
Semantics of Roundoff Error Propagation

in Finite Precision Calculations

Matthieu Martel (matthieu.martel@cea.fr)
CEA - Recherche Technologique
LIST-DTSI-SOL
CEA F91191 Gif-Sur-Yvette Cedex, France

Abstract. We introduce a concrete semantics for floating-point operations which
describes the propagation of roundoff errors throughout a calculation. This semantics
is used to assert the correctness of a static analysis which can be straightforwardly
derived from it.
In our model, every elementary operation introduces a new first order error term,
which is later propagated and combined with other error terms, yielding higher
order error terms. The semantics is parameterized by the maximal order of error
to be examined and verifies whether higher order errors actually are negligible. We
consider also coarser semantics computing the contribution, to the final error, of the
errors due to some intermediate computations. As a result, we obtain a family of
semantics and we show that the less precise ones are abstractions of the more precise
ones.

Keywords: Numerical Precision, Abstract Interpretation, Floating-point Arith-
metic, IEEE 754 Standard.

1. Introduction

It is often hard for a programmer to understand how precise the result
of a floating-point calculation is and to understand which operations
introduce the most significant errors [10, 19]. Recent work has shown
that abstract interpretation [6, 7] is a good candidate for the validation
and debugging of numerical codes [11, 23, 24] and the first attempts
to verify industrial programs with a prototype analyzer, Fluctuat, are
promising [13, 30].

In this article, we present the theoretical basis of the Fluctuat ab-
stract interpreter which estimates the accuracy of a numerical result
and which detects the elementary operations that introduce the most
imprecision. Our approach consists in defining a precise concrete se-
mantics for floating-point operations, based on the IEEE 754 Standard
[2, 10], and, next, in practice, in using a more compact abstract seman-
tics, among the many possible ones, to check properties of interest for
a program.
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Our semantics computes the errors arising during a floating-point
calculation and how they are propagated by the next operations. As
a result, we have the contribution to the global error of each error
introduced during the execution of a program. This new approach dif-
fers from the existing ones in that it not only attempts to estimate the
accuracy of a result, but also provides indications as to the source of the
imprecision. It also differs from much other work in that it models the
propagation of errors on initial data (sensitivity analysis) as well as the
propagation of roundoff errors due to the intermediate floating-point
computations (this can dominate the global error in some cases).

To our knowledge, numerical accuracy problems have almost never
been treated with static analysis techniques. Most of the alternative
techniques aim at dynamically estimating a better approximation of
the real numbers that the program would output if the machine were
working in infinite precision (see Section 1.1). In contrast, since we are
interested in detecting the errors possibly introduced by floating-point
numbers, we always work with the values used by the machine and we
compute the errors attached to them. In addition, because they are
based on static analysis, our estimations are valid for a large class of
executions (and not just one as in testing techniques).

We develop a general concrete semantics SL∗ for floating-point op-
erations which explains the propagation of roundoff errors during a cal-
culation. Elementary operations introduce new first order error terms
which, once combined, yield higher order error terms. SL∗ models the
roundoff error propagation in finite precision computations for error
terms of any order and is based on IEEE 754 Standard for floating-
point numbers [2]. By modeling the propagation of errors in the general
case, SL∗ contributes to the general understanding of this problem
and provides a theoretical basis for many static analyses. In particular,
SL∗ can be straightforwardly adapted to define abstract interpretations
generalizing the one of [11].

Next we propose some approximations of SL∗ . We show that for any
integer n, SL∗ can be approximated by another semantics SLn

which
only computes the contribution to the global error of the error terms of
order at most n, as well as the residual error, i.e. the global error due
to the error terms of order higher than n. Approximations are proven
correct by means of Galois connections. For example, SL1

computes the
contribution to the global error of the first order errors. In addition,
in contrast to [11], SL1

does verify that the contribution to the global
error of the error terms of order greater than one is negligible. Finally,
we introduce coarser semantics which compute the contribution to the
global error in the result of a computation, of the errors introduced
by some pieces of code in the program. These semantics provide less
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information than the most general ones but use non-standard values
of smaller size. In practice, this allows the user to first detect which
functions of a program introduce most errors and, next, to examine in
more detail which part of an imprecise function increases the error [13].
We introduce a partial order relation ⊆̇ on the set of the partitions of
the program points and we show that, for two partitions J1 ⊆̇ J2, the
semantics based on J1 approximates the semantics based on J2.

As a result, we have a family of semantics parameterized by an order
of error n and a partition J . We study how to move from one semantics
SJ

n1
1 to another semantics SJ

n2
2 , during the evaluation of a program,

in order to reduce the execution time. This technique, that consists of
dynamically changing the partition of the control points which errors
are attached to, is called dynamic partitioning. We show that, in the
most general case, this dynamic partitioning problem is NP-complete.

1.1. Related work

A first approach to numerical accuracy consists of attempting to get
results approximating the real solution of a problem by means of alter-
native arithmetics. For example, in stochastic arithmetics, each opera-
tion is executed a few times with different randomly chosen rounding
modes. The mean of the results gives a good approximation of the exact
solution in the reals [5, 31]. However, the correctness of the estimation
is not guaranteed in all cases. Other approximations of the real numbers
can be obtained by using multi-precision arithmetics [15, 29], interval
arithmetics [27] or rational arithmetics [25]. Compared to the semantics
developed in this article, these methods do not help to understand the
origin of the errors in the final result or they neglect some error terms.
In addition they are not well suited to static analysis.

