
Improving the Static Analysis of Loops
by Dynamic Partitioning Techniques

Matthieu Martel
CEA - Recherche Technologique

LIST-DTSI-SLA
CEA F91191 Gif-Sur-Yvette Cedex, France

Matthieu.Martel@cea.fr

Abstract

Many static analyses aim at assigning to each control
point of a program an invariant property that characterizes
any state of a trace corresponding to this point. The choice
of the set of control points determines the states of an exe-
cution trace for which a common property must be found.
In this article, we focus on sufficient conditions to substi-
tute one control flow graph for another during an analysis.
Next, we introduce a dynamic partitioning algorithm that
improves the precision of the calculated invariants by decid-
ing dynamically how to map the states of the traces to the
control points, depending on the properties resulting from
the first steps of the analysis. In particular, this algorithm
enables the loops to be unfolded only if this improves the
precision of the final invariants. Its correctness stems from
the fact that it uses legal graph substitutions.

1 Introduction

Many static analyses aim at assigning to each control
point of a program an invariant property that characterizes
any state of a trace corresponding to the control point [6].
An analysis relying on a static partitioning strategy takes as
input the set of control points of the program to be ana-
lyzed and calculates the related invariant properties, without
modifying . This approach leads to unnecessary approx-
imations in the results of many static analyses because the
set of control points freezes a priori the states of an execu-
tion trace that must be merged during the analysis, that is,
the states for which a common property must be found. In
contrast, a static analysis based on a dynamic partitioning
strategy attempts to improve the precision of the properties
by deciding dynamically how to map the states of the traces
to the control points.
This article introduces rst a formal framework to prove

the correctness of dynamic partitioning based static anal-
yses and, secondly, proposes a dynamic partitioning algo-
rithm independent of the analysis. The algorithm starts
the analysis using a very precise control ow graph, e.g.
in which any loop is unfolded times, and coarsens it at
some stages, depending on the computed abstract values. In
the graph, the instances of the statements are identied by
timestamps [8, 14]. The graph is then coarsened by con-
sistently merging timestamps. As a result, this algorithm
unfolds the loops just enough to nd a precise property but
nomore (no unfolding is done that would not lead to a better
analysis result).

Dynamic partitioning techniques have been proposed
that enable the calls to a function to be analyzed separately,
depending on the context, whenevermore precise properties
may be obtained [1, 2]. These techniques also enable neigh-
boring abstract contexts to be merged, in order to keep the
analysis time acceptable. Dynamic partitioning techniques
for declarative synchronous languages have also been pro-
posed [12]. They improve the precision of an analysis by
distinguishing some execution branches corresponding to
different values of boolean variables. Related techniques
have also been proposed by Jeannet and Halbwachs [11]
who propose a method to rene the set of control points for
which a common property is calculated. This method uses
the notion of reduced cardinal power of two domains [6].

Our dynamic partitioning algorithm was rst designed
to unfold the loops occurring in imperative programs, when
this may improve the precision of the resulting invariants. It
may also improve the analysis of functions in some cases.
This work was initially motivated by the design of a static
analyzer for numerical codes written in assembler, in order
to validate embedded critical applications. In static anal-
yses based on complex domains such as those for numer-
ical precision [9, 13], the operations between abstract val-
ues consume much time and memory, and new algorithms
must be dened to cope with industrial-size problems. In

particular, the analyses for numerical precision require that
most loops be unfolded a nite but a priori unknown num-
ber of times to prove the stability of the computations (i.e.
that the errors due to roundoff decrease at each iteration).
Obviously, the analyzer should avoid useless unrolling to
be efcient. Next, the loops are not always precisely iden-
tied in assembler since branchings can refer to dynamic
addresses. The algorithm introduced in this article, though
general, is well-suited for the analysis of numerical assem-
bler code. Because of the complexity of the semantics of
oating-point numbers with errors [13], and for the sake of
generality, the examples given in this article are high-level
codes manipulating integers.
This article is organized as follows. Motivating examples

