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Abstract. In this article, we present a model and a denotational se-
mantics for hybrid systems. Our model is designed to be used for the
verification of large, existing embedded applications. The discrete part
is modeled by a program written in an extension of an imperative lan-
guage and the continuous part is modeled by differential equations. We
give a denotational semantics to the continuous system inspired by what
is usually done for the semantics of computer programs and then we show
how it merges into the semantics of the whole system. The semantics of
the continuous system is computed as the fix-point of a modified Picard
operator which increases the information content at each step.

1 Introduction

The importance of static analysis techniques [6] for software validation is no
longer to be outlined. Their application to highly critical programs has become
a major challenge for many industries. Such programs are often automatically
generated, imperative programs which are embedded into a heterogeneous sys-
tem. They mostly behave as follows: they capture information from the physical
environment via sensors, treat it using numerical computations and then modify
the environment via actuators. The analysis of such programs requires either to
over-approximate the physical environment, which often leads to an imprecise
analysis, or to analyze the hybrid system made of the continuous environment
and the discrete program [5, 14]. We use this approach. The analysis of hybrid
systems requires as a starting point a formal description of their behavior. We
need to give a coherent interpretation of both the discrete and the continuous
subsystems. The formalization of a continuous system using the same notions
as for a computer program is already a challenge of its own. The continuous
variables move along a continuous function of the real time while the discrete
system is defined, in a denotational semantics approach, as a function between
discrete environments [24]. In this article, we propose a formalism for modeling
hybrid systems together with a description of their behavior as a hybrid denota-

tional semantics : the evolution of the hybrid system is a function between hybrid



environments (containing a discrete and a continuous part) which is computed
as the least fix-point of a sequence of approximations.

Our model for hybrid systems is designed for an implementation level and
ensures a clear separation of the discrete and the continuous subsystems. They
are modeled in two different formalisms (see Sects. 2.1 and 2.2) which allows the
analysis of one program within various environments for example. Despite this
heterogeneity, we give a unique description of the behavior of the hybrid system.
First, we suppose that the discrete part is completely determined and we give a
semantics JκK for the continuous part (Sect. 3). It is computed as the fix-point
of an operator Γ which acts on partially defined functions and we show that this
fix-point is actually the limit of Tarski’s iterates [22]. The semantics J∆K of the
purely discrete part of the system is computed using the standard semantics of
imperative languages (as in [24]). We add denotations for some hybrid actions
that represent sensors and actuators, and show how these are combined to JκK
to form the hybrid semantics JΩKH (Sect. 4).

Running Example. We will illustrate this article with a simplified version of the
well-known two tanks problem [18]. It consists of one water tank (Fig. 1.1(a))
filled by a constant flow i with two evacuation tubes: one at the bottom, which
has a valve v than can be open or closed, and one at height h. The continuous
system is the height x of the water in the tank, whose evolution is governed by
the ordinary differential equation of Fig. 1(b). The discrete part is a controller
whose goal is to maintain x between safe bounds by closing/opening the valve.

Related Work. The modeling of hybrid systems with hybrid automata was initi-
ated by Henzinger [16]. They are finite state automata to which we add at each
node a flow equation describing the continuous dynamics at this point. Their op-
erational semantics was introduced in the early papers and their analysis using
model checking techniques has been well studied [12, 17]. A denotational seman-
tics for these models was recently proposed by Edalat [11] and proved to be
equivalent to the operational semantics. Since the first results, many models for
hybrid systems and verification methods were proposed. These include hybrid
process algebra like HyPa [8] or Hybrid Chi [23]. Meanwhile, Hybrid-CC [15]
introduced hybrid components to the concurrent constraints theory. All these
models are generally used as high level abstract formalisms to reason about the

(a) Scheme.
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√
x − h if x ≥ h and v open

i − k2

√
x − h if x ≥ h and v closed

i − k1
√

x if x ≤ h and v open
i otherwise

(b) Continuous System.

Fig. 1.1. One Tank Example.



principles of hybrid systems. However, when the verification of industrial size,
critical systems is at stake, they are not fully sufficient. First, for safety rea-
sons, the analysis of the embedded source code is always necessary. Secondly,
for industrial size problems, it is necessary to have a clear distinction between
discrete and continuous states to allow the modeling process of the both parts
to be executed by different engineers. Most of the models we cited are not well-
suited for these requirements, although some advances have been made for the
separation issue [1]. The main difficulty in the formalization of hybrid systems
is to give a coherent meaning to the continuous and the discrete parts. Edalat
et al. proposed a formalization of differential calculus and of the solutions of
differential equations in the theory of Scott domains, both for the mono-variate
[9] and multi-variate [10] cases. We used their theory as a starting point for our
work to define the denotational semantics of the continuous subsystem.

Notations and Mathematical Background. In this article, R denotes the set of
real numbers, R+ the set of non-negative real numbers and N denotes the natural
integers. The set of compact intervals over R is I(R). For i ∈ I(R), we write i
(resp. i) its lower (resp. upper) bound. We define its width w(i) = i − i and

its midpoint mid(i) = i+i

2 . In Sect. 3, we use some advanced techniques of the
theory of ordinary differential equations (ODEs). We assume that the reader is
familiar with the basics of this theory, and give here just the main results that we
will use. A more detailled version of this paper with some background elements
of ODE theory can be found in [3]. The main theorem that we will use concerns
the iterates of the Picard operator PI

(

F, y0

)

. Given I ∈ I(R), a continuous

function F and y0 ∈ R, PI

(

F, y0

)

is a map between continuous functions defined
by PI

`

F, y0

´

(f) = λx.y0+
R x

I
F (f(s), s)ds. It gives a characterisation of the solution

of an initial value problem (IVP) as a fixpoint and it provides a way to compute
it via successive approximation, as shown by Theorem 1.