A second approach to numerical accuracy consists of estimating the
errors made during the execution of a program, by symbolic compu-
tations [28] or by automatic differentiation. For example, automatic
differentiation consists of numerically computing the derivatives of the
functions calculated by a program in order to estimate the sensitivity
to the precision of the inputs [3, 14]. Again, the linear approximation
made by differentiation may lead to an underestimation of the errors. In
particular cases, automatic differentiation may also be used to improve
the precision of a floating-point calculation with respect to the real
calculation and to bound the residual error [20, 21]. The automatic
differentiation approach is similar to ours in the sense that we always
keep the floats computed by the machine and we attach to them in-
formation on the errors. However, automatic differentiation is difficult
to use for static analysis, mainly in the case of loops. An approach to
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this problem is the use of static convergence criteria, like the static
approximation of the Lyapunov exponents [1, 24].

Finally, other related work does not directly concern the propagation
of errors throughout a numerical program even if they also contribute
to the validation of the numerical accuracy of softwares. This includes
formal proof techniques of numerical properties over the floats (e.g.
[4, 8, 16]), constraint solvers over the floats which are used for structural
test case generation [26], or mathematical studies of the stability of
numerical algorithms [18].

1.2. Technical Overview

Section 2 gives an overview of the techniques developed in this article
and Section 3 briefly describes some aspects of IEEE 754 Standard. In
Sections 4 and 5, we introduce the semantics detailing the contribution,
to the global error, of the error terms of any order and of order at most
n, respectively. In Section 6, we introduce a coarser semantics which
computes the contribution of the error introduced in pieces of code
partitioning the program. We show that the semantics based on certain
partitions are comparable. In Section 7, we show that the dynamic
partitioning problem, which consists of reducing the execution time by
optimizing the partition used by the semantics, is NP-complete. Section
8 concludes.

2. Motivating Example

In this section, we illustrate how the propagation of roundoff errors is
modeled in our non-standard semantics using as an example a simple
calculation described by the program below:

|1| a = 621.35;
|2| b = 1.2875;
|3| c = a * b;

In this example, we use a simplified set of floating-point numbers com-
posed of a mantissa of four digits written in base 10. Thus, the program
involves two values, 621.35 and 1.2875 which are not representable
by floats. Our semantics assigns to a the non-standard value a =
621.3ε + 0.05ε1 to indicate that, because of the roundoff, the float
621.3 is assigned to a and that a rounding error of 0.05 arises at line 1.
This non-standard value is called an error series. ε is a formal variable
attached to the float coefficient of a and ε1 is a formal variable related
to the control point 1. Similarly, the error series b = 1.287ε + 0.0005ε2
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Semantics of Roundoff Error Propagation 5

is assigned to b. Let us focus on the product of line 3 which, carried
out with error series, yields:

a× b = 799.6131εε + 0.06435εε1 + 0.31065εε2 + 0.000025ε1ε2 (1)

Using real and float numbers, the results of this operation are 621.35×
1.2875 = 799.988125 and 621.3 × 1.287 = 799.6131. The difference
between both solutions is 0.375025 and this error stems from the fact
that the initial error on a (resp. b) was multiplied by b (resp. a) and
that a second order error, corresponding to the multiplication of both
error terms was introduced. So, at the end of the calculation, the
contribution to the global error of the initial error on a (resp. b) is
0.06435 (resp. 0.31065) and corresponds to the coefficient attached to
the formal variables εε1 (resp. εε2). The contribution of the second
order error due to the initial errors on both a and b is given by the
term 0.000025ε1ε2.

In our calculus, the products of formal variables produce new vari-
ables by the following rewriting rule. εuεv is rewritten εuv by concate-
nation of the indexes u and v. We assume that the index of ε is the
empty word. As detailed in Section 4, the length of the word used as
index of a formal variable indicates the order of the error term attached
to it. In our example, we rewrite ε1ε2 as ε12 and εε, εε1 and εε2 as ε,
ε1 and ε2, respectively. Equation (1) becomes:

a× b = 799.6131ε + 0.06435ε1 + 0.31065ε2 + 0.000025ε12 (2)

Finally, in Equation (2), the number 799.6131 has too many digits to
be representable in our floating-point number system. Assuming that
the elementary operations over floats are correctly rounded towards
zero, we may claim that the floating-point number computed by our
machine is 799.6 and that a new error term 0.0131ε3 is introduced by
the multiplication. In the rest of this article, we assume that the floats
conform to IEEE 754 Standard that actually guarantees the correct
rounding of elementary operations. To sum up, we have

a× b = 799.6ε + 0.06435ε1 + 0.31065ε2 + 0.000025ε12 + 0.0131ε3 (3)

At first sight, one could believe that the precision of this calculation
mainly depends on the initial error on a since it is 100 times larger
than the one on b. However, Equation (3) indicates that the final error
is mainly due to the initial error on b. Hence, to improve the precision
of the final result, one should first try to increase the precision on
b (whenever possible). Note that, as illustrated by the above exam-
ple and in contrast to other existing methods, we do not attempt to
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compute a better approximation of the real number that the program
would output if the computer were using real numbers. Since we are
interested in detecting the errors possibly introduced by floating-point
calculations, we always work with the floating-point numbers used by
the machine and we compute the errors attached to them.

Let us also remark that, in Equation (3), the error terms attached
to ε1, ε2, ε12 and ε3 are real numbers. In our definitions of concrete
semantics (Sections 4 to 6), these errors remain real numbers. In our
implementation of a static analyzer based on these semantics [13], they
are abstracted by intervals of multi-precision floating-point numbers
[15, 29].