are introduced in Section 2. Section 3 introduces some for-
mal notations. In particular, the valid control ow graphs of
a program are compared using a partial order relation, and
we discuss the relations between analyses based on compa-
rable graphs. Section 4 introduces the sufcient conditions
that allow one control ow graph to be substituted for an-
other during the analysis. Finally, in Section 5, we intro-
duce a dynamic partitioning algorithm whose correctness
relies on the criteria introduced in Section 4. This algo-
rithm is used in a static analyzer for assembler code which
is currently implemented and we show preliminary results
concerning its behavior on the examples of Section 2.

2 Motivating examples

In the case of a static partitioning strategy, the control
ow graph freezes a priori the states of an execution trace
that must be merged during the analysis and this choice ac-
tually, determines the properties that can be established. For
instance, let us consider the program below, in which the
numbers |1|, |2|, etc. indicate the control points.

|1| x = 1 ;
|2| y = 0 ;
|3| for(int i=0;i<n;i++) {

|4| x = x * -1;
|5| y = x + y;

} |6|

An abstract interpretation of this program, using as abstract
domain the domain of intervals is realized below. The val-
ues of x and y are given after execution of Point |5|.
and denote the abstract values of the variables x and y
after iterations.

At the second iteration, the analysis calculates that x is set
to . Then the values of the rst two

iterations are joined, yielding . Next,
is added to y at each step and, by widening, the analysis
terminates by stating that y belongs to .
This analysis does not detect that and returns

the upper approximation . This is because
we implicitly chose to use the control-ow graph of Figure
1 a) that assigns a single control point to each statement
in the body of the loop. The same analysis applied to the
more precise control ow graph of Figure 1 b), in which a
different control point is assigned to odd and even instances
of the statements, yields the following results:

b)

a)
2 3 5 61 4

21 3 54 3’ 4’ 5’ 6

Figure 1. Two possible control-flow graph for
the program of Section 2.

The results of this second analysis state that
or , depending on the parity of the itera-

tions. Let us point out that, after the loop, the odd and even
control points could be collapsed and the analysis of the
rest of the code could be made assuming that, at Point |6|,

and . Note that the control ow
graph used for the second analysis corresponds to the usual
one of the program in which the body of the loop is un-
folded once. For example, a static yet parameterizable loop
unfolding strategy, similar to the one used in this example,
is implemented in Fluctuat, a tool that analyzes the preci-
sion of oating-point calculations in C programs [10]. For
this example, the algorithm developed in Section 5 automat-
ically detects that or depending on
the parity of the iterations. In Section 5, we show precisely
how our algorithm works on this example. Finally, let us
also remark that, for this example, the results
or can be obtained using the cardinal power of
two domains [6, 11].

Our second example corresponds to the programs A, B
and C below.

Program A;
if (i<=10) {

j=0;
while (i>-100) {

i = i-1;
j = j+i;

}
}

Program B;
float x=1.0;
while (x>epsilon) {

x=x*0.618;
}

Program C;
k=0;
while (k<10) {

i=T[k];
j=0; k=k+1;
if (i<=k) {

while (i>-100) {
i = i-1;
j = j+i;

}
}

}

Program A mimics what frequently happens when ana-
lyzing the numerical precision of a stable calculation, using
the abstract semantics of oating-point numbers with errors
[9, 13]. In Program A, j increases while i is possibly pos-
itive and next decreases at each iteration, just as the errors
attached to the oat variable x in Program B increase for
a few iterations and next decrease, when x becomes small
enough. In the loop of Program A, j . How-
ever the successive rst values of this variable are bound
by 9, 17, 24, etc. Hence, a static analyzer can output
j or j , depending on how many
iterations are unrolled before widening. For this exam-
ple, the algorithm proposed in Section 5 unrolls the loop
the minimal number of times required to determine that
j . The same result is obtained if the loop of
Program A is the inner loop of a nest, as in Program C.