Theorem 1 (Properties of the Picard operator). Let ẏ = F (y), y(0) = y0

be an IVP. A continuous, differentiable function f on (a, b), with 0 ∈ (a, b), is a
solution to the IVP if and only if it satisfies:

∀t ∈ (a, b), f(t) = P(a,b)

`

F, y0

´

(y)(t) . (1)

If F is globally Lipschitz on R, the Picard iterates defined by f0 ∈ C0([a, b]), fn+1 =
P[a,b]

(

F, y0

)

(fn) converge uniformly on (a, b). So, whatever the choice of f0, if

we iteratively compute fn+1 = P[a,b]

(

F, y0

)

(fn), the sequence converges toward

the solution of the IVP on (a, b).

2 Our Model for Hybrid Systems

Our goals for this model of hybrid systems are the following. First, the discrete
part should remain close to existing embedded software. Secondly, the action of
sensors and actuators must be clearly identified. Finally, we want the continuous
and discrete systems to be modeled separately for two reasons. First, to analyze



the behavior of a controller in different physical environments without rewriting
the entire system, the distinction between the plant (i.e. the discrete part) and
the environment must be clear. Secondly, for existing industrial applications, the
discrete part (i.e. the program) is already written, so we want a model of the
hybrid systems that can use this program “as it is”. An obvious solution would
consist of building a cartesian product between the continuous states and the
states of the program. For combinatorial reasons, our approach consists of first
describing a model for continuous subsystems (Sect. 2.1) and then a model for
discrete subsystems (Sect. 2.2).

2.1 Model for the Continuous Subsystem

The continuous part contains variables evolving continuously with time such as
the water height in the tank or the temperature of the air. Their evolution is
usually described by an ordinary differential equation; for example, the temper-
ature y of a room with a heater is given by an ODE like ẏ = 5 − 0.1y. Let κ
be the continuous model, its expressiveness depends on the set of functions F
that we allow to define the IVP ẏ = F (y), y(0) = y0. We need to capture two
phenomena: a change in the dynamics due to the environment itself and a change
due to the discrete program. The first arises for example when the water passes
above the tube (see (2)) while the second appears when the valve is closed.

To capture the changes due to the actuators, we allow F to have boolean

parameters. We have F = F (y, t, k), where k is a vector of boolean values.
We write Fk(y, t) = F (y, t, k) for every possible value of k. To capture the
changes induced by the environment itself, we let each Fk be a continuous,
piecewise Lipschitz function. Thus, Fk behaves differently in different regions of
the space, which is precisely the kind of changes we wanted to model. We recall
that a function g is piecewise Lipschitz if there exist finitely many real numbers
x0 < x1 < · · · < xn such that the restriction of g to [xi, xi+1] is Lipschitz. The
theory of differential equations remain unchanged with such functions, except
that the solutions are now continuous but only piecewise differentiable functions.
Especially, the Picard iterates still converge uniformly on every interval.

The continuous model κ is a triple κ = (F,
(

Fk

)

k∈k
, y0) where

(

Fk

)

k∈k
is

the set of possible modes. We write Fk for
(

Fk

)

k∈k
. F is the function defining

the IVP and is such that there exists t0 < t1 < · · · < tn < . . . such that the
restriction of F to [ti, ti+1] is equal to one of the Fk. The model representing the
evolution of the liquid height in the one-tank system is (F, {F0, F1}, y0) where
(F0, F1) are given by (2).

Fk(x) =



i − k ∗ k1
√

x − k2

√
x − h if x ≥ h

i − k ∗ k1
√

x otherwise
(2)

2.2 Model for the Discrete Subsystem

We want the discrete model ∆ to remain close to existing embedded software. We
thus start with a set of standard statements which are common to any imperative



stmt := v = exp | while(bool) stmt | if(bool) then stmt else stmt
| stmt;stmt | hyb stmt

exp := c | exp+exp | exp-exp | exp*exp ...
bool := v<exp | v>exp | bool∨bool | ...

hyb stmt := sens.y?x | act.k!c | wait c

Fig. 2.1. Statements for the discrete system.

language (stmt in Fig. 2.1): assignemnts, if statements, while loops, arithmetic
and boolean expressions. This core language can be extended to more complex
statements without perturbing the semantics of the hybrid system as they rep-
resent purely discrete actions. In addition, we have three hybrid actions. First,
a sens action for the sensors: the action of sens.y?x is to bind the variable x to
the value of the continuous variable y at the time the action is executed. Then, a
act action for the actuators: the action of act.k!c is to change the continuous dy-
namics by choosing the function Fc among all the possible dynamics Fk. Finally,
a wait action for the passing of time: we suppose that all discrete and hybrid
actions are instantaneous and we model the fact that they were not by explicitly
adding these wait statements. The effect of wait c is to move time forward by
c seconds. This formalism is very close to existing imperative languages and, in
most cases, the programs already contain, as comments, the hybrid statements.
For example, the loops of industrial programs are usually precisely cadenced and
we often see in the codes comments indicating their frequency such as “this loop
runs at 8kHz”. Thus, adding a wait command at the end of the loop to model
its cadence is easy. Using this syntax, we can write a controller for the one tank
system that measures the height x of the water with a sensor and open the valve
if x is too high (see Listing 1). We suppose that closing the valve takes two
seconds, so the controller must predict the height of the water two seconds later
(via the function anticipate) and start the opening if this predicted value is
too high.