3. Preliminary definitions

3.1. IEEE 754 Standard

IEEE 754 Standard was introduced in 1985 to harmonize the represen-
tation of floating-point numbers as well as the behavior of the elemen-
tary floating-point operations [2, 10]. This standard is now implemented
in almost all modern processors and, consequently, it provides a precise
semantics, used as a basis in this article, for the elementary opera-
tions occurring in high-level programming languages. First of all, a
floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (4)

where

− s ∈ {−1, 1} is the sign,

− m = d0d1 . . . dp−1 is the mantissa with digits 0 ≤ di < β, 0 ≤ i ≤
p− 1,

− p is the precision,

− e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 6= 0. Normal-
ization avoids multiple representations of the same number. IEEE 754
Standard specifies a few values for p, emin and emax. For example,
single precision numbers are defined by β = 2, p = 23, emin = −126
and emax = +127; Double precision numbers are defined by β = 2,
p = 52, emin = −1022 and emax = +1023. β = 2 is the only allowed
basis but slight variants also are defined by IEEE 854 Standard which,
for instances, allows β = 2 or β = 10.
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Semantics of Roundoff Error Propagation 7

IEEE 754 Standard, also introduces denormalized numbers which
are floating-point numbers with d0 = d1 = . . . = dk = 0, k < p− 1 and
e = emin. Denormalized numbers make underflow gradual [10]. Finally,
the following special values also are defined:

− NaN (Not a Number) resulting from an invalid operation,

− the values ±∞ corresponding to overflows,

− the values +0 and −0 (signed zeros).

We do not consider the extended single and extended double for-
mats, also defined by IEEE 754 Standard, whose implementations are
machine-dependent. In the rest of this paper, the notation F indiffer-
ently refers to the set of single or double precision numbers, since our
assumptions conform to both types. R denotes the set of real numbers.

IEEE 754 Standard defines four rounding modes for elementary op-
erations over floating-point numbers. These modes are towards −∞,
towards +∞, towards zero and to the nearest. We denote them by
◦−∞, ◦+∞, ◦0 and ◦∼ respectively.

Let R denote the set of real numbers and let ↑◦ : R → F be
the function which returns the roundoff of a real number following the
rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼}. IEEE 754 Standard specifies
the behavior of the elementary operations 3 ∈ {+, −, ×, ÷} between
floating-point numbers by

f1 3F,◦ f2 = ↑◦(f1 3R f2) (5)
IEEE 754 Standard also specifies how the square root function must

be rounded in a similar way to Equation (5) but does not specify, for
theoretical reasons [22], the roundoff of other functions like sin, log,
etc.

In this article, we also use the function ↓◦ : R→ R which calculates
the exact error arising when a number r is approximated by ↑◦(r). By
definition we have

↓◦(r) = r − ↑◦(r)
Let us remark that the elementary operations are total functions

on F, i.e. that the results of operations involving special values are
specified. For instance, 1÷+∞ = +0, +∞×+0 = NaN, etc. [10, 17].
However, for the sake of simplicity, we do not consider these special
values, assuming that all operations have valid operands and do not
return overflows or NaNs.
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3.2. Standard semantics

To study the propagation of errors along a sequence of computations,
we consider arithmetic expressions annotated by static labels `, `1, `2,
etc. and generated by the grammar of Equation (6).

a` ::= r` | a`0
0 +` a`1

1 | a
`0
0 −

` a`1
1 | a

`0
0 ×

` a`1
1 | a

`0
0 ÷

` a`1
1 | F

`(a`0
0 ) (6)

r denotes a value in the domain of error series and F denotes an
unary function √ , sin, etc. For any term generated by the above gram-
mar, a unique label is attached to each sub-expression. These labels,
which correspond to the nodes of the syntax tree, are used to identify
the errors introduced during a calculation by an initial datum or an
operation. For instance, in the expression r`0

0 +` r`1
1 the initial errors

corresponding to r0 and r1 are attached to the formal variables ε`0 and
ε`1 and the new error introduced by the addition is attached to ε`.

In the rest of this article, the set of all the labels occurring in a
program is denoted L. We use the small step operational semantics
defined by the reduction rules below, where 3 ∈ {+, −, ×, ÷}. These
rules correspond to a left to right evaluation strategy of the expressions.

a`0
0 → a`2

2

a`0
0 3` a`1

1 → a`2
2 3` a`1

1

a`1
1 → a`2

2

r`0
0 3` a`1

1 → r`0
0 3` a`2

2

r = r0 3` r1

r`0
0 3` r`1

1 → r`

a`0
0 → a`1

1

F `(a`0
0 )→ F `(a`1

1 )
r = F `(r0)

F `(r`0
0 )→ r`

In the following, we introduce various domains for the values r and
we specify various implementations of the operators 3. We only deal
with arithmetic expressions because the semantics of the rest of the
language (which is detailed in [12]) presents little interest. The only
particularity concerns loops and conditionals, when the result of a
comparison between floating-point numbers differs from the same com-
parison in R. In this case, the semantics in F and R lead to the execution
of different pieces of code. Our semantics mimics what the computer
does and follows the execution path resulting from the evaluation of
the test in F. However, the errors are no longer computed (yet some
improvements could consist of continuing to calculate them for local
divergences of the control flow).

Labels are only attached to the arithmetic expressions because no
roundoff error is introduced elsewhere. A label ` is related to the syntac-
tic occurrence of an operator. If an arithmetic operation 3` is executed
many times then the coefficient attached to ε` denotes the sum of
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Semantics of Roundoff Error Propagation 9

the roundoff errors introduced by each instance of 3. For example,
if the assignment x = r`1

1 3`r`2
2 is carried out inside a loop then, in the

error series attached to the value of x after n iterations, the coefficient
attached to ε` is the sum of the roundoff errors introduced by 3` during
the n first iterations.

