Data-Types Optimization for Floating-Point Formats
by Program Transformation

Nasrine Damouche Matthieu Martel Alexandre Chapoutot
University of Perpignan University of Perpignan U21S, ENSTA ParisTech
LAboratory of Mathematics and Physic®Aboratory of Mathematics and PhysicS Paris-Saclay University
52 Avenue Paul Alduy 52 Avenue Paul Alduy 828 bd des Machaux
66860 Perpignan, France 66860 Perpignan, France 91762 Palaiseau, France

Email: nasrine.damouche@univ-perp.fr Email: matthieu.martel@univ-perp.fr alexandre.chapoutot@ensta-paristech.fr

Abstract—In floating-point arithmetic, a desirable property of codes in order to avoid failures. Here, as in our previous
computations is to be accurate, since in many industrial context work, we rely on static analysis by abstract interpretafiéin
small or large perturbations due to round-off errors may cause to compute variable ranges and error bounds. We use a set
considerable damages. To cope with this matter of fact, we have of transformation rules for arithmetic expressions and -com
developec_i a tool which corrects these errors by automatically mands [6]. These rules, which are applied in a deterministic
transforming programs in a source to source manner. Our order, allow one to obtain a more accurate code among all

transformation, relying on static analysis by abstract abstractia, . . .
concerns pieces of code with assignments, conditionals and loops. these which are considered. We have shown that the numerical

By transforming programs, we can significantly optimize the ~accuracy of our case study programs is significantly imptove
numerical accuracy of computations by minimizing the error [N most cases it is about @b %.

relatively to the exact result. An interesting side-effect of our In this paper, we propose a new experiment, that compares

technique is that more accurate computations may make it the optimized broarams obtained by our tool and executed
possible to use smaller data-types. In this article, we show that our ptimiz prog : y ou xecu

transformed programs, executed in single precision, may compete N Single precision to the initial programs executed in both
W|th not transformed Codes executed in doub|e precision. S|ng|e and dOUb|e preC'S'On OUI’ main COI’]tI’IbUtIOﬂ IS tOVEhO

that the transformed programs in single precision are diose

the original programs in double precision. This offers te th

programmer the possibility to degrade to the single prenisi
[. INTRODUCTION data-type without loosing much information. To ensure that

The floating-point numbers described by IEEE754 Stan-tOOI is us_eful in practice, we write the_source and ”ar?sm"m
dard [1], [16] are more and more used in many industrialPf9ram inC and compile them by using GCC Compiler.

applications, including critical embedded software. lesi This article is organized as follows. We first review in
computations, a recurrent problem appears because of voungection 1l the basics of our transformation method based on
off errors that reduce the accuracy of the results. Thisupert floating-point arithmetic. We explain briefly how to transfo
bation becomes particularly crucial when accumulatedrerro arithmetic expressions. We then introduce in Section I8 th
cause damages whose gravity varies depending on the conteftferent transformation rules that allow us to automaljca

of the application. Obviously, embedded software is not tharansform programs. We present in Section IV our main
only applicative domain concerned by these accuracy pnable contribution which demonstrates the interest of the coispar
which are ubiquitous in all numerical scientific computaio petween single, double precision and optimized codes. We
In the light of this problem, we correct these errors by awtbm jllustrate this with some experiments concerning the camypu
ically transforming programs in a source to source manre. B tion of the integral of a polynomial using Simpson’s Rule. [2]
sically, we transform not only arithmetic expressions Heba Related work is discussed in Section V. Finally, we give some
pieces of code containing assignments, conditionalssl@amgal concluding remarks and perspectives in Section VI.
sequences of commands. Our transformation significantly im

proves the numerical accuracy of the program considered. Tq|, A NALYSIS AND TRANSFORMATION OFEXPRESSIONS
optimize programs, we generate large arithmetic exprassio)))

corresponding to the computations of the original program In this section we introduce the background needed to
and further, we consider many expressions mathematicallynderstand our approach to improve the numerical accuriacy o
equivalent to the original ones in order to, finally, choose aPrograms. We recall the key notions on our way of computing
more accurate among them in polynomial time. the rounding errors on floating-point arithmetic expressio
Next, we briefly explain how to transform arithmetic expres-

There exists several methods for validating [3], [7], [8]. sions using an intermediary representation called APEGs.
[10], [20] and improving [12], [17] the accuracy of numetica

"CAFEIN".

