Solution 1 X == 0or X > 2k~! —2r~!

Solution 2 integer addition modulo 2* / 2’s complement representation

X pmees) : T .
N . >
B 3
/\/
ﬁ\;
X1 Fmmn-} : R T L EE T .
N N
/\/ /\/ -/\
3§ 3 D

= ifmax(X — 1,¥ — 1) >2k"1 —or=1

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

7/34

Efficient special input handling

Properties and division algorithm

jal/Iu] v
+0 normal 400 NaN
+0 gNaN +0 +0 gNaN
|| normal +o00 RN, (|z|/|y]) +0 gNaN
400 400 +00 gNaN gNaN
NaN gNaN gNaN gNaN gNaN

Let X and Y the unsigned integers encoding |z| and |y|.

Special values for RN, (|z|/|y]|)-

= ifmax(X — 1, — 1) > 21 —2p=1

> if (X ==Y ORmax(X,Y) > 2k~! —2P~1) — gNaN

> if (X <271 — 2P~ AND Y # 0) — £0

> else — +oo

Guillaume Revy

A new binary floating-point division algorithm and its implementation in software

8/34

Properties and division algorithm

General division algorithm

Let z, y be two positive binary floating-point numbers. Then
zfy = my /my x 277,
that is, assuming ¢ = [m. > m,]

oy = (2o iy - 2) x 2 —v4e

with ¢ = 2mg/my - 27¢) = lolily .. Lplpry...andd =e; —ey — 1 +c.

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

9/34

Properties and division algorithm

General division algorithm

Let z, y be two positive binary floating-point numbers. Then
& fy = ma fmy x 2775,
that is, assuming ¢ = [m. > m,]

ZL'/y = (zmz/7ny . 2*[') ~ 261'751;*14@’

with ¢ = 2mg/my - 27¢) = lolily .. Lplpry...andd =e; —ey — 1 +c.

Property 1
Ifm, > m, thent € 1,2 —2'"P] else £ € (1,2 —2'7P).

zfy=Lx2% = RN, (z/y) = RN,(¢) x 2%, with RN, (¢) € [1,2 —2'7).

Remark: the computation of the result exponent d is trivial.

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

9/34

Properties and division algorithm

Underflow / Overflow detection

Since RN, (¢) € [1,2 — 2'7?] = no result exponent update is required

» Overflow: if d > emax + 1 — 400
» Underflow: if d < emn — 1 — +0

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

10/34

Properties and division algorithm

Underflow / Overflow detection

Since RN, (¢) € [1,2 — 2'7?] = no result exponent update is required

» Overflow: if d > emax + 1 — 400
» Underflow: if d < emn — 1 — +0

= exception: if (1 —277) . 2%min < g /y < 2°min
> “as if subnormals were supported” — RN, (z/y) = 2¢min

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

10/34

Properties and division algorithm

Underflow / Overflow detection

Since RN, (¢) € [1,2 — 2'7?] = no result exponent update is required

» Overflow: if d > emax + 1 — 400
» Underflow: if d < emn — 1 — +0

= exception: if (1 —27P) . 2%mn < g /y < 2°min
> “as if subnormals were supported” — RN, (z/y) = 2¢min

Property 2
One has (1 —27P) . 2¢min < g /y < 2°mn jf and only if d = emn — 1 and
Mg =2—2"P andm, = 1.

= early detection

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

10/34

Properties and division algorithm

How to compute a correctly rounded significand ?

M.D. Ercegovac & T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ¢ from above, such that
(0+2777Y) —of <2777,

with v = 01.v10; . . . Vi —».

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 11/34

Properties and division algorithm

How to compute a correctly rounded significand ?

M.D. Ercegovac & T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ¢ from above, such that
(e+277") v <2777,
with v = 01.v10; . . . Vi —».
= w = v truncated after p bits

w = 0l.vjvz ...v,00...00 and 2P <l —w< 2P,

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

11/34

Properties and division algorithm

How to compute a correctly rounded significand ?
M.D. Ercegovac & T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ¢ from above, such that
(e+277") v <2777,
with v = 01.v10; . . . Vi —».
= w = v truncated after p bits

w = 0l.vjvz ...v,00...00 and 2P <l —w< 2P,

Property 3

The value ¢ = 2m,/m, - 2~° cannot be halfway between two normal binary
floating-point numbers.

w w

THT T

= implementation of the test w > ¢: w x my > 2m, - 27°

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

11/34

Sufficient conditions to ensure correct rounding

Outline of the talk

Sulfficient conditions to ensure correct rounding

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 12/34

Sufficient conditions to ensure correct rounding

General principle

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that |(¢ +2777") —v| < 27271,

= (42777 —exactresult of F' : (s,t) — 277~ 4 5/(1 + t) at the point
(s",t") = 2mg - 27 my — 1),

with s* € S =[1,2 —2""P]U[2,4 —2*Pland t* € T = [0,1 — 2! 7).