1 int main ( ) {
2 sen sor x ; // sensors d e c l a ra t i on
3 actuator k ; // ac tua to r s d e c l a ra t i on
4 while ( t rue ) {
5 sens . x?h ;
6 i f (h>h max)
7 act . k ! 1 ; throw ( alarm ) ;
8 h i n 2 s e c s = an t i c i p a t e (h ) ;
9 i f ( h i n 2 s e c s > h max)

10 act . k ! 1 ;
11 wait ( 0 . 0 1 ) ; // de l ay ac t i on
12 }
13 }

Listing 1. Controller for a one-tank system.



This model for hybrid systems conforms to our three requirements, and we
designed it such that it prohibits physically impossible phenomena like continu-
ous state jumps or Zeno effects. Actually, time is driven by the discrete subsystem
through the wait statements, thus there must exist a minimum time between
two mode switchings (because the discrete program is finite), which prohibits
Zeno phenomena. We now give a formal, denotational semantics for this model
of hybrid systems. The semantics is defined separately for the continuous sys-
tem (Sect. 3) and then we merge it to the denotational semantics of imperative
languages to form the semantics of the hybrid system (Sect. 4).

3 Continuous Semantics

In this section, we give a formal, denotational semantics of the continuous model.
Let us recall that the continuous part of an hybrid system is represented as
κ =

(

F, Fk, y0) where Fk is a family of piecewise Lipschitz continuous functions
and y0 ∈ R is the initial condition (we suppose t0 = 0). Each Fk is supposed
to be globally α-Lipschitz on R, so that there exists a unique maximal solution
on R to each ODE ẏ = Fk(y, t). We first give the intuition for the continuous
semantics and then we describe the lattice structure that we manipulate (Sect.
3.1) and the computation of the semantics as a fix-point (Sect. 3.2).

In an analogy with standard denotational semantics, we want to express the
semantics of κ as a function mapping an initial environment to a final value. If
we know the behavior of the discrete part of the system, we know the times at
which the parameters k ∈ k switch. Thus, we know completely the function F
and the semantics of κ maps an initial value to the semantics of the IVP:

ẏ = F (y, t), y(0) = y0 . (3)

Basically, the semantics of the IVP is its maximal solution, i.e. a piecewise differ-
entiable, continuous function y : R+ → R which satisfies (3). Thus, the semantics
of κ is a function JκK mapping an initial environment (i.e. the initially available
information y) to the solution of the IVP. The computation of JκK(y) requires the
computation of a fix-point, in the sense of Banach’s fix-point theory, as shown
by Theorem 1. We translate this fix-point computation into Tarski’s fix-point
theory: JκK(y) is computed as the fix-point of an operator Γ and we prove this
is the supremum of the iterates Γ n(⊥). Γ is defined on elements with partial
information and it updates them by increasing their information content. Our
notion of partial information is the following: a function has only partial infor-
mation if it is defined on a finite interval [0, X ] for some X ∈ R+ and its value
at each point is bounded, i.e. is an interval. Thus, the maximal elements are
the real-valued functions defined on R+ and our semantics will construct one
of these (the solution of (3)) as the limit of an approximations sequence, each
approximation being a partially defined, interval-valued function.

3.1 The Lattice of Interval-Valued Functions

We now define the set of partially defined, interval-valued functions. We also
define an order and shows that this order provides a lattice structure.



Definition 1 (Partial, interval-valued functions). Let X ∈ R+. IFX is

the set of interval-valued functions defined on [0, X ]: IFX = {f : [0, X] → I(R)}
For such a function, we define its upper f and lower f functions as the two

real-valued functions such that ∀x ∈ [0, X ], f(x) = [f(x), f (x)].

When f (respectively f) is right-continuous (respectively left-continuous), f is

(Scott) continuous and write IF0
X the set of all continuous, partial, interval-

valued functions. We recall that a function f is right-continuous if when t tends
toward x from above, f(t) tends toward f(x); the left-continuity is the opposite.
We provide the set IF0

X with a complete partial order structure with the point-
wise reverse order: f ⊑X g ⇔ ∀x ∈ [0, X], g(x) ⊆ f(x). This order means that at
every point in [0, X ], g is more informative than f . Clearly, (IF0

X ,⊑X) is a CPO
(actually, it is a continuous Scott domain [9]). The left-(resp. right) continuity
of f (resp. f) is a necessary condition for f to be Scott-continuous [9] and for

IF0
X to be a CPO; consider for example the piecewise linear functions fn ∈ IF0

1

defined by fn(x) = [0, 1] if x ∈ [0, 1
2 ], fn(x) = [0, 1 − n

2 (x − 1
2 )] if x ∈ [ 12 , 1

2 + 1
n
]

and fn(x) = [0, 1
2 ] otherwise. Clearly, f =

⊔

n fn is not continuous in 1
2 , while

each fn is. The right-continuity condition imposes that f(x) = 1 for x ∈ [0, 1
2 [

and f(x) = 1
2 for x ∈ [12 , 1].