4. General semantics

In this section, we define our most general semantics for floating-point
operations, denoted SL∗ , and we prove its correctness. This semantics,
defined in Section 4.1, details the contribution to the global error on the
result of a calculation c of all the elementary errors of any order arising
in c. The non-standard values in SL∗ may be too large to be useful
in practice and we introduce abstractions in Section 5 and Section
6. Nevertheless, the validity of the abstract semantics relies on the
correctness of the concrete one, which is established in Section 4.2.

4.1. Definition of SL∗

This section introduces the definition of our most general semantics
SL∗ which computes the errors of any order made during a calculation.
Intuitively, a number r` occurring at point ` and corresponding to
an initial datum r is represented by the error series fε + ω`ε`, where
f = ↑◦(r) is the floating-point number approximating r and ω` = ↓◦(r).
The functions ↑◦ and ↓◦ are defined in Section 3.1. f and ω` are written
as coefficients of a formal series and ε and ε` are formal variables related
to the value f known by the computer and the error between r and f .

A number r occurring at point `0 and corresponding to the result of
the evaluation of an expression a`0

0 is represented by the series

r`0 = fε +
∑

u∈L+

ωuεu (7)

where L is a set containing all the labels occurring in a`0
0 and L+

is a subset of the words on the alphabet L. L+ is formally defined
further in this Section. In Equation (7), f is the floating-point number
approximating r and is always attached to the formal variable ε. Let `
be a word made up of one character. In the formal series

∑
u∈L+ ωuεu,

ω`ε` denotes the contribution to the global error of the first order error
introduced by the computation of the operation labelled ` during the
evaluation of a`0

0 . ω` ∈ R is the scalar value of this error term and ε` is
a formal variable.
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For a given word u = `1`2 . . . `n such that n ≥ 2, εu denotes the
contribution to the global error of the nth order error due to the combi-
nation of the errors made at points `1 . . . `n. For instance, let us consider
the multiplication at point `3 of two initial data r`1

1 = (f1ε + ω`1
1 ε`1)

and r`2
2 = (f2ε + ω`2

2 ε`2):

r`1
1 ×`3 r`2

2 =
↑◦(f1f2)ε + f2ω

`1
1 ε`1 + f1ω

`2
2 ε`2 + ω`1

1 ω`2
2 ε`1`2 + ↓◦(f1f2)ε`3

(8)

As shown in Equation (8), the floating-point number computed by
this multiplication is ↑◦(f1f2). This is guaranteed by the IEEE 754
Standard, as discussed in Section 3.1. The initial first order errors ω`1

1 ε`1

and ω`2
2 ε`2 are multiplied by f2 and f1 respectively. In addition, the

multiplication introduces a new first order error ↓◦(f1f2)ε`3 , due to
the roundoff of f1f2. Finally, this operation also introduces an error
whose weight is ω`1

1 ω`2
2 and which is a second order error. We attach

this coefficient to the formal variable ε`1`2 denoting the contribution to
the global error of the second order error in `1 and `2.

Intuitively, we wish to identify the error terms ε`1`2 and ε`2`1 which
both correspond to the second order error due to points `1 and `2. More
generally, given a sequence of n letters `1, . . . , `n, we wish to identify
all the error terms of order n related to words made of permutations of
`1, . . . , `n. From a formal point of view, let L∗ denote the set of words
of finite length on the alphabet L. The empty word is denoted ε, |u|
denotes the size of the word u and u ·v denotes the concatenation of the
words u and v. We introduce the equivalence relation ∼ which identifies
the words made of the same letters: Let u, v ∈ L∗, u ∼ v if and only
if for all letter ` ∈ L, the number of occurrences of ` in u equals the
number of occurrences of ` in v.

Let L∗ be the quotient set L∗/∼. We take as representative of an
equivalence class the smallest element u of the class w.r.t. the lexico-
graphical order. L+ denotes the set L∗ \ {ε}. For any word u ∈ L+, the
formal variable εu is related to an nth order error whenever n = |u|.
εε = ε is related to the floating-point number f known by the computer
instead of the real value. In this article, the symbols f and ωε are used
indifferently to denote the coefficient of the variable εε.

Let F(D,L∗) = {
∑

u∈L∗ ωuεu : ∀u, ωu ∈ D} be the set of the
formal series whose formal variables are annotated by elements of L∗
and whose coefficients ωu belong to D. In this section as well as in Sec-
tions 5 and 6, we only consider concrete semantics and no informational
order is required between the elements of F(D,L∗). Such an order is
introduced in Section 7, for static analysis.
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Semantics of Roundoff Error Propagation 11

The semantics SL∗ uses the domain RL∗ = F(R,L∗) of error series.
The elementary operations on RL∗ are defined in Figure 1. In this
section, W denotes the free commutative monoid W = (L∗/∼, ε, ·),
whose elements belong to L∗/∼, with the empty word ε as neutral
element and equipped with the associative concatenation operator ·.
W+ denote the set {x ∈ W : x 6= ε}. In Sections 5 and 6, we will
use other monoids, based on different sets of elements and on other
associative operations.

r1 +` r2
def= ↑◦(f1 +f2)ε+

∑
u∈W+

(ωu
1 +ωu

2 )εu +↓◦(f1 +f2)ε` (9)

r1−`r2
def= ↑◦(f1−f2)ε+

∑
u∈W+

(ωu
1−ωu

2 )εu+↓◦(f1−f2)ε` (10)

r1×` r2
def= ↑◦(f1f2)ε+

∑
u ∈ W
v ∈ W
|u · v| > 0

ωu
1ωv

2εu·v +↓◦(f1f2)ε` (11)