3 Formalization

Let be a programwritten in a procedural language
. is given a small-step operational semantics which tran-
sitions are denoted , each state being a tuple

where:

Lab is a unique label attached to each syntactic
control point, i.e. node of the syntactic tree of the pro-
gram,

Lab is a timestamp mapping any control
point Lab to an integer . It indicates how many
times a control point has been executed, before reach-
ing the current state. denotes the set of timestamps,

is the value of the environment in the current state.

enables to count the instances of in a trace. For ex-
ample, if occurs in the inner block of a loop nest, the
timestamp enables to determine howmany instances of each

loop has been executed. Timestamps are used in alias anal-
yses to uniquely identify the objects created at a given point
[8, 14]. The small-step operational semantics of a sim-
ple imperative language, in which timestamps equivalent to
ours are associated to the states is given by Venet [14]. We
partially order the set of timestamps by the relation :

Lab (1)

Let be a control-ow graph for the program
whose vertices are pairs with Lab and

. Intuitively, , and are used to merge some states
of a trace of , for example the instances of a

statement executed in some iterations of a loop or in some
procedure calls. We use the following notations related to
the pairs .

and

By construction, we assume that is sound for ,
i.e. we assume that for any initial environment , the execu-
tion of is correctly abstracted in . Let denote the label
attached to the entry-point of and the initial timestamp
such that . A graph is sound for
iff for all environments , if and

then there exists an edge
in such that

and .
We now introduce the abstract interpretation based on

the control ow graph . Let be the domain of the val-
ues of and an abstraction of , i.e. there exists a
Galois connection . denotes

the power-set of . An abstract environment is dened
with respect to a set of concrete initial
environments by . The abstract in-
terpretation of based on calculates :

Env Env (2)

The abstract interpretation of in the abstract environ-
ment computes a function which maps any
control point of to an abstract en-
vironment . If, for some with ,

then abstracts any environment
such that , and

.
Obviously, the more a control graph distinguishes

states of the execution, the more the analysis based on
is precise. From a formal point of view, we dene a partial
order on the set of control ow graphs and we show that an
analysis based on a less precise graph is an abstraction of

the analysis based on a more precise one. We partially or-
der the set of sound control ow graphs for a program as
follows.

Definition 1 Let and be two sound control flow
graphs for . The relation is coarser than , denoted

, is defined by

Intuitively, in a control ow graph, the instances of the
statement labeled by the control point are partitioned and
each vertex collapses the states of a trace
such that . if the partition
used for is coarser than the one used for or, in other
words, if some vertices of the nest graph have been col-
lapsed in the coarser one. In addition, let us point out
that the vertices of do not need to dene a strict
partition of the execution states. Instead, they may corre-
spond to a cover, i.e. for each state such that

, there exists at least one node
in such that and . Indeed, the

algorithm introduced in Section 5 uses covers of the set of
control points that are not strict partitions.
The partial order enables us to relate the semantics

based on comparable graphs. Indeed, for two comparable
control ow graphs and ,
with , the abstract semantics is an ab-
straction of the abstract semantics based on .

and are functions
whose domains are Env and Env respectively.
The set Env is ordered point-wise by

(3)

If then we have the Galois connection:

Env Env (4)

If is a set of analyses of based
on , Env , then the abstraction
is a new function whose domain is Env . maps
any node to . The abstraction
consists of assigning to a vertex in the coarser graph the
supremum of the abstract values which were distinguished
in the ner graph.

(5)

The concretization assigns to the vertices of the ner graph
any value greater or equal to the value of the related coarser
state in the less precise semantics. So, it is a set of functions

Env dened by:

Env

(6)
An interesting property is that, for any chain of compa-

rable control-ow graphs, we have a corresponding chain of
comparable semantics.

Proposition 2 Let be a chain of
sound comparable graphs for . Then the analyses based
on are also comparable:

(7)

The nest graph for a program maps any state of an exe-
cution to a control point (fully unfolding the loops and dis-
tinguishing all the procedure calls) and the coarsest graph
collapses all the states of the traces into a single control
point.