IF0
∞ is the natural extension of IF0

X to functions defined on R+. We now build
the set of interval functions defined over arbitrary intervals of R.

Definition 2 (Arbitrary long, interval-valued functions). The set of all

continuous, partial, interval-valued functions is D0 =
(

⋃

X∈R+
IF0

X

)

∪ IF0
∞.

For f ∈ D0, we note Xf the upper bound of its domain: Xf = sup(dom(f)).
The value Xf is the maximum time until which f is defined; if f is defined on

R+, then Xf = ∞.

Note that for all X ≥ 0, the set of continuous, real-valued functions C0([0, X ]) is
embedded into D0 by the function γ : f 7→ λx.[f(x), f(x)]. Thus, we will identify
a map f ∈ C0([0, X ]) with the map λx.[f(x), f(x)] and write f ∈ D0. We extend
the order ⊑X to D0 by requiring that g is greater than f if it is more precise on
a longer interval than f :

f ⊑ g ⇔ Xf ≤ Xg and f ⊑Xf
g|[0,Xf ]

and ∀x ∈ [Xf , Xg ], g(x) ⊆ f(Xf ) (4)

where g|[0,Xf ]
denotes the restriction of g to [0, Xf ]. Figure 3.1 gives an example

(a) Comparable functions. (b) Incomparable functions.

Fig. 3.1. Order on partially defined functions.



of comparable functions (left, the dark one being bigger than the light one) and
an example of incomparable functions (right). The third hypothesis in (4) states
that g remains bounded by the last value of f on [Xf , Xg]. It is necessary for D0

to be a CPO: in any increasing chain fn, the functions fn and fn are bounded,

thus (fn) is a bounded increasing sequence (with respect to the pointwise order

for real-valued functions), so it has a limit f . Equivalently, (fn) has a limit f ,

which proves the existence of
⊔

n fn = [f, f ]. We extend (D0,⊑) with a bottom

⊥ and a top ⊤ element such that ∀f ∈ D0, ⊥ ⊑ f ⊑ ⊤. We also define the join
and meet operators ⊔ and ⊓ as follows. Let f, g ∈ D0, with Xf ≤ Xg. Then,

f ⊔ g ∈ IF0
Xg

and f ⊓ g ∈ IF0
Xf

are defined by:

f ⊔ g(x) =



f(x) ∩ g(x) if x ∈ [0, Xf ]
f(Xf ) ∩ g(x) otherwise

f ⊓ g(x) = f(x) ∪ g(x)

This definition of f ⊔ g supposes that ∀x ∈ [0, Xf ], f(x) ∩ g(x) 6= ∅. If this is
not true, f ⊔ g = ⊤.

Proposition 1. (D0,⊑,⊤,⊥,⊔,⊓) is a continuous lattice.

Let us remark that D0 is a lattice and a CPO, so every increasing chain does have
a supremum. It is however not a complete lattice as there exist infinite sequences
without supremum. For example, let us consider the sequence of functions ϕn ∈
IF0

1− 1
n

defined by ϕn(x) = [− 1
1−x

, 1
1−x

]. Clearly, this sequence does not have a

supremum in D0 except ⊤, while there are infinitely many f ∈ D0 greater than
fn for all n (for example, the constant function with value 0).We next define
some basic operations on D0 that adapt the classical operations on real-valued
functions. The arithmetic operators +,−, ∗, / are defined as an extension of the
interval arithmetic. For ⊙ ∈ {+,−, ∗, /} and f, g ∈ IF0

X , we define f ⊙g ∈ IF0
X

as ∀x ∈ [0, X], f ⊙ g(x) = {y ⊙ z | y ∈ f(x) and z ∈ g(x)}. We next define the
composition, primitive and width of functions in D0.

Definition 3 (Function composition, Primitive and Width).
The composition of a continuous, real-valued function F : R → R and a partial,

interval-valued function f ∈ IF0
X is the function F ◦X f ∈ IF0

X defined by:

∀x ∈ [0, X], (F ◦X f)(x) = {F (y) : y ∈ f(x)}. F ◦X f is well defined because F is

continuous and f(x) is an interval, so F ◦f(x) is an interval for all x. We natu-

rally extend the notion of function composition to D0 and define the composition

operator ◦ as: ∀F : R → R and f ∈ D0, F ◦ f = F ◦Xf
f .

The primitive of a function f ∈ IF0
X is IX(f) ∈ IF0

X defined by: ∀x ∈
[0, X], IX(f)(x) =

ˆR x

0
f(s)ds,

R x

0
f(s)ds

˜

. This primitive operator is extended to

D0 straightforwardly: for f ∈ D0, we set I(f) = IXf
(f).

The width of a function f ∈ D0 is computed as the maximum width of all

intervals f(x): w(f) = maxx∈[0,Xf ] w(f(x)).

Proposition 2. The operator ◦ is monotone and continuous. The width w is a

monotone, continuous function from (D0,⊑) to ([0,∞[,�) where x � y ⇔ y ≤ x.