*This work was supported by the ANR Project ANR-12-INSE-0007 A. Static Analysis of Arithmetic Expressions

Floating-point numbers are used to represent real numbers.
978-1-5090-2188-8/16/$31.006)2016 IEEE Because of their finite representation, round-off erroiisear

during the computations which may cause damages in criticaines. In the abstract value denoted by, («*) € Ef, we have
contexts. IEEE754 Standard formalizes a binary floatingtpo = the interval corresponding to the range of the values and
number as a triplet of sign (g {0,1}), significand and u* the interval of errors om:*. This value abstracts a set of

exponent. We consider that a numhefs written: concrete value§(z,p) : = € 2f andp € p*} by intervals
in a component-wise way. We now introduce the semantics of
z=s-(do.dy...dp—q)-b=s5-m-bPT (1) arithmetic expressions ofi*. We approximate an interval’
. . . . with real bounds by an interval based on floating-point baynd
where, s is the signe {—1,1}, m is the mantissa;n = genoted byt# (). Here bounds are rounded to the nearest,

is the precision, and is the exponent [e,in, €maz]-

N _
A floating-point number: is normalizedwheneverd, # 0. T (z2) =1 @)1 @) @)

Normalization avoids multiple representations of the same _
number. IEEE754 Standard specifies some particular vatwes f ~ We denote byl? the function that abstracts the concrete
P, €min ande,nq. Which are summarized in Figure 1 as well function |. It over-approximates the set of exact values of the

as denormalized numberwhich are floating-point numbers €or { (z) = z— 1 (x). Every error associated to € [z, 7]
Withdy =dy = ... =dy =0, k < p—1ande = epin. IS included inl¥ ([z,Z]). We also have for a rounding mode

Denormalized numbers make underflow gradual [9]. FinaIIy,to the nearest

the following special values also are defined: V(7)) = [-y,y] with y= %ulp(max(m,) . ©)

e NaN (Not a Number) result of an invalid operation,

e the valuestoo corresponding to overflows, Formally, theunit in the last placedenoted by ulp(x), consists
) of the weight of the least significant digit of the floating-
e the values+0 and —0 (signed zeros). point numberz. Equations (6) to (7) give the semantics of
_ the addition and multiplication ovek?, for other operations

BF{?;"“?% Ha"’\‘ag‘c‘?, _ ple g'ts Cmin Cmas see [14]. If we sum two numbers, we must add errors on the
B:nagg,g Sing|ep;)re'csi'§ion 24 8 _126 fm operands to the error produced by the round-off of the result
Binaryé4 | Double precision | 53 | 11 | —1122 | +1223 When multiplying two numbers, the semantics is given by the
Binary128 | Quadratic precision| 113 15 —16382 | 416383 development 0(1‘% +/1'§) ~ (xg +Mﬁ2)-

Fig. 1. Basic IEEE754 formats. @k, i) + (o, ud) = (19 @+ ad) pd + pdt 1F af +2h)) ()
IEEE754 Standard defines four rounding modes for ele- (b, b)) x (2, ub)

mentary operations over floating-point numbers. These sode i ™

t # #y .8 # 8 # # # g (.0 P
are towards-oo, towards+oco, towards zero and to the nearest (1 (#1 X #2), 23 X i 2% X py + 4 X a7 (2 < 23))

respectively denoted by, ., -, To @ndf.. The semantics
of the elementary operations specified by IEEE754 Standarf- Accuracy Improvement