4 Static versus dynamic partitioning

As illustrated by Equation (7), many partitions of the
control points of a program can be chosen to build the
control-ow graph used by a static analyzer. Classical
choices include simple analyses in which a control-ow
graph assigns one vertex per static control point, analyses
that unfold times the body of the loops and polyvariant
analyses. Obviously, an analysis may use a mix of the above
partitioning strategies. However, as stated in Section 1, the
choice of a control-ow graph freezes how the states occur-
ring during an execution are merged to compute a common
property. Any choice made a priori corresponds to a static
partitioning strategy of the control point that cannot be op-
timal for all programs and for any execution of a program.
A dynamic partitioning strategy consists of starting the

analysis of the program with a control-ow graph and mod-
ifying it at certain stages of the analysis, depending on the
abstract values occurring at this stage. In other words, this
consists of using an analysis for one part of a pro-
gram and continuing with another analysis . can be
chosen dynamically, depending on the results already com-
puted. From Equation (7), we can establish general condi-
tions to ensure the soundness of this dynamic choice.

First of all, recall that, from Section 3, the abstract se-
mantics of a program is a function mapping the
nodes of to environments:

Env

In order to describe in detail the calculation of , we
introduce the function which executes one small step in
the abstract semantics:

Env Env (8)

For the sake of simplicity, we assume that, during the analy-
sis, knows the set of nodes that remain to be visited.
Initially, is the singleton containing the entry-point of
the program and from then on, whenever the environment
related to a node is modied, its successors in are added
to . For example, can be implemented by a list ac-
cessed by means of a global variable, and updated at each
stage of the analysis. In Section 5, we show that be-
comes empty after a nite number of steps for our particular
iteration strategy (if).

takes a node such that and
executes, in the abstract semantics, the statement related to
in the environment , yielding a new environment .

Finally, is updated, yielding the new function dened
by:

s. t. if
otherwise

Using , the nal result of the analysis is obtained
by:

Fix (9)

where is dened by

if is the entry-point of the program
otherwise

(10)
Let and be two valid control
ow graphs for and let denote the iterate of
. The analysis of based on yields, after steps of

the abstract semantics, . Substituting
for then consists of analyzing the rest of the program
with . This is possible provided that , as stated
by the following proposition.

Proposition 3 Let and be two sound control flow
graphs for . Then if , we have:

Fix
(11)

The proof stems from Equation (7). Let and be
two valid control ow graphs with respect to the collecting
semantics . Proposition 3 states that can be sub-
stituted for during the analysis without reanalyzing parts
of the program provided that . The result of this
calculation is less precise than .
The substitution of for carried out in Proposition

3 can be repeated many times to obtain an approximation
of . Let be the set of valid control ow graphs
for . is partially ordered by . Let be the
most precise graph with respect to which we wish to ana-
lyze the program. For example, may unfold the rst
iterates of the loops or may implement a polyvariant analy-
sis. An approximation of is obtained by calculating
the xed-point of a monotonic function:

Fix (12)

where is dened as in Equation (10) and where

Env Env (13)

is a generalization of the function of Equation (8).
maps any pair composed of a function
Env and of a control ow graph to a new pair .
We require that bemonotonic in and . So, at each iter-
ation, it may either increase or coarsen (or both). More
precisely, we require that satises the following property:

Env
and

(14)
A dynamic partitioning algorithm starts to analyze the

(user dened) most precise graph and then coarsen it
at some stages, depending on the computed abstract val-
ues. By Proposition 3, the nal result is an approximation
of .

Proposition 4 If satisfies Equation (14) and
if Fix then

.

Proposition 4 is a direct consequence of Proposition 3. This
proposition is used in Section 5 to prove the correctness of
a dynamic partitioning algorithm.