(r1)−1` def= ↑◦(f−1
1 )ε +

1
f1

∑
n≥1

(−1)n

 ∑
u∈W+

ωu
1

f1
εu

n

+ ↓◦(f−1
1 )ε` (12)

r1÷` r2
def= ↑◦

(
f1

f2

)
ε+↓◦

(
f1

f2

)
ε`+ (13)

∑
n ≥ 0, u ∈ W

dv1 + . . . + dvk
= n

dv1 , . . . , dvk
≥ 0

|uv
dv1
1 . . . v

dvk
k | > 0

(−1)n × ωu
1

f2
× n!

dv1 ! . . . dvk
!
×

∏
v∈W+

(
ωv

2

f2

)dv

ε
uv

dv1
1 ...v

dvk
k

√
r1

` def= ↑◦(
√

f1)ε +
∑

n≥1

[
1
2
(− 1

2
)...( 3

2
−n)

n! ×
√

f1 ×
(∑

u∈W+
ωu

1
f1

εu

)n
]

+↓◦(
√

f1)ε`

(14)

Figure 1. Elementary operations for the semantics SL
∗
.

In Figure 1, the formal series
∑

u∈L∗ ωuεu related to the result of an
operation 3` contains the combination of the errors on the operands
as well as a new error term ↓◦(f13Rf2)ε` corresponding to the error
introduced by the operation 3F occurring at point `. The rules for
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addition and subtraction are natural. The elementary errors are added
or subtracted componentwise in the formal series and the new error
due to point ` corresponds to the roundoff of the result.

Multiplication requires more care because it introduces higher-order
errors due to the multiplication of the elementary errors. Higher-order
errors appear when multiplying error terms. For instance, for `1, `2 ∈ L,
and for first order errors ω`1

1 ε`1 and ω`2
2 ε`2 , the operation ω`1

1 ε`1×ω`2
2 ε`2

introduces a second-order error term written ω`1
1 ω`2

2 ε`1`2 .
The formal series resulting from the operation of r−1`

is obtained
by means of the power series development 1

1+x =
∑

n≥0(−1)nxn for
all x such that −1 < x < 1. Let r = fε +

∑
u∈W+ ωuεu and let e =∑

u∈W+ ωuεu. Then we have

1
f + e

=
1
f
× 1

1 + e
f

=
1
f
×
∑
n≥0

(−1)n en

fn

and we obtain Equation (12) of Figure 1. Note that, since the power
series is only defined as long as it is convergent, the above technique
cannot be used for any value of r. In the case of the inverse function,
the convergence disc of the series

∑
n≥0(−1)nxn = (1+x)−1 has radius

ρ = 1. So, in Equation (12), we require −1 <
∑

u∈W+
ωu

f1
< 1. This

constraint means that Equation (12) is correct as long as the abso-
lute value of the sum of the elementary errors is less than the related
floating-point number.

The semantics of division is obtained by combining equations (11)
and (12). Basically, r1 ÷` r2 equals r1 ×` (r2)−1`

but for the roundoff
term ↓◦(f1÷f2)ε`. Following the IEEE 754 Standard, the roundoff error
introduced by the division exactly is ↓◦(f1 ÷ f2) and differs from the
error term introduced by r1 ×` (r2)−1`

. As a consequence, the division
must be defined in a single step. In Equation (13), d1, . . . , dk are non-
negative integers used for the multinomial coefficients introduced by
the development:∑

n≥0

(t1 + . . . + tk)n =
∑
n≥0

∑
d1 + . . . + dk = n
d1 ≥ 0, . . . , dk ≥ 0

n!
d1! . . . dk!

td1
1 . . . tdk

k

Finally, in Equation (14), the semantics of the square root function
is obtained as for inverse but other elementary functions (e.g. the
trigonometric ones) are more difficult to handle, due to the fact that the
IEEE 754 Standard does not specify their roundoff. In this case, system
dependent assumptions must be chosen, in order to specify what the
↓◦ function returns.
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Semantics of Roundoff Error Propagation 13

For an expression a`0
0 such that Lab(a`0

0 ) ⊆ L, the semantics SL∗ is
defined by the domain RL∗ for values and by the reduction rules →L
obtained by substituting the operators on RL∗ to the operators 3 in
the reduction rules of Section 3.

4.2. Correctness of SL∗

Concerning the correctness of the operations defined by equations (9) to
(14), it is a simple matter to verify that both sides of these equations
denote the same quantity, i.e. for any operator 3 and any numbers
r1 =

∑
u∈W ωu

1 εu, r2 =
∑

u∈W ωu
2 εu and r = r13`r2 =

∑
u∈W ωuεu, we

have ∑
u∈W

ωu =

(∑
u∈W

ωu
1

)
3

(∑
u∈W

ωu
2

)
(15)

However, this is too weak a correctness criterion since it does not
examine whether a given error term is correctly propagated during
a computation. For example, Equation (16) incorrectly models the
propagation of errors since it exchanges the errors attached to ε`1 and
ε`2 .

(f1ε + ω`1ε`1) +` (f2ε + ω`2ε`2)
bad!=

↑◦(f1 + f2)ε + ω`1ε`2 + ω`2ε`1 + ↓◦(f1 + f2)ε`

(16)

Defining addition by a generalization of Equation (16) leads to an
undesirable formula satisfying the correctness criterion of Equation
(15).