is given by Equation (2). The work in [12] concerns the definition of a new in-
r®,y ="y (xxy) , With 1, R > F (2) termediary representation called APEG for Abstract Progra
Expression Graph. This approach represents in a polynomial
where a floating-point operation, denoted by, € size an exponential number of equivalent arithmetic expres
{+,—,x,+}, is computed using the rounding modeand sjons. Because APEGs hold in abstraction boxes many equiva-
x denotes an exact operation. Obviously, the results of thgnt expressions up to associativity and commutativity\deg
computations are not exact because of the round-off errorg prevents the combinatorial problem. A box containing
This is why, we use also the functiadn: R — R that returns operands can represent uplto< 3 x 5... x (2n — 3) possible

the round-off errors. We have formulas. In order to build large APEGS, two algorithms are
b (@) = 2= 1 () 3) used propagation and expansionalgorithm). The first one
" o " ' searches recursively in the APEG where a symmetric binary

,) operator is repeated and introduces abstraction boxes, The
_In order to compute the errors during the evaluation ofihe second algorithm finds a homogeneous part and inserts a
arithmetic expressions [14], we use values which are pairgqynomial number of boxes. In order to add new shapes of ex-
(z,p) € F xR = E wherez denotes the floating point number ,essions in an APEG, one propagates recursively sultiracti
used by the machine and denotes the exact error attached 5 divisions into the concerned operands, propagate pisidu
to I, i.e., the exact difference between the real and floatingzng factorizing common factors. Finally, an accurate fdemu
point numbers as defined in Equation (3). For example, tHe regs searched among all the equivalent formulas represented

1; 1 1 _ . . . A
numbers is gepresented by the value= (T~ (3) .4~ (3)) = in an APEG using the abstract semantics of Section II-A.
(0.333333, (5 — 0.333333)). The semantics of the elementary The APEGs are an extension of the Equivalence Program
operations orE is defined in [14]. Expression Graphs (EPEGs) introduced by R. Eital. [21].

Our tool uses an abstract semantics [4] basedEoithe An APEG is defined inductively as follows:
abstract values are represented by a pair of intervals. Téte fi . T
interval contains the range of the floating-point valueshef t 1) A constantcst or an identifierid is an APEG,
program and the second one contains the range of the error2) An expressiorp,; p is an APEG, wherg, andp, are
obtained by subtracting the floating-point values from tkesce APEGs and« is a binary operator among+, —, x, =},

3) A box is an APEG, where € {+, x} is e The best program, the most accurate, is obtained by

a commutative and associative operator andpthe: i<, comparing the reference variable of the original and
are APEGs, T transformed program.

4) A non-empty sef{pi,...,p,} of APEGs consists in an
APEG wherep; 1<i<p, is not a set of APEGs itself. We
call the set{ps,...,p,} the equivalence class.

Here, we survey briefly the different kinds of transformatio
rules. We refer the interested reader to [6] to see the detil
these transformation rules based on the syntax and semantic
An examp|e of APEG is given in Figure 2, it represents a”We S.tart Wlth the _aSSignment_S. We have two rUleS, the first
the following expressions: consists in removing the assignment from the program and
saving it in the memory if the conditions below are verified:

a) The variables of the expressierdoes not appear in,
b) The variablev does not belong to the black ligt,
c) The variablev is different of the reference variable

Otherwise, we build a large expression by substituting in
it the formal expressions memorized previously by the first
rule in 6. Remark that by inlining expressions in variables
when transforming programs, we create large formulas. m ou
implementation, in order to facilitate their manipulatiome
slice these formulas, at a defined level of the syntactic tree
Fig. 2. APEG for the expression= ((a + a) 4 b) x c. several sub-expressions, and we assign them to interrgediar
variables. Finally, we inject these new assignments in® th
main program.