The proof of this proposition is straightforward: we use the monotonicity of
functions with respect to set inclusion for ◦ and we note that for two intervals
i1, i2, i2 ⊆ i1 ⇒ w(i2) ≤ w(i1), thus the monotonicity of w. The primitive
operator is not monotone, as it does not preserve the third condition for the
order ⊑ (Equation (4)). However, the second condition is preserved thanks to
the monotonicity of the primitive for real-valued functions.

Among all the functions of D0, one is of special interest for us: y∞, the
maximal solution of (3). We compute it by successive approximations and thus
need to measure the quality of our approximation. Following Keye Martin’s
measure theory [19], a measurement is a continuous function µ from a CPO
D into the set of nonnegative real numbers with reverse ordering: [0,∞[∗ that
reveals the distance of f ∈ D to the maximal elements of D, which have measure
0. The measurement must be coherent with the informational order on D: the
more informative f , the smaller its measure. It must also be the case that if we
measure that the sequence fn converges towards 0 (limn→∞ µ(fn) = 0), then the
sequence fn does converge towards a maximal element (

⊔

n fn = f, µ(f) = 0).
For a formal definition of a measurement, please refer to [19], Chapter 2. In our
case, the maximal elements of D0 are the real-valued functions defined on R+.
These functions have a null width and an infinitely long domain of definition.
Thus, a measurement must takes both aspects into account.

Definition 4 (The measurement µ). Let f ∈ D0. We let µ(f) = w(f) + 1
Xf

.

Clearly, µ(f) is null if and only if f is maximal, so in particular µ(y∞) = 0.

Proposition 3. µ is a measurement, i.e.:

(i) it is a Scott continuous map from (D0,⊑) into [0,∞[∗.
(ii) for all f ∈ D0 such that µ(f) = 0 and all sequences fn ≪ f , we have

limn→∞ µ(fn) = 0 ⇒ ⊔nfn = f

We recall that the far away relation f ≪ g means that for every increasing chain

ϕn with a supremum greater than g, the elements ϕn must become greater than

f at some N ∈ N.

We thus have built a lattice D0 and defined three operators on it: I, ◦ and w.
We also have a measurement µ on D0 which characterizes its maximal elements,
i.e. the real-valued functions defined on R+. We use µ in the next section.

3.2 The Semantics

JκK(y) is computed as the least fix-point of the operator ΓF,y0 : D0 → D0 that
acts as follows: a function f ∈ IF0

X , it first updates the available information
by bringing each f(x) closer to y∞(x) and then it extends the function to the
right by assigning a value to f(x) for x ∈ [X, X + 1]. The first step uses an
iteration of the Picard operator (Sect. ??) while the second step extends the
function in such a way that if f encloses the solution at X , then the extension
encloses y∞ on [X, X + 1]. This is possible because F is α-Lipschitz, so y∞
cannot grow faster than eαx. We recall that the Picard operator is defined as
P[0,Xf ]

`

F, y0

´

(f) = λx.y0 +
R x

0
F (f(s))ds = y0 + I(F ◦ f).



Definition 5 (Updating operator). Let f ∈ D0, we suppose Xf < ∞. Let
F be a continuous, globally α-Lipschitz function and y0 ∈ R. Then, ΓF,y0(f) ∈
IF0

Xf +1 is defined by:

ΓF,y0(f)(x) =

8

>

<

>

:

P[0,Xf ]

`

F, y0

´

(f)(x) if x ≤ Xf

J + F (J) ∗ [−eα, eα] ∗ (x − X),
with J = P[0,Xf ]

`

F, y0

´

(f)(X) otherwise

If f ∈ IF0
∞, ΓF,y0(f) = P[0,∞[

(

F, y0

)

(f). ΓF,y0(⊥) is the function defined on

[0, 0] with value y0.

An example of the effect of ΓF,y0 on a partial function is shown on Fig. 3.2. The
black line represents y∞; Figure 3.2(a) shows the updating mechanism, while
Fig. 3.2(b) is the extension. The operator ΓF,y0 is not monotone on D0, but we
know that it has a fix-point: y∞. We will show in the following that this fix-point
can be computed as the supremum of the ΓF,y0 iterates, i.e. y∞ =

⊔

n Γ n
F,y0

(⊥).

Proposition 4. Let f ∈ IF0
X . ΓF,y0 verifies the invariant:

∀x ∈ [0, X], y∞(x) ∈ f(x) ⇒ ∀x ∈ [0, X + 1], y∞(x) ∈ ΓF,y0(f)(x) .

The iterates fn+1 = ΓF,y0(fn), starting from f0 = ⊥, form a sequence of ap-
proximation of y∞: they enclose it and their width converge toward 0. On Table
1 the figures show how the iterates of ΓF,y0 converge to a real valued function.
The semantics of the continuous subsystem κ =

(

F, Fk, y0

)

maps f ∈ D0 with
the least fix-point of ΓF,y0 starting from f : JκK(f) =

⊔

n Γ n
F,y0

(f). We now give
the main result of this section.

Theorem 2. The solution y∞ of (3) is a fix-point of ΓF,y0 and

JκK(⊥) = Fix(ΓF,y0) =
⊔

n

Γ n
F,y0

(⊥) = y∞ .