We aim to show that no such confusion was made in our definitions
of the elementary operations, mainly for multiplication and division.
So we compare the sensitivity of the terms occurring in both sides of
the equations (9-14) to the values of a finite number of the coefficients
ωu

1 and ωu
2 . The sensitivity of r1 and r2 is given by ∂n

∂ω
u1
k1

...ωun
kn

for a finite

subset ωu1
k1

, . . . ωun
kn

of the coefficients, with ki = 1 or 2, ui ∈ W+, 1 ≤
i ≤ n. For example, this enables to detect that Equation (16) is not
correct, since both terms do not have the same sensitivity to ω

`1 :

∂

∂ω
`1

(
(f1ε + ω

`1
ε`1) +` (f2ε + ω`2ε`2)

)
= ε`1 (17)

∂

∂ω
`1

(
↑◦(f1 + f2)ε + ω`1ε`2 + ω`2ε`1 + ↓◦(f1 + f2)ε`

)
= ε`2 (18)

We first introduce Lemma 1 which deals with first order partial deriva-
tives.
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14 Matthieu Martel

LEMMA 1. Let 3 ∈ {+,−,×,÷} be an elementary operation and let
3` ∈ {+` ,−` ,×` ,÷`} be the corresponding non-standard operation
defined in Equations (9) to (14). For any r1 =

∑
u∈W ωu

1 εu, r2 =∑
u∈W ωu

2 εu and for any u0 ∈ W+ \ {`} we have

∂(r13r2)
∂ωu0

1

=
∂(r13`r2)

∂ωu0
1

and
∂(r13r2)

∂ωu0
2

=
∂(r13`r2)

∂ωu0
2

(19)

Proof. (Multiplication)
On one hand, we have:

∂(r1 ×` r2)
∂ωu0

1

=
∂

∂ωu0
1

 ∑
u,v∈W

ωu
1ωv

2εuv


Using the equality∑

u,v∈W
ωu

1ωv
2εuv =

∑
v∈W

ωu0
1 ωv

2εu0v +
∑

u∈W\{u0},v∈W
ωu

1ωv
2εuv

we obtain
∂(r1 ×` r2)

∂ωu0
1

=
∑
v∈W

ωv
2εu0v

On the other hand,

∂

∂ωu0
1

(∑
u∈W

ωu
1 εu ×

∑
v∈W

ωu
2 εu

)
=

∑
u∈W

ωu
1 εu ×

∂

∂ωu0
1

(∑
v∈W

ωv
2εv

)
+
∑
v∈W

ωv
2εv ×

∂

∂ωu0
1

(∑
u∈W

ωu
1 εu

)
=

0 +

(∑
v∈W

ωv
2εv

)
× εu0 =

∑
v∈W

ωv
2εu0v

2

Lemma 1 ensures that the sensitivity to a single error term in the
input series is correctly handled in our model. Proposition 1 below
generalizes Lemma 1 to the sensitivity to a finite number of coefficients.

PROPOSITION 1. Let 3 ∈ {+,−,×,÷} denote one of the usual
operators on formal series and let 3` ∈ {+` ,−` ,×` , ÷`} denote the
operators defined in Equations (9) to (14). For any r1 =

∑
u∈W ωu

1 εu,
r2 =

∑
u∈W ωu

2 εu and for any ωu1
k1

, . . . ωun
kn

, ki = 1 or 2, ui ∈ W+ \
{`}, 1 ≤ i ≤ n, we have:

∂n(r13r2)
∂ωu1

k1
. . . ωun

kn

=
∂n(r13`r2)
∂ωu1

k1
. . . ωun

kn

(20)
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Semantics of Roundoff Error Propagation 15

The proof is by recurrence, using Lemma 1. As a conclusion, let us re-
mark that, from Equations (17) and (18), the incorrect definition of ad-
dition given in Equation (16) satisfies neither Lemma 1, nor Proposition
1.

5. Restriction to errors of the nth order

The semantics SL∗ , introduced in Section 4, computes the errors of
any order arising during a calculation. This is a general model for error
propagation but it is commonly assumed that, in practice, errors of
order greater than one or (rarely) two are negligible. However, even if,
from a practical point of view, we are only interested in detailing the
contribution of the first n order errors to the global error, for n = 1
or n = 2, a safe semantics must check that higher order errors actually
are negligible.

We introduce a family (SLn
)n∈N of semantics such that the semantics

SLn
details the contribution to the global error of the errors of order at

most n. In addition, SLn
collapses into the coefficient of a single formal

variable of the series the whole contribution of the errors of order higher
than n. A value r is represented by

r = fε +
∑

u∈L+, |u|≤n

ωuεu + ωςες (21)

The term ωςες of the series aggregates the elementary errors of order
higher than n. Starting with n = 1, one can examine the contribution
of the first order errors to the global error in a computation. If the ως

coefficient is negligible in the result, then the semantics SL1
provides

enough information to understand the nature of the error. Otherwise,
SL1

states that there is a higher order error which is not negligible but
does not indicate which are the main operations which make this error
grow. This information can be obtained by the semantics SLn

for an
adequate value of n.

Let Ln be the set of words of length at most n on the alphabet L
and let Ln = (Ln/∼)∪{ς}. ς 6∈ L∗ is a special word representing all the
words of size greater than n. We define the new concatenation operator

u ·n v =
{

u · v if |u · v| ≤ n and u, v 6= ς
ς otherwise (22)

For the sake of simplicity, we write u · v instead of u ·n v whenever
it is clear that u and v belong to Ln. The domain of error series of
order at most n is RLn

= F(R,Ln). The elementary operations on RLn
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16 Matthieu Martel

are defined by the equations (9) to (14) of Section 4 in which W now
denotes the new monoid W = (Ln, ε, ·n).

Let SLn
denote the semantics defined by the domain RLn

for values
and by the reduction rules of Section 2. The semantics SLn

indicates
the contribution to the global error of the elementary errors of order
at most n.

We now focus on the correctness of (SLn
)n∈N. Recall that the cor-

rectness of the most general semantics SL∗ stems from Lemma 1 and
Proposition 1. For any integer n, SLn

is another concrete semantics,
more useful in practice than SL∗ , but a correctness proof like that for
SL∗ would be too difficult. So we aim at showing that SLn

approximates
SL∗ and that, for m ≤ n, SLm

is a conservative approximation of SLn
.