E(a+a)+b§><c, E(a+b)+ag X ¢,

(b+a)+a)xc, ((2xa)+bd) xc, Example 3.1:To explain the use of the transformation
AP =4 % Eg:jj))jg; o gggj?)i;;; . ® rules of assignments, let us consider Equation (10) in which
(a+a)xctbxe (2xa)xctbxe, three variablesr, y and z are assigned. In this example,
bxect+(at+a)xe bxet(2xa)xe consists of the variable that we aim at optimizing, and
R. Tateet al. in their article [21], use rewriting rules to extend @ = 0-1, b= 0.01, ¢ = 0.001 andd = 0.0001 are constants.
the structure up to saturation. In our context, such ruleglavo (x=a+tby=c+dz=x+y, § [], {z})
consist of performing some pattern matching in an existing = (nop;y=c+diz=x+y, & =dx—a+b], [], {z})
APEG p and then adding new nodes jn once a pattern has =+ (y=ct+dz=x+y &' =dx—>a+tv], [], {z}) (10)
. =, (nop;z=x+y, §" =&y c+d], [], {z})
been recognized. — (z=x+4y, 6" =&y c+d, [], {z})
= (z=((d+c)+b)+2a,6", [],{z})
[1I. TRANSFORMATION OFCOMMANDS In Equation (10), initially, the environment is empty, the

black list contains: and the reference variableat optimizing

is z. If we apply the first rule of assignment, we may remove
he variabler and memorize it ird. So, the line corresponding
0 the variable discarded is replaced hgp and the new
Com > ¢ == id=¢e|cy;cy|ifp ethency else ca environment isé = [z — a + b]. We then repeat the same
process, we remove the variahleand saved it ind. Next, we
apply a rule for sequences which discards ilog statement.

wheree is an expression iZzpr made of arithmetic opera- For the last step, we may not discarecause the condition

tions and comparison. The principle of the transformatién oS not satisfied { = v). Then, we substitute: andy by their
Commands re“es on a set of hypotheses: Value ind a.nd we transform the eXpl’eSSIOn. [|

Another kind of transformation rules is for the sequences of
commands. If one member of the sequencadp, then we

In this section, we introduce the transformation rules,
implemented in our tool and used to improve the numerica
accuracy of programs. The syntax of commands is given by'T

| whileg edo ¢ | nop , 9

e Programs are defined by a tuple

(¢,8,C,B) =, (c,8,C,B) : transform only the other member, else, we transform both
) o of them. Our implementation transforms also conditionals.
o cis the program at optimizing, If the condition is statically known, then we keep just the
4 the formal environment that maps variables evaluated branch and we transform it, else, we transforin bot
to expressionsd{ V — Expr), branches of the conditional. In some cases, we deal with
o C is the context, i.e., the program enclosing undefined variables because they have been discarded feom th
the command to transform, program and saved in the environmérats indicated in the first
o [is the black list that contains variables that transformation rule for assignments. We then re-injectrthe
must not be removed from the program, into the program and we do the necessary transformations.
o v is the reference variable at optimizing, The next transformation rules concern thki | e loop. We

transform the body of the loop ensuring that the variabldhef
condition do not belong to the environmentOtherwise, we
have to re-insert the variables memorized in the environmen
e Transformation rules are applied deterministically, into the program as doing for the last rule of conditionals.

e Programs are written in SSA form (single static as-
signments),

At the end of this section, we deal with complexity The listing corresponding of the implementation of the
considerations. As underlined previously, only one ruleyma Simpson’s method is described on Figure 3.
be selected at each step of the transformation of a program
D. Consequently, the transformation would be linear in the nt mi n() {
size n, i.e., the number of lines, of if we would not re- a=19
inject assignments. However, a given assignment cannot be
removed twice, so the transformation is quadratic. Finalig
entire transformation of a programis repeated until nothing
changes, that is at mosttimes. Hence, the global complexity
for a program transformation of sizeis O(n?).