4 Hybrid Semantics

Let us now give the semantics of the complete hybrid system. The hybrid model
is a pair Ω =

(

∆, κ) consisting of a model ∆ for the discrete system and a

(a) Update the informa-
tion

(b) Extends the informa-
tion

Fig. 3.2. The updating operator (two steps).



model κ for the continuous environment that define two dynamical systems that
run in parallel and, from time to time, communicate. On the one hand,data
are passed from κ to ∆ via the sensors. This communication requires that both
dynamical systems reached the same time before the data is exchanged. The
sens actions must thus be blocking. On the other hand, orders are passed from
∆ to κ via the actuators. Indeed, the discrete system only indicates to the
continuous system what its semantics will be, i.e. it chooses one of the possible
functions Fk. This communication needs not to be blocking as it does not affect
the value of the continuous variables but only their future behavior. The hybrid
denotations for sens and act respect these facts. The semantics JΩKH of Ω is a
function between hybrid environments. The discrete environment is altered by
the discrete subsystem while the continuous one is computed only when needed,
i.e. when a sens is found.

4.1 Hybrid Environments

A hybrid environment consists of a pair made of a discrete and a continu-
ous environment. The discrete environment σδ binds every discrete variable
v ∈ V ar to a value and the time time to a positive real value. It also con-
tains the function F that defines the semantics of the continuous variables.
This function F is piecewisely defined by the discrete program through the
act statements and thus storing F is equivalent to storing the sequence of
all executed act actions. The discrete environment thus stores both the value
of the variables, the execution time, as well as the sequence of modifications
brought to the continuous system. We write Σ∆ the set of all discrete envi-
ronments, Σ∆ =

˘`

V ar → V al
´

∗
`

{time} → R+

´

∗
`

F : R+ × R → R
´¯

. The con-
tinuous environment σκ contains an approximation of the physical variables
y ∈ D0 and the set of functions Fk defining the continuous dynamics, i.e.
the set of possible continuous modes that are available for the discrete pro-
gram to chose. We write Σκ the set of all continuous environments, Σκ =
˘`

y ∈ D0
´

∗
`

Fk | Fk : R+ × R → R
´¯

. As usual, we write σδ.X (resp. σκ.Y ) the
the value of a variable X ∈ V ar∪{time, F} (resp. Y ∈ {y}∪Fk) in the discrete
(resp. continuous) environment. We write ΣH the set of all hybrid environments:

Σ
H =

8

<

:

`

σδ, σκ

´

˛

˛

˛

˛

˛

˛

σδ ∈ Σ∆ and σκ ∈ Σκ and
∃(tn), (cn) s.t. ∀i ∈ N, ∀t ∈ [ti, ti+1[,

σδ.F (t) = σκ.Fci(t)

9

=

;

. (5)

We write Πδ : (σδ , σκ) 7→ σδ and Πκ : (σδ, σκ) 7→ σκ the two projections of an
hybrid environment into a discrete (resp. continuous) one.

4.2 Hybrid Denotations

The denotation of the purely discrete parts of the language are defined as usual
for imperative languages (see [24] for example). We have denotations for nu-
merical (resp. boolean) expressions JexpK (resp. JboolK) which are functions be-
tween a discrete environment and a numerical (resp. boolean) value. Every dis-
crete statement stmt also has a denotation which is a function between dis-
crete environmnents. We extend them to hybrid environments: JexpKH(σδ, σκ) =



JexpK(σδ), JboolKH(σδ, σκ) = JboolK(σδ) , and JstmsKH(σδ, σκ) = JstmsK(σδ). The de-
notation of a wait is a function from ΣH to ΣH that modifies the value of time:
Jwait(c)KH(σδ, σκ) =

`

σδ[time 7→ σδ.time + c, σκ

´

. The denotation of an action

sens.y?x (Equation (6) with n = ⌊σδ.time + 1⌋) is a function from ΣH to ΣH

that modifies a pair (σδ, σκ) as follows: it first updates σκ to ensure that σκ.y
has a value at time σδ.time and then it binds x with this value in σδ. The first
step is done by applying ⌊σδ.time + 1⌋ times the operator ΓF,y0 (see Sect. 3.2)
to σκ.y with F = σδ.F and y0 = σκ.y(0).

Jsens.y?xKH(σδ, σκ) =

„

σ′
κ = σκ[y 7→ Γ n

σδ.F,y(0)

`

y
´

],

σ′
δ = σδ[x 7→ mid

`

σ′
κ.y(σδ.time)

´

]

«

. (6)

The denotation of an action act.k!c (Equation (7)) is a function from ΣH to
ΣH that modifies(σδ, σκ) as follows: σκ is left unchanged and in σδ, the function
F is modified so that it takes the value of σκ.Fc for times greater than σδ.time.

Jact.k!cKH(σδ, σκ) =

 

σδ

"

F 7→ λt, y.

(

σδ.F (y, t) if t ≤ σδ.time

σκ.Fc(y, t) otherwise

#

, σκ

!

. (7)

We can compute the hybrid semantics J∆KH of the discrete program by com-
bining these denotations. This does not however compute the semantics of the
continuous environment, this is the role of the semantics of the hybrid system.