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 13/34

Sufficient conditions to ensure correct rounding

General principle

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that |(¢ +2777") —v| < 27271,

= (42777 —exactresult of F' : (s,t) — 277~ 4 5/(1 + t) at the point
(s",t") = 2mg - 27 my — 1),

with s* € S =[1,2 —2""P]U[2,4 —2*Pland t* € T = [0,1 — 2! 7).

= approximation of F' by a suitable bivariate polynomial P over S x 7:

P(s,t) =2"7""+5-alt).

> evaluation at run-time: smallest degree for polynomial a

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

13/34

Sufficient conditions to ensure correct rounding

General principle

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that |(¢ +2777") —v| < 27271,

= (42777 —exactresult of F' : (s,t) — 277~ 4 5/(1 + t) at the point
(s",t7) = 2my - 27, my — 1),

with s* € S =[1,2 —2""P]U[2,4 —2*Pland t* € T = [0,1 — 2! 7).

= approximation of F' by a suitable bivariate polynomial P over S x 7:

P(s,t) =2"7""+5-alt).
> evaluation at run-time: smallest degree for polynomial a

= evaluate P with an accurately enough evaluation program P
> v =P(s*t*)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

13/34

Sufficient conditions to ensure correct rounding

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.
Let a(a) and p(P) be the approximation and rounding errors:
aa) = max [1/(1+t) — a(t)] and p(P)= max |P(s,t) —P(s,t)l|.

(s,t)ESXT

We can check that
[(£+2777") — o] < (4= 2"")a(a) + p(P)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 14/34

Sufficient conditions to ensure correct rounding

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let a(a) and p(P) be the approximation and rounding errors:

afa) =max|1/(1+0)—a()] and p(P)= max [P(s.0)=Pls.1)|

We can check that
[(£+2777") — o] < (4= 2"")a(a) + p(P)

Property 4
If (4 —2>"P)a(a) + p(P) < 277 " then |(£ +27P71) —v] < 27771

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 14/34

Sufficient conditions to ensure correct rounding

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let a(a) and p(P) be the approximation and rounding errors:
ala) =max|l/(1+1) —a(t)] and p(P)= max |P(s,t) = P(s,0)]
We can check that

(€+27771) — o] < (4 =27"")a(a) + p(P)

Property 4
If (4 —2>"P)a(a) + p(P) < 277 " then |(£ +27P71) —v] < 27771

Since p(P) > 0, the approximation error «(a) must satisfy
(4-2"Paa) <27 ie. ala) <2774 -277).
Finally, the rounding error p(P) must satisfy
p(P) <277 ' — (4 —2"P)a(a).

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 14/34

Sufficient conditions to ensure correct rounding

Example for the binary32 implementation

Example
» polynomial degree § = 10
» truncated Remez’ polynomial / 32-bit coefficients
> afa) <6 =3- 0=29 o, 9—27.41

> p(P) <mo=2"% — (4270 = 2729 _ checked with Gappa ?

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

15/34

Sufficient conditions to ensure correct rounding

Example for the binary32 implementation

Example
» polynomial degree § = 10

» truncated Remez’ polynomial / 32-bit coefficients
> afa) <6 =3- 929 oy =274

> p(P) <mo=2"% — (4270 = 2729 _ checked with Gappa ?

= the condition is not satisfied, particularly when m, < m,
s* =3.935581684112548828125 and t* = 0.97490441799163818359375

N /)(7)) _ 2—2649988

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 15/34

Sufficient conditions to ensure correct rounding

Subdomain-based error conditions

= splitting 7 into n subintervals: 7 = |/, 7

= check that, for each subinterval 7(?,

(4-27) - al (@) + pV (P) <277,

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

16/34

Sufficient conditions to ensure correct rounding

Implementation steps

1. determine minimal degree ¢ for polynomial a
2. compute a polynomial a that satisfies a(a) < 277! /(4 — 2°7P)
3. find in an automatic way an efficient evaluation code P

4. validate automatically the resulting evaluation program P

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 17/34

Generation and validation of efficient evaluation codes

Outline of the talk

Generation and validation of efficient evaluation codes

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 18/34

Generation and validation of efficient evaluation codes

Description of the problem

Goal
Produce/validate automatically an efficient evaluation program P.