=2.1; n=100.0; i =1.0; x =a; h=(b- a)/n;
((x*x*x*x*x*x*x) - 14.0 * (X*X*X*X*X*X) + 84.0 * (Xx¥X*X
x*X) - 280.0 * (Xx*x*x*X) + 560.0 * (Xx*x*X) - 672.0 * (x
X) + 448.0 * x - 128.0);

b ;

((X*XxXEX*X*X*¥X) - 14,0 * (XtX*X*X*¥X*X) + 84.0 * (XrX*X
X*X) - 280.0 * (Xx*x*x*X) + 560.0 * (X*x*X) - 672.0 * (x
X) + 448.0 * x - 128.0);

f +g;

e (i <n){

a+ (i = h);

((X*x*xXxXxX*X*¥X) - 14.0 * (X*X*X*X*X*X) + 84.0 * (X*X
X*x*X) - 280.0 * (x*x*x*x) + 560.0 * (x*x*Xx) - 672.0

(x*x) + 448.0 » x - 128.0);
s
i

i L VN O VI |

LL I L | | R

whi

IV. EXPERIMENTS f

We have implemented a tool based on the rules of Sec-
tion 1l to improve the numerical accuracy of the floating-
point computations. This tool finds a more accurate program
among all those equivalent. In this section, we emphasnee thi'=20:
efficiency of our implementation in terms of improving the while (i'<n-1)
data-types used by the programs. More precisely, we show ¥ 2 2 7 (L2 M G0 e s 84,0 ¢ (xex
that by using our tool, we approximate the results to be ever « xsxsx) - 280.0 * (x#x*x*x) + 560.0 * (x*x*x) - 672.0
accurate and close to the results obtained under the double * (x*x) + 448.0 « x - 128.0);

precision while using single precision. PO

+ 4.0 « f;

e
- wn

In the light of these ideas, let us confirm our claims by }S’: s« (h/ 3.0
means of a small examples such as Simpson’s method. We
start by br!efly de'sc_r |b'|ng what our program computes, anq:ig. 3. Listing of the initial Simpson’s method.
then we give their listing before and after being optimized
with our tool. Their accuracy is then discussed. Note that ou

programs are written in SSA form [5] to avoid any problem'?}vp”‘;' VA S
dealing with the reading and writing variables. TMP 1 = ((((((TMP.3 % 1.9) * 1.9) * 1.9) * 1.9) - (14
* (((TMP_3 % 1,9) * 1.9) » 1.9))) + (84. * ((6.859
_ . * 1.9) * 1.9)));
A. Problem Description and Simpson’s Method TMP 2 = (1.9 » (280. = TMP_3));
)))) _ TMP_15 = 9. 261000000000001;
Simpson’s method consists in a technique for numerical TV_13 = ((((((TMP_15 » 2.1) * 2.1) * 2.1) * 2.1) - (14,
b « (((TMP_15 * 2.1) * 2.1) * 2.1))) + (84
i i i i * ((9.261000000000001 * 2.1) * 2.1)));
integration that approximates the computation aff(a:) dz TVP 14 = (2.1 » (280. * TVP.15)).
i i i TMP_27 = 3.61;
It uses a second qrder approximation of the. functfo_by a TMP 25 = ((((((TMP.27 * 1.9) * 1.9) * 1.9) = 1.9) = 1.9)
quadrau_c polynomialP that take:s_ three gbsmssa pointsh (14. % ((((TMP.27 % 1.9) 1.9) = 1.9) * 1.9)));
andm with m = (a+b)/2. When integrating the polynomial, Tw_26 = El. 9 « (159. ?99999999999994 * TMP_3));
TWMP_32 = (TMP_3 * 1.9);

we approximate the integral of on the interval[z,x + h] C
(h € R small) with the integral ofP on the same interval. s = ((((((TMP.1 - T™_2) + (560. * TMWP_3))

Formally, the smaller the interval is, the better the indgr - (2?(2?(%2022000%2012 + ?2(13019993?/?’99192?)9932) - 128.)
. . .) . + + *
approximation is. Consequently, we divide the interjalb] - 2963. 520000000000437) + 940. 800000000000068) - 128.)):

into subintervalda, a + h], [a + h,a + 2h], ... and then we
sum the obtained values for each interval. We write:

-

= ((((((TMP_25 + TMP_26) - (280. * TMP_32)) + (560.
x (TMP_27 + 1.9))) - (672. » TMP_27))

+ 851.199999999999932) - 128.);
I

'n 1 77 X 2. l
ﬁ whi | < 100.
[i@ s 2 re0 +2 Z f(rz7>+4J§jlf<z2g Do) ay o vhile (1 <100 {0
TMP_37 = (x * X);
where TMP_35 = ((((((TMP_37 * x) * x) * x) * x) * x) - (14
i((((T'VP_37 * X) % X) * X) * X)))f
e nisthe number of subintervals of [a,b] withis even, L L G A
. _ f = ((((((TMP_35 + TMP_36) - (280. » TMP_42)) + (560.
e h=(b—a)/n is the length of the subintervals, « (TMP_37 » x)))-(672. = TMP_37)) + (448. * x)) - 128.);
s = (s + (4. * f));
e ux;=a+ixhfori=0,1,....,n—1,n. = (i +1.);
[]

P .

In our case, we have chosen the polynomial given in}‘S = (0.000666666666667 *) ;
Equation (12). It is well-known by the specialists of flogtin
point arithmetic that the developed form of the polynomialFig. 4. Listing of the transformed Simpson method.
evaluates very poorly close to a multiple root. This motgat

our choice of the functiorf below for our experiments. When given the initial program described in Figure 3 to
; o —2)7 our tool, it improves its numerical accuracy by up 96%
X — 4.

27 — 14, % 25 4 84. X &° — 280. x @ @z depending on the entries. The transformed program is given
4 560. x @ — 672. x 2% + 448. X @ — 128. in Figure 4. As detailed in Section I, our tool has:

0.001

-0.001

-0.002

-0.003

-0.004

0.002

-0.01

a=1.9, b=2.1, n=100, oFiginaI, single p'rec4
a=1.9, b=2.1, n=100, original, double prec.
a=1.9, b=2.1, n=100, optimized, single prec.

140

@

100 120

200

a=1.95, b=2.05, n=250, of'iginal, single p'rec, —_—

a=1.95, b=2.05, n=250, original, double prec.

a=1.95, b=2.05, n=250, optimized, single prec. —#%—
¥

250 300

(©

500

0.004 T

a=1.95, b=2.05, n=100, oFiginaI, single p'rec. —_—
a=1.95, b=2.05, n=100, original, double prec. —s«—
0.003 r a=1.95, b=2.05, n=100, optimized, single prec. —#— 1
0002 i 1
At
w# N
0.001 } . *I*‘ﬂf* * *’ 4
R i ¥ x
. e KK
0 i 0aes008s0tt0ssss08880000 4;;;:'?‘._5 J
A 3
foﬁ X #LF
N L X x K #E]
0.001 A o P 4 \‘\ﬁn |
oy v ko e ++4f w7 Yy R
0002 ¥ “’*ﬂgﬁf* e 3& i
-0.003 | y T*‘M” 1
f
44
0004 | ﬁy&»f]
-0.005 1 ! 1 +
100 120 140 160 180 200
(b)
1e-07

a=1.9, b=2.1, n=100, ori'ginal, double ;5rec, —_—

0+ 4
-1e-07 [B
2607 | / 1

-3e-07

-4e-07

——
L

-5e-07
-6e-07

|
-7e-07 | Z 1
/
jf

-9e-07 | S, I 1

M

1e-06 H i i L
100 160 180

-8e-07

200

(d)

Fig. 5. Simulation results of the Simpson’s method with sindl®yble precision and optimized program using our tool. THeesofz andy axes correspond
respectively to the value of ands in Equation 13.

This process has been applied inside and outside the loop.

created large expressions,

transformed them into more accurate expressions,

performed partial evaluation of the expressions,

split the transformed expressions,

assigned the transformed expressions'ttd P vari-

ables.