So, the semantics of order m can always be considered as being a safe
approximation of the semantics of order n, for any n > m.

Let m ≤ n. Because all our semantics are concrete, we compare the
collecting semantics, i.e. we relate a set of executions in SLn

to a set of
executions in SLm

by means of the Galois connections:

〈℘(F(R,Ln)),⊆〉 −−−−−→←−−−−−
αn,m

γm,n

〈℘(F(R,Lm)),⊆〉 (23)

αn,m and γm,n are first defined for single values and, next, for sets of
values.

αn,m

 ∑
u∈Ln

ωuεu

 def=

∑
u∈Lm\{ς}

ωuεu +

 ∑
u∈(Ln\Lm)∪{ς}

ωu

 ες

and, for some set X, αn,m(X) = {αn,m(x) : x ∈ X}. The abstraction
of the coefficients attached to εu, for any u ∈ Lm \ {ς}, is natural.
αn,m also adds the coefficients of the terms of order higher than m and
appends the result to ες . Next, the concretization becomes:

γm,n

 ∑
u∈Lm

νuεu

 def=

 ∑
u∈Ln

ωuεu :

∣∣∣∣∣ ωu = νu if u ∈ Lm \ {ς}∑
u∈(Ln\Lm)∪{ς} ω

u = νς


and γm,n(X) = ∪x∈Xγm,n(x). γm,n maps a series

∑
u∈Lm νuεu ∈ F(R,

Lm) to the set of series of the form
∑

u∈Ln ωuεu ∈ F(R,Ln) such that
ωu = νu for any u ∈ Lm \ {ς} and such that νς equals the sum of the
remaining terms.

The correctness of the elementary operations in F(R,Lm), w.r.t. the
correctness of the same operations in F(R,Ln) stems from Lemma 2.
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Semantics of Roundoff Error Propagation 17

LEMMA 2. Let ` be a control point, let rL
n
, sL

n ∈ F(R,Ln) be error
series and let rL

m
= αn,m(rL

n
), sL

m
= αn,m(sL

n
), 1 ≤ m ≤ n. For any

operator 3 ∈ {+,−,×,÷} we have

rL
n
3`sL

n ∈ γm,n(rL
m

3`sL
m

)

Proof. Proof (Multiplication)
Let

rL
n

=
∑

u∈Ln

ωu
r εu

and
sL

n
=
∑

u∈Ln

ωu
s εu

First, by Equation (11), we have:

tL
n

= rL
n ×` sL

n

= ↑◦(ωε
rω

ε
s)εε +

∑
u, v ∈ Ln

|u.v| > 0

ωu
r ωv

sεu.v + ↓◦(ωε
rω

ε
s)ε` (24)

Similarly, if rL
m

=
∑

u∈Lm νu
r εu and sL

m
=
∑

u∈Lm νu
s εu then

tL
m

= rL
m ×` sL

m

= ↑◦(νε
rν

ε
s)εε +

∑
u, v ∈ Lm

|u.v| > 0

νu
r νv

s εu.v + ↓◦(νε
rν

ε
s)ε` (25)

By definition of γm,n,
γm,n(tL

m
) = ∑

u∈Ln

ωuεu :

∣∣∣∣∣ ωu = νu
t if u ∈ Lm \ {ς}∑

u∈(Ln\Lm)∪{ς} ω
u = νς

t

 (26)

where, in (26),
νu

t =
∑

u1u2=u

νu1
r νu2

s

and
νς

t =
∑

u1u2=u∈(Ln\Lm)∪{ς}

νu1
r νu2

s

We have to show that
∑

u∈(Ln\Lm)∪{ς} ω
u
t = νς

t . We use the notations
M = Lm \ {ς} and N = (Ln \ Lm) ∪ {ς}. We have:∑

u∈N

ωu
t =

∑
u ∈ Ln, v ∈ Ln

u.v ∈ N

ωu
r ωv

s
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18 Matthieu Martel

=
∑

u, v ∈M
u.v ∈ N

ωu
r ωv

s +
∑

u, v ∈ N

ωu
r ωv

s

+
∑

u ∈M,v ∈ N
u.v ∈ N

ωu
r ωv

s +
∑

u ∈ N, v ∈M
u.v ∈ N

ωu
r ωv

s

Since rL
m

= αn,m(rL
n
) and sL

m
= αn,m(sL

n
),
∑

u∈N ωu
r = νς

r and∑
u∈N ωu

s = νς
s . So,∑

u∈N

ωu
t =

∑
u, v ∈M
u.v ∈ N

ωu
r ωv

s + νς
rν

ς
s +

∑
u ∈M

ωu
r νς

s +
∑

v ∈M

νς
rω

v
s

Since rL
m

= αn,m(rL
n
) and sL

m
= αn,m(sL

n
), for any word u such that

|u| ≤ m, we have ωu
r = νu

r and ωu
s = νu

s , so∑
u∈N

ωu
t =

∑
u, v ∈M
u.v ∈ N

νu
r νv

s + νς
rν

ς
s +

∑
u ∈M

νu
r νς

s +
∑

v ∈M

νς
rν

v
s

=
∑

u, v ∈ Lm

u.v ∈ N

νu
r νv

s = νς
t

2

Let us remark that Lemma 2 and its proof include the case n =∞
(where SL∗ is written instead of SL∞). To extend Lemma 2 to sequences
of reduction steps, we introduce the mapping R defined by Equation
(27). Lab(a`0

0 ) is the set of labels occurring in a`0
0 .