5 A dynamic partitioning algorithm

In this section, we introduce a dynamic partitioning al-
gorithm that modies the set of control points for which a
common property is calculated during the analysis. This al-
gorithm is one of the possible implementations of the func-
tion used in Section 4. It is written as a function and its
correctness stems from Proposition 4. More precisely, we

show that satises the correctness criterion of Equation
(14).
Following the principles of Section 4, the algorithm

takes as inputs an initial graph and the related func-
tion dened in Equation (10) and calculates
Fix for some such that . As a result,
we have .
First of all, builds a cover of the set of the control

points instead of a strict partition, as discussed in Section
3. Next, works on a subset of the acceptable
control ow graphs: recall, from Section 3, that any node
of is a pair , where is a set of syntactic

program points and is a set of timestamps. A graph
belongs to iff any set is a singleton and iff any set

of timestamps used in belongs to the subset of
timestamps mapping any point to an interval of integers:

Lab is an interval
(15)

if for any node of , and
. In other words, in , a set of timestamps associates

to any program point an interval indicating how
many times was executed. In the following, the nodes
of are denoted by pairs instead of , with

Lab .
effects two kinds of widenings, on the timestamps and

on the environments. Widenings of the timestamps occur in
the following case. Let and
be two states of a trace. and correspond to two in-
stances of the same statement . If follows in a trace
then there is a path in any sound control graph
of , with , , ,
and . When analyzes the following cong-
uration may arise: If then the control ow visits
for the second time a statement , with a smaller environ-
ment. For example, this happens when a loop is unfolded,
and when the abstract values computed by the analysis de-
crease for each new instance of a statement. In this case,
we no longer wish to continue to analyze the instances of
separately, as required by the current control ow graph
. So, decides to coarsen , by merging to the nodes

corresponding to the next instances of . This yields a new,
coarser, graph which is used for the rest of the analy-
sis. More precisely, is the graph in which the new
node is substituted for and to any other
node . and belonging to , denotes the
following widening operator on timestamps:

(16)

where is an usual widening operator on intervals.
The second kind of widening concerns the environments.

When a node is analyzed twice, yielding two abstract en-

vironments and such that , then we widen this
result by assigning to the abstract environment ,
where denotes a widening operator on the environ-
ments.

if then
return
else
let denote the current node

coarsen

return

Figure 2. Main function of the algorithm.

coarsen
let
if

then
replace in and by

return
else
return

Figure 3. The auxiliary function .

The function , given in Figure 2, takes as arguments a
graph , with , and a map . First,
analyzes the statement related to one node that remains
to be visited in . This is done by calling the function

described below and whose result denes a new map
. If then the xed point is reached and
is returned. is dened in Equation (3). Other-

wise, examines whether must be widened and, next,
whether must be widened. To decide whether must
be widened, calls the auxiliary function of Fig-
ure 3 which merges some nodes in if the conditions ex-
plained previously in this section are satised: A control
point is reached for the second time with a smaller en-
vironment if and with

if then return
else

let
let

if

then
else

for succ

succ
return

Figure 4. Implementationof the auxiliary func-
tion .

and . This means that the same
statement is executed twice with no additional information.
Note that must indicate that the instances of the
statements described by are executed after these described
by . Hence is dened by

max max

In order to avoid this useless calculation being repeated
later, the algorithm merges all the future instances of in
into a new node . Finally, the function

related to the new graph is calculated by the function
of Equation (5).

The widening on the environments corresponds to the
statement in the function
. is the map resulting from the call to and

corresponds to the new graph . Note that if does
not modify then . The rst argument of
is the map whose domain is rst transformed by the
function of Equation (5). is dened by:

(17)

Finally, the function , given in Figure 4, implements
the general function of Section 4. It analyzes one rel-
evant statement, taken in the set and corresponding to

a node of , modies and updates the set of nodes
that remain to be visited. This functionrst analyzes a state-
ment, yielding a new environment . is the inclu-
sion of instances:

Next, either keeps or discards it and recursively ex-
amines another node. discards if it does not intro-
duce additional information. Formally, if the current node
is and if there exists a node such that

then the instances of dened by include these
dened by in the cover of the control points chosen by
the algorithm. This corresponds to the rst four lines of the
else case. So, if then the state dened by
and has already been treated. In particular, if and

then the same node is analyzed for the second
time with a smaller environment and no information needs
be propagated in . Once the environment is kept,
is modied and is updated. This corresponds to the else
block of the inner conditional.