B. Experimental results

with the optimization level-00 to avoid any optimization done
by the compiler and additionally, we enforce the copy in the
memory at each execution step by declaring all the variades
vol ati | e (this avoids that values are kept in registers using
more than64 bits).

The results observed on Figure 5 when executing the initial
program in single and double precision and the transformed
program in single precision, demonstrate that our approach
succeeds well to improve the accuracy. If we interest in the
result of computations around the multiple rab0, we can
see that the behavior of the optimized code is far closer to
the original program executed with a double precision than

The experimental results described hereafter compare thtee single precision original program. This shows that Ising
numerical accuracy of programs using single and double presrecision may suffices in many contexts.

cision with a program transformed with our tool and running

single precision only. Note that the codes presented in this
article are written inC, compiled with theGCC compiler ver-
sion4. 2. 1 and executed by ahnt el
underUbunt u 15. 04. In addition, programs are compiled

Core i 7 processor

In Figure 5, one can see the difference, for different values
of the steph > 0, in the computation of

b—a

s = /a+nh f@)de, 0<n< (13)

between the original program with both single and doubleconvergence time of distributed systems and also handle wit
precision and the transformed program (in single precjsionthe important issue that concerns the reproducibility @& th
in terms of numerical accuracy of computations. Obviouslyresults: different runs of the same application yield défe

the accuracy of the computations of the polynomjdlr)
depends on the values aof. The more the value of: is

results due to the variations in the order of evaluation ef th
mathematical expression. It will be very interesting todgtu

close to the multiple root, the worst the result is. For thishow our technique could improve reproducibility.

reason, we make the interval, b] vary by choosinga,b] €
{[1.9,2.1],]1.95,2.05],[1.95,2.05]} and by choosing to split
them inn = 100, n = 100 andn = 250 slices respectively

for the application of Simpson’s rule. Concerning the ressul [1]
obtained, our tool states that the percentage of the ogtioiz 2]
computed by the abstract semantics of Section II-A is up to
99.39%. This means that the bound (obtained by the technique[3
of Section 1I-A) on the numerical error of the computed value

of the polynomial at any iteration is reduced 9§.39%.

Curve (d) of Figure 5 displays the functigf{z) at points 4

n = 1.940.02x14, 100 < ¢ < 200. Next, if we take for example
Curve (b) of Figure 5, we observe that our implementation [5]
is as accurate as the initial program in double precision for
many values of: since it gives results very close to the double [6]
precision while working in single precision. Note that, foe
x — axis of Figure 5, we have chosen to observe only the
interesting interval o, which is around the multiple roct.0.
(8]
V. RELATED WORK

Other research work tries to optimize the numerical data-]
types or to increase the precision of computations. Duealov
and Kuncak use aBMI solver to determine the minimal data- [10]
type needed to reach a certain accuracy [7]. For the fixedtpoi
arithmetic [18], an alternative to the floating-point anitétic,
many approaches have been proposed to optimize the format]
of the numbers [13], [15]. Another kind of work aims at in-
creasing the accuracy of computations by means of additiona
calculations which significantly slow down the applicason [12]
Double-double floating-point numbers emulate by software
numbers with twice the precision of the double hardware[13]
format [11]. Finally, compensation techniques use ermreef
transformations to capture the exact errors of floatingHpoi
computations in order to re-inject the accumulated errdhén
result [19], [22].

[14]

[15]
VI.

In this article, we have shown the usefulness of our imple{16]
mentation to improve the accuracy of programs. This allows
one to work in a lower precision and obtain results close ¢o th
higher precision when transforming programs using our. tool7]
Our examples compare the result of transformed program with
the initial programs executed in single and double pregisio ;4
We believe that this approach is very promising according to
the different experiments results obtained. [19]

CONCLUSION

Another research direction consists in the interprocddur
programs transformation, i.e., we aim at generalizing ou
techniques to cover other kinds of programming language
patterns like pointers, arrays and, specially functions.