4.3 Hybrid Semantics

The semantics of the hybrid model Ω =
(

∆, κ) is a function between hybrid envi-

ronments: JΩKH : ΣH → ΣH. JΩKH alters a pair
(

σδ, σκ

)

as follows. It computes
(

σ′
δ, σ

′
κ

)

= J∆KH
(

σδ, σκ

)

and two cases occur. If σ′
κ = σκ, the discrete program

has no effect on the environment, i.e. either there are no sens statements in
it, or they have no effect on σκ. This is the case only if σκ.y is a fix-point of
ΓF,y0 , i.e. σδ.y = JκK(σδ.y). In this case, we have computed both the continuous
semantics and the discrete one, so we set JΩKH

(

σδ, σκ

)

=
(

σ′
δ, σ

′
κ

)

. On the other
hand, if σ′

κ 6= σκ, the program has modified the environment and thus brought
σδ.y closer to JκK(σδ .y). σ′

δ (resp. σ′
κ) is only an approximation of the result of

the discrete (resp. continuous) system and we must iterate the process to obtain
a better approximation. We thus propagate σ′

κ into the discrete subsystem, i.e.
we apply J∆KH to

(

σδ, σ
′
κ

)

and repeat the operation. The semantics JΩKH is
computed as a fix-point of a function that applies J∆K consecutively until the
semantics of the continuous environment has been computed. The formal defini-
tion of JΩKH is given in (8). Let us note that JΩKH is actually the only fix-point
of the function ΓH just like JκK was the only fix-point of ΓF,y0 in Sect. 3. JΩKH

is compatible with the continuous semantics JκK presented in Sect. 3: the con-
tinuous environment is finally computed as the fix-point of the operator ΓF,y0

as in Sect. 3.2. It is also compatible with the standard denotational semantics
of imperative languages: if ∆ does not have any hybrid actions, then JΩKH is
precisely the semantics of the discrete program as defined in [24] for example.

JΩKH = Fix(ΓH) where

ΓH(ϕ)(σδ, σκ) = (σ′
δ, σ

′
κ) with

(

σ′
δ = Πδ

`

J∆KH(σδ, σ
′
κ)
´

σ′
κ = Πκ

`

ϕ(σδ, Πκ

`

J∆KH(σκ, σδ)
´´

. (8)



Statement Iteration 1 Iteration 2 Iteration 3
t h x t h x t h x

Initial environment 0 ⊥ ⊥ 0 ⊥

4.5

3.5

1.5

4.0

3.0

2.5

2.0

1.0

6543210

0 ⊥

4.5

51 3

4.0

2.5

1.5

3.0

1.0

42 60

3.5

2.0

wait(1); 1 1 1

sens.x?h; 2.0

3.5

1.5

4.5

4.0

3.0

2.5

2.0

1.0

6543210

2.45

3.5

1.5

4.5

4.0

3.0

2.5

2.0

1.0

654320 1

2.48

4.0

53

4.5

3.0

1.0

420

2.0

1

1.5

3.5

2.5

6

if (h>h max)

act.k!1; F 7→ F0 F 7→ F0 F 7→ F0

wait(1); 2 2 2

sens.x?h; 2.8

4.5

3.5

1.5

4.0

3.0

2.5

2.0

1.0

6543210

2.85

4.5

51 3

4.0

2.5

1.5

3.0

1.0

42 60

3.5

2.0

2.95 2.5

3.5

3

4.5

3.0

1.5

5 6

1.0

1 420

4.0

2.0

if(h>h max)

act.k!1; F 7→ F0 F 7→ F0 F 7→ λt.(t < 2)?F0; F1

Table 1. First three iterations of the semantics computation.

4.4 Example

To illustrate that our semantics really computes the behavior of the hybrid
system, let us consider a simplified version of the one-tank controller (see the
first column of Tab. 1). We only consider two iterations of the while loop (which
has a period of one second) and forget about the anticipation mechanism. The
continuous system is still given by (2), with i = 2, k1 = k2 = 1, h = 3, h max =
2.9, and the initial value for the height of water x is x0 = 2. We have two possible
continuous dynamics : F0 (the valve is closed) and F1 (the valve is open). Initially,
the valve is closed, i.e. we start with the dynamic F0. Table 1 shows the first
three iterations of the computation of the semantics of the system. For each
line of the program, we indicate how the variables are changed (t is the time,
h the discrete variable and x the continuous one). For the act statement, we
indicate how it changes the function F of the hybrid environment. The notation
λt.(t < 2)?F0; F1 means that F (t) = F0(t) if t < 2, and F (t) = F1(t) otherwise.

5 Conclusion

In this article, we presented a new approach to hybrid systems that can be used
for the modeling and analysis of large critical embedded programs. Our model is
based on a clear separation of the discrete and the continuous systems: ordinary



differential equations with boolean parameters are used to model the continuous
system, an imperative language with hybrid statements is used for the discrete
part. The emphasis has been placed on making this model as unintrusive as
possible for existing software, so we believe that we can use it for industrial
size problems. We defined the semantics of our model in two steps: first, we
extended results by Edalat and Lieutier [9] to consider the maximal solutions
of IVP on R+ and we presented the semantics of the continuous model as a
function mapping the initial condition to the maximal solution. The semantics
of the hybrid system is then an extension of the standard denotational semantics
of imperative languages in which actions of sensors and actuators are defined.

To the best of our knowledge, this is the first attempt to integrate into the
semantics of imperative languages the continuous environment that models the
programs inputs. We are not aware of any equivalent, operationally defined mod-
els. We believe that our model is expressive enough to encode most of Henzinger’s
hybrid automata, but both models are based on very different asumptions (for
example, we consider that time is driven by the discrete system) so that it is
difficult to formally compare them.