[4,4] [5,5] [6,6]
y= y=y=

T T T

[1,+oo]
y=!1 [2,2]

y=0

[1,1]
y=!1

[2,2] [3,3] [4,4] [5,5] [6,6]
y=0 y= y=y=

T T T
y=!1

[1,1]
y=!1

[2,2] [3,3] [4,4] [5,5] [6,6]
y=0 y= y= y=y=

T T T T

[1,+oo]
y=!1

y=0

[5,5] [6,6]
y= y=

T T

[2,+oo]

a)

b)

c) d)

e)

[1,+oo]
y=!1 [2,2]

y=0

[4,4] [5,5] [6,6]
y= y=

T T

y=0

Figure 5. Successive steps of the algorithm
for the program of Page 2.

We conclude this section by illustrating the behavior of
the algorithm on the examples of Section 2. As in Section
2, we start by examining the abstract values resulting from

the execution of Point |5| in the program of Page 2. We
assume that the initial control ow graph unfolds the loop

times, but the same calculation is made for any
. The values of and at each step of the algorithm
are displayed in Figure 5. For the sake of simplicity, we
only associate one node to the body of the loop. After two
calls to , we have the graph of Figure 5 a). The nodes
|5| and |5| correspond to the rst two
instances of |5|. We have:

|5|

and

|5|

During its third iteration, calls which returns

|5|

The values of and at this time are shown in Fig-
ure 5 b). Next calls . Since |5|
|5| and |5| |5| ,
the nodes are merged, yielding the new graph of Figure
5 c). At the next iteration of , the new active node is
|5| for which computes

|5|

The new graph is displayed in Figure 5 d). Again, this node
is merged to |5| , yielding the graph of Figure 5 e).
Finally, at the fth iteration of , the auxiliary function
has |5| and computes

There exists a node |5| satisfying the con-
dition of the if statement of . So, is called recur-
sively with and the xed-point of is reached. It
corresponds to the graph of Figure 5 e). In conclusion, the
abstract value of inside the loop is

.
For the program A of Section 2, the algorithm works as

follows. The upper bound of the interval associated to j
increases for the rst nine iterations and then decreases. If,
in the initial graph, the loop is unfolded at least ten times
then the abstract value of j becomes the constant
after nine iterations. The conditions making the function

active are satised. A new node corresponding
to the instances to innity of the loop is inserted whose
related environment maps j to . At the next iter-
ation of , the xed-point is reached and the analysis ter-
minates, independently of the precision of the initial control
ow graph (i.e. independently of how many iterations are
unfolded in the initial graph).

Finally, the same precision is obtained for the program
C of Section 2 in which the loop of the preceding example
is the body of another loop. This is due to the fact that
the widening on the timestamps applied to the inner
loop, do not merge instances of the outer loop during the
rst iterations. The inner loop is unfolded the right number
of times for each instance of the outer loop.

6 Conclusion

In this article, we have introduced sufcient conditions
to ensure the correctness of control ow graph substitutions
during the static analysis of a program. In Proposition 2, we
have shown that the analyses based on comparable control
ow graphs also are comparable. Then this result is used
in Proposition 4 to show that, during a static analysis, the
current control ow graph can be coarsened. In this case,
the nal result of the analysis is an abstraction of the result
that we would have obtained with the original graph.
In Section 5, a dynamic partitioning algorithm has been

introducedwhich illustrates how the control ow graph sub-
stitutions can be carried out in practice. This algorithm re-
lies on the calculation of the xed-point of a function of
two variables. At each iteration, a coarser graph is chosen
or a greater value is assigned to a node in the domain of the
abstract values. When the xed-point is reached, the algo-
rithm outputs a control ow graph coarser than the initial
one as well as the abstract values attached to its nodes. As
illustrated in Section 5, this enables the unrolling of a loop
to be stopped, when it does not improve the precision of the
nal result.
The algorithm of Section 5 is well-suited to loop un-