20]

We hope also in a future work to optimize several referencgl]
variables simultaneously. One difficulty is that the opsiation 55,
of one variable may decrease the accuracy of other variables
Compromises have to be done. Another perspective consists
at studying the impact of the accuracy optimization on the

REFERENCES

ANSI/IEEE. |EEE Standard for Binary Floating-point Arithmetfistd
754-2008 edition, 2008.

K.-E. Atkinson.An Introduction to Numerical AnalysiSecond Edition,
1988.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Maubqrgn&ling, and
X. Rival. Static analysis by abstract interpretation of eddsa critical
software. ACM SIGSOFT Software Engineering Not8§(1):1-8, 2011.

P. Cousot and R. Cousot. Abstract interpretation: A edifattice model
for static analysis of programs by construction or approxiomabf
fixpoints. InPOPL'77, pages 238-252. ACM, 1977.

R. Cytron and R. Gershbein. Efficient accomodation of mifgsa
information in SSA form. InPLDI'93, pages 36—45. ACM, 1993.

N. Damouche, M. Martel, and A. Chapoutot. Intra-procedaptimiza-
tion of the numerical accuracy of programs.ANICS’15 volume 9128
of LNCS pages 31-46. Springer, 2015.

E. Darulova and V. Kuncak. Sound compilation of reals.P@PL'14,
pages 235-248. ACM, 2014.

D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkat| EnVéedrine.
Towards an industrial use of FLUCTUAT on safety-criticalianics
software. InFMICS’'09, pages 53-69, 2009.

D. Goldberg. What every computer scientist should know uabo
floating-point arithmeticACM Comput. Sury.23(1):5-48, 1991.

E. Goubault. Static analysis by abstract interpretatof numerical

programs and systems, and FLUCTUAT. $#MS’'13 volume 7935 of

LNCS pages 1-3. Springer, 2013.

Y. Hida, X.-S. Li, and D.-H. Bailey. Algorithms for quadeuble

precision floating point arithmetic. IARITH-15 pages 155-162. |IEEE
Computer Society, 2001.

A. loualalen and M. Martel. A new abstract domain for tleeresenta-
tion of mathematically equivalent expressions SIAS'12 volume 7460
of LNCS pages 75-93. Springer, 2012.

J.-L. Jerez, G.-A. Constantinides, and E.-C. Kerrigafow complexity
scaling method for the lanczos kernel in fixed-point arithmelEEE
Trans. Computers64(2):303-315, 2015.

M. Martel. Semantics of roundoff error propagation initBnprecision
calculations.Higher-Order and Symbolic Computl9(1):7-30, 2006.

D. Menard, N. Herg, O. Sentieys, and H. Nguyen. High-level synthesis
under fixed-point accuracy constraint). Electrical and Computer
Engineering 2012:906350:1-906350:14, 2012.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jearod, V. Leévre,
G. Melquiond, N. Revol, D. Stef| and S. Torres. Handbook of
Floating-Point Arithmetic Birkhauser Boston, 2010.

J.-R. Wilcox P. Panchekha, A. Sanchez-Stern and ZodktlAutomat-
ically improving accuracy for floating point expressions. RhDI'15,

pages 1-11. ACM, 2015.

R. Yates. Fixed-point Arithmetic: An Introductiondigital signal labs
edition, 2009.

S.-M. Rump. Ultimately fast accurate summatioBlAM J. Scientific
Computing 31(5):3466—3502, 2009.

A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalaken.
Rigorous estimation of floating-point round-off errors wisimbolic

taylor expansions. IfFM'15, volume 9109 ofLNCS pages 532-550.
Springer, 2015.

R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equalitjusation: A

new approach to optimizatiorLog. Meth. in Comp. Sgi7(1), 2011.

L. Thévenoux, P. Langlois, and M. Martel. Automatic source-torse
error compensation of floating-point programs.G8E’15 2015.