» target features:

— 4 issues and at most 2 mul./cycle
— latencies: addition = 1 cycle / multiplication = 3 cycles

» Horner’s scheme: (3+ 1) x 11 = 44 cycles

— sequential scheme
— no ILP exposure

= efficient = reduction of the evaluation latency / nb. of multiplications
= express more ILP

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

19/34

Generation and validation of efficient evaluation codes

Description of the problem

Data implementation
» fixed-point evaluation program: V' = div_eval(S, T), with
s*=8.27" t'=T7-27" and v=V.27"

with S and T' computed from inputs X and Y respectively.

» implementation of polynomial coefficients in absolute value
10 ,
a(t) = ait’ with a; = (=1)-A;- 272 € (=1, 1).
=0
= the sign is not stored — appropriate choice of arithmetic operators

» implementation using only positive intermediate variables

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

20/34

Generation and validation of efficient evaluation codes

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story & PT.P. Tang, The computation of transcendental functions on I1A-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

» Requirement / Assumption:
— operator cost: mul. = 3 cycles / add. = 1 cycle
— delay between S and T

— unbounded parallelism

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 21/34

Generation and validation of efficient evaluation codes

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story & PT.P. Tang, The computation of transcendental functions on I1A-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

» Requirement / Assumption:
— operator cost: mul. = 3 cycles / add. = 1 cycle
— delay between S and T

— unbounded parallelism

» Two substeps:

1. determine a target latency

2. generate automatically a set of evaluation trees, with height < =

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

21/34

Generation and validation of efficient evaluation codes

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story & PT.P. Tang, The computation of transcendental functions on I1A-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

» Requirement / Assumption:
— operator cost: mul. = 3 cycles / add. = 1 cycle
— delay between S and T

— unbounded parallelism

» Two substeps:

1. determine a target latency

2. generate automatically a set of evaluation trees, with height < =

= number of evaluation trees = extremely large — several filters

= if no tree satisfies T then increase T and restart

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

21/34

Generation and validation of efficient evaluation codes

Example for the binary32 implementation

O multiplication (3 cycles)

|:| addition (1 cycle)

14 cycles

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 22/34

Generation and validation of efficient evaluation codes

Arithmetic operator choice

Second step: handle coefficient signs through an appropriate arithmetic
operator choice

» label evaluation tree by appropriate arithmetic operator: + or —
» polynomial coefficients are implemented in absolute value

» for example, ap > 0and a; < 0

= ap — |ai|t instead of ag + ait

» ensure that all intermediate values have constant sign

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

23/34

Generation and validation of efficient evaluation codes

Arithmetic operator choice

Second step: handle coefficient signs through an appropriate arithmetic
operator choice

» label evaluation tree by appropriate arithmetic operator: + or —
» polynomial coefficients are implemented in absolute value

» for example, ap > 0and a; < 0

= ap — |ai|t instead of ag + ait

» ensure that all intermediate values have constant sign

= if the sign of an intermediate value changes when the input varies then
the evaluation tree is rejected

= implementation with MPFI

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

23/34

Generation and validation of efficient evaluation codes

Example for the binary32 implementation

O multiplication (3 cycles) D subtraction

(1 cycle)
|:| addition (1 cycle)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

24/34

Generation and validation of efficient evaluation codes

Scheduling verification

J. Harrison, T. Kubaska, S. Story & PT.P. Tang, The computation of transcendental functions on I1A-64 architecture, 1999.

Third step: check the practical scheduling

» schedule the evaluation tree on a simplified model of a real target
architecture (operator costs / nb. issues / constraints on operators)

» check if no increase of latency

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

25/34

Generation and validation of efficient evaluation codes

Scheduling verification

J. Harrison, T. Kubaska, S. Story & PT.P. Tang, The computation of transcendental functions on I1A-64 architecture, 1999.