rolling but we plan to dene other algorithms, more general
and possibly more accurate. A possibility is to use control
words [3] instead of the timestamps used in this article. For
now, we plan to use the algorithm based on timestamps in a
static analyzer of numerical assembler codes under imple-
mentation.
Another possibility is to perform dynamic partitioning

in a slightly different context: in some cases the values at-
tached to the nodes of the control ow graph themselves are
indexed by the control points of the program. For exam-
ple, this happens for the abstract values used in numerical
precision [13] or for some alias analyses. The set of con-
trol points used to dene these values can also be modied
during the analysis, to speed up the convergence of the anal-
ysis. This is due to the fact that we may have for
two values related to a graph while, for the values com-
puted by the same semantics with respect to a ner graph
, . In this context, the set of control points

which properties are attached to is not modied during the
analysis. Instead, the analysis modies the set of control
points used to describe the properties.

Acknowledgements

I would like to thank Eric Goubault and Nicky Williams
for their helpful comments on this paper.

References

[1] F. Bourdoncle. Abstract interpretation by dynamic
partitioning. Journal of Functional Programming,
2(4):407–435, 1992.

[2] F. Bourdoncle. Sémantique des langages impératifs
d’ordre supérieur et interprétation abstraite. PhD the-
sis, Ecole Polytechnique, Paris, 1992.

[3] A. Cohen and J.-F. Collard. Instance-wise reach-
ing denition analysis for recursive programs using
context-free transductions. In Parallel Architectures
and Compilation Techniques. IEEE Computer Society
Press, 1998.

[4] P. Cousot. Semantics foundations of program analysis.
In N.D. Jones and S.S. Muchnick, editors, Program
Flow Analysis: Theory and Applications, chapter 10.
Prentice-Hall, 1981.

[5] P. Cousot and R. Cousot. Abstract interpretation: a
unied lattice model for static analysis of programs
by construction or approximation of xpoints. In Pro-
ceedings of the ACM-SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL’77, pages
238–252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of pro-
gram analysis frameworks. In Proceedings of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL’79. ACM
Press, 1979.

[7] P. Cousot and R. Cousot. Abstract interpretation
frameworks. Journal of Logic and Symbolic Compu-
tation, 2(4):511–547, 1992.

[8] A. Deutsch. On determining lifetime and aliasing
of dynamically allocated data in higher-order func-
tional specications. In Proceedings of the ACM-
SIGPLAN Symposium on Principles of Programming
Languages, POPL’90, pages 157–168, 1990.

[9] E. Goubault. Static analyses of the precision of
oating-point operations. In Static Analysis Sympo-
sium, SAS’01, number 2126 in Lecture Notes in Com-
puter Science. Springer-Verlag, 2001.

[10] E. Goubault, M. Martel, and S. Putot. Asserting the
precision of oating-point computations: a simple ab-
stract interpreter. In European Symposium on Pro-
gramming, ESOP’02, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2002.

[11] M. Handjieva and S. Tzolovski. Rening static anal-
yses by trace-based partitioning using control ow. In
Static Analysis Symposium, SAS’98, number 1503 in
Lecture Notes in Computer Science. Springer-Verlag,
1998.

[12] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic
partitioning in analyses of numerical properties. In
Static Analysis Symposium, SAS’99, number 1694 in
Lecture Notes in Computer Science. Springer-Verlag,
1999.

[13] M.Martel. Propagation of roundoff errors in nite pre-
cision computations: a semantics approach. In Euro-
pean Symposium on Programming, ESOP’02, number
2305 in Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[14] A. Venet. Nonuniform alias analysis of recursive data
structures and arrays. In Static Analysis Symposium,
SAS’02, number 2477 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.