This work is a first step toward the validation of embedded software with
their environment. The analysis of such systems using, for example, abstract
interpretation techniques [6] requires two stages. First, the continuous system
must be abstracted in a non-naive way. The theory of guaranteed integration of
ODE [21] brings us the adequate tools for the safe abstraction of the continuous
system. Validated ODE solvers [4] compute interval bounds that are proved
to contain the solution. This can be seen as a valid abstraction in the theory
of abstract interpretation. For the analysis of the discrete part, the use of an
implementation level model allows us to use existing methods (for example, the
verification of the absence of run-time errors [7] or of the numerical precision of
floating point computations [13]). These methods must however be completed
so that they consider time: the main difficulty in the analysis of the discrete
system is to carefully analyze the time at which every statement is executed
(this is necessary for the sensor actions to be precise enough) This modification of
standard static analysis techniques to our framework will be our main concern for
future work. Another interesting application of our approach for hybrid systems
is to modify standard strictness [20] or termination analysis [2] so that they fit to
our model. This could be used to solve, in an approximate way, the reachability
problem of a discrete state in a hybrid system, which is known to be undecidable
[16]. Several methods have been proposed for its simplification [17]; we believe
that our approach may be efficiently used for its approximate solution as it
benefits from all the static analysis based methods for programming languages.
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A Proofs

Proof of Proposition 1

Each underlying set IF0
X is a continuous Scott domain (see [9] for a complete

proof of that). Our extended order was specially designed so that it preserves
this structure (see discussion of Equation (4)). Thus, D0 is a directed CPO. We
need to prove that ⊔ and ⊓ do define a join and a meet operator to prove that
D0 is a lattice.
We prove that ⊔ is a join. Let f, g ∈ D0 with Xf ≤ Xg, and let h = f ⊔ g.
Let us suppose that h 6= ⊤. We have: Xh = max(Xf , Xg), so Xh ≥ Xf . Let
now x ∈ [0, Xh], then if x ∈ [0, Xf ], h(x) = f(x) ∩ g(x), so h(x) ⊆ f(x), and
if x ∈ [Xf , Xh], h(x) = f(Xf ) ∩ g(x), so h(x) ⊆ f(Xf ). So, we have f ⊑ h.
Equivalently, g ⊑ h. Let now h′ be such that f ⊑ h′ and g ⊑ h′, with h′ 6= ⊤.
We have Xh′ ≥ Xf and Xh′ ≥ Xg, so Xh′ ≥ Xh. Let now x ∈ [0, Xh′ ]: if
x ∈ [0, Xf ], then h′(x) ∈ f(x) and h′(x) ∈ g(x) so h′(x) ∈ h(x); if x ∈ [Xf , Xg],
h′(x) ∈ f(Xf) and h′(x) ∈ g(x) so h′(x) ∈ h(x); if x ∈ [Xg, Xh′ ], h′(x) ∈ f(Xf )
and h′(x) ∈ g(Xg), so h′(x) ∈ f(Xf )∩ g(Xg) = h(Xh). So, we have h ⊑ h′, so ⊔
is a join.
Equivalently, we can prove that ⊓ is a meet, so D0 is a lattice. ⊓⊔

Proof of Proposition 3

Point (i) is a straightforward consequence of Proposition 2. The proof of point
(ii) relies on two observations runs as follows. Let f ∈ D0 be such that µ(f) = 0
and let fn be a sequence such that ∀ ∈ N, fn ≪ f and limn→∞ µ(fn) = 0. As
fn ≪ f , it is true that fn ⊑ f ; moreover, it holds that limn(Xfn

) = ∞ and
limn

(

w(fn)
)

= 0. Let now x ∈ R+; there exists N ∈ N such that XfN
≥ x, and

∀n ≥ N , we have f(x) ∈ fn(x). In addition, limnw(fn(x)) = 0, so the sequence
of intervals fn(x) converges toward the singleton f(x), and always contain f(x).
So, limn f

n
(x) = limn fn(x) = f(x) and consequently

⊔

n fn = f . ⊓⊔

Proof of Proposition 4
Let f ∈ D0 be such that ∀x ∈ [0, Xf ], y∞(x) ∈ f(x). Let f ′ = γF,y0(f) and
x ∈ [0, Xf + 1]. If x ∈ [0, Xf ], we have f ′(x) = P[0,Xf ](F, y0)(f)(x). Clearly,
P[0,Xf ](F, y0) is monotone, so P[0,Xf ](F, y0)(y∞)(x) ⊆ P[0,Xf ](F, y0)(f)(x) and
y∞ is a fixpoint of the Picard operator, so yinfty(x) ∈ f ′(x). Now, if x ∈
[Xf , Xf ′ ], we know that as F is k-Lipschitz, it holds that

‖y∞(t) − y∞(t0)‖ ≤ e
k.|t−t0|.F (y∞(t0)).(t − t0)

for all t, t0. If we apply this to t0 = Xf and t = Xf ′ , we have y∞(t0) ∈
P[0,Xf ](F, y0)(f)(Xf ) and we thus get that f∞(x) ∈ f ′(x). ⊓⊔

Proof of Theorem 2

This is a straightforward consequence of Propositions 3 and 4.