Third step: check the practical scheduling

» schedule the evaluation tree on a simplified model of a real target
architecture (operator costs / nb. issues / constraints on operators)

» check if no increase of latency

= if practical latency > theoretical latency then the evaluation tree is
rejected

= implementation using a naive list scheduling algorithm

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

25/34

Generation and validation of efficient evaluation codes

Example for the binary32 implementation

[[[lssue1 Issue2 Issue3 lIssue 4

Cycle 0 o 4

Cycle 1 76 3

Cycle 2 i1 20

Cycle 3 r rs 2
Cycle 4 r T4 19
CyC'e 5 r2 ris 1
Cycle 6 ry 10 3
Cycle 7 r3 rg a4
Cycle 8 Ti6

Cycle 9 r7

Cycle 10 r9 s

Cycle 11

Cycle 12 rig

Cycle 13 \%

Feasible scheduling on ST231.

= 3issues are enough

Guillaume Revy A new binary floating-point division algorithm and its implementation in software

26/34

Generation and validation of efficient evaluation codes

Evaluation program validation strategy

Objective
Find a splitting of 7 into n subinterval(s) 7”, and check that

(4 -2y o)+ p(P) <27 fori e {1,...,n}.

» implementation of the splitting by dichotomy

» for each 7®

1. compute an approximation error bound «(?) with Sollya
2. determine an evaluation error bound for p(*)
3. check this bound with Gappa

= if this bound is not satisfied, 7(*) is split up into 2 subintervals

» launched on the LIP “grid”
» =~ 5 hours /36127 subintervals found

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 27/34

Generation and validation of efficient evaluation codes

Evaluation program validation strategy

* Does the condition

(4 -2 - a(a) + p(P) <277

holdfori e {1,...,n} ?

l Depth Subintervals H a()(a) < o) (P) < [* ‘
l 1 hi=2"3,1-27%5] H 0, m 2724 g 22699 [o ‘
) bi=027%,05-27% 0y 2774y 27269 | yes

lo=[0.51-27%] 6y &~ 2774 g 2209 no
i =27%,05—27%] 0, 2774y 27269 | yes
; li2=[0.5,0.75 — 272 0 =277 g 2279 | yes
I;, 19300 = [0.921875, 0.92578113079071044921875] 03 ~ 272y x272090 | yes
1j, 19533 = [0.97490406036376953125, 0.97490441799163818359375] Oy 22779y a272077 | yes
Splitting steps when m, < m,,.
Guillaume Revy A new binary floating-point division algorithm and its implementation in software 28/34

Experimental results

Outline of the talk

Experimental results

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 29/34

Experimental results

Validation and performance evaluation

» Validation of the complete code:

— the Extremal Rounding Tests Set (D.W. Matula)
— TestFloat package

— exhaustive tests on mantissa (with fixed result exponent)

» Performances evaluation on ST231 architecture

— VLIW integer processor of ST200 family

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 30/34

Experimental results

Performances on ST231

Nb. of instructions Latency IPC Code size
87 27 cycles | 87/27 ~3.22 | 424 bytes

» if-conversion mechanism: fully straight-line assembly (branch-free)

v

high IPC value: confirms the parallel nature of our approach

v

87 instructions: latency > 1 (slct/return) + [85 instr. /4 issues] = 23

v

speed-up by a factor of ~ 1.78 compared to the previous implementation
(48 cycles)

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 31/34

Current work and conclusion

Outline of the talk

Current work and conclusion

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 32/34

Current work and conclusion

Implementation of subnormal numbers support

» the exact result 2 /y can be halfway between two consecutive subnormal
binary floating-point numbers

— the implementation of rounding test (w > ¢) is more complicated

» no need to detect underflow a priori
— directly detect through the rounding algorithm

» same principle / same polynomial evaluation

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 33/34

Current work and conclusion

Future work and conclusion

» implementation of other rounding modes, with and without subnormal
numbers support

» algorithmics of exception handling (inexact, division by zero,...)

— full IEEE 754-2008 compliance
— what is the overhead ?

» development of a binary floating-point division generator (already exists
for square root)

— automatic generation of division in other formats

— validation of our approach

» acceleration of the validation of the resulting evaluation code

Guillaume Revy A new binary floating-point division algorithm and its implementation in software 34/34

	
	Properties and division algorithm
	Sufficient conditions to ensure correct rounding
	Generation and validation of efficient evaluation codes
	Experimental results
	Current work and conclusion