R(a`0
0 ) :

∣∣∣∣∣∣∣
Lab(a`0

0 ) → ℘
(
F(R,Ln)

)
` 7→

{
{r} if a` = r`

∅ otherwise
(27)

R(a`0
0 )(`) returns a singleton made of a value if the sub-expression

a` in a`0
0 is a value and R(a`0

0 )(`) returns the empty set otherwise.

PROPOSITION 2. Let a`0Lm

0 and a`0Ln

0 be syntactically equivalent
expressions such that for any ` ∈ L, we have:

R(a`0Ln

0 )(`) ⊆ γm,n(R(a`0Lm

0 )(`))
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If a`0Lm

0 → a`1Lm

1 then a`0Ln

0 → a`1Ln

1 such that a`1Lm

1 and a`1Ln

1 are
syntactically equivalent expressions and for all ` ∈ L, R(a`1Ln

1 )(`) ⊆
γm,n(R(a`1Lm

1 )(`)).

Given an arithmetic expression a`0
0 , Proposition 2 shows how to link

SLn
(a`0

0 ) to SLn+1
(a`0

0 ) for any integer n ≥ 0. The proof is a simple
induction on the structure of the expression a0.

The semantics SLn
is based on the domain RLn

= F(R,Ln). The
semantics SL∗ can be viewed as the infinite limit of this model, since
the operations on RL∗ , as defined in Section 4, correspond to the ones
of equations (9) to (14) with W = (L∗, ε, ·). Conversely, the semantics
SL0

uses error series of the form ωεεε + ωςες and computes the global
error made during a calculation. In short, there is a chain of Galois
connections between the semantics of any order:

SL∗(a`0
0 ) −−→←−− . . . SLn

(a`0
0 ) −−→←−− SL

n−1
(a`0

0 ) . . . −−→←−− SL
0
(a`0

0 )

SL∗(a`0
0 ) is the most informative result since it indicates the con-

tribution of the elementary errors of any order. SL0
(a`0

0 ) is the least
informative result which only indicates the global error made during
the computation.

6. Coarse grain errors

In this section, we introduce a new semantics that generalizes the ones
of Section 4 and Section 5. Intuitively, we no longer consider elementary
errors corresponding to the errors due to individual operations and we
instead compute errors due to pieces of code partitioning the program.
For instance, one may be interested in the contribution to the global
error of the whole error due to an intermediate formula or due to a
given line in the program code.

In practice, these new semantics are important to reduce the memory
size used to store the values. From a theoretical point of view, it is
necessary to prove that they are correct with respect to the general
semantics SL∗ of Section 4.

We show that the different partitions of the control points can be
partially ordered in such a way that we can compare the semantics
based on comparable partitions. Let J = {J1, J2, . . . , Jp} ∈ P(L) be
a partition of the control points. We now consider the words on the
alphabet J . J n denotes the words of maximal length n and J n =
(J n/∼) ∪ {ς}. The concatenation operator ·n related to J n is defined
in Equation (22).
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20 Matthieu Martel

For a maximal order of error n ∈ N, we consider the family of do-
mains (F(R,J n))J∈P(L), equivalently denoted (RJ n

)J∈P(L). Basically,
a unique label identifies all the operations of the same partition. A value
rJ

n ∈ RJ n
is written

rJ
n

= fε +
∑

u ∈ J n+

u = J1 . . . Jk

( ∑
v = `1 . . . `k ∈ Ln

∀i, 1 ≤ i ≤ k, ` ∈ Ji

ωv
)

εu = fε +
∑

u∈J n+

ωuεu

If |u| = 1, the word u = J is related to the first order error due to
the operations whose label belongs to J . The elementary operations on
RJ n

are defined by the equations (9) to (14) of Section 4 in which W
now denotes the new monoid (J n, ·n, ε).

Note that this semantics generalizes the semantics of Section 5 which
is based on a particular partition J = {{`} : ` ∈ L}. Another
interesting partition consists of using singletons for the initial data and
collapsing all the other control points. This enables us to determine the
contribution, to the global error, of initial errors on the program inputs
(sensitivity analysis).

In the rest of this section, we compare the semantics based on differ-
ent partitions of the labels. Intuitively, a partition J2 is coarser than a
partition J1 if J2 collapses some of the elements of J1. For a maximal
order of error n and using this ordering, the partition J = {{`} : ` ∈
L} corresponds to SLn

and is the finest partition of order n. We show
that any semantics based on a partition J2, coarser than a partition J1,
is an approximation of the semantics based on J1. Consequently, any
semantics based on a partition of the control points is an approximation
of the general semantics SLn

and SL∗ defined in Section 4 and 5. The
partial ordering on the set of partitions is defined below.

DEFINITION 1. Let J1 and J2 be two partitions of the set L. J2 is a
coarser partition of L than J1 and we write J1⊆̇J2 iff ∀J1 ∈ J1, ∃J2 ∈
J2 : J1 ⊆ J2.

If J1⊆̇J2 then some components of the partition J1 are collapsed
in J2. ⊆̇ is used in the following to order the partitions of the set L
of labels. The translation function τJ n

1 ,J n
2

maps words of the language
J n

1 to words of J n
2 as follows.

τJ n
1 ,J n

2
(J1.u) = J2.τJ n

1 ,J n
2
(u) where J1 ∈ J1, J1 ⊆ J2, J2 ∈ J2 (28)

The correctness of any semantics based on a partition J2 of L stems
from the fact that, for any J2 ∈ P(L) such that J1⊆̇J2, there is a
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Galois connection

〈℘(F(R,J n
1 )),⊆〉 −−−−−−−→←−−−−−−−

αJ
n
1 ,Jn

2

γJ
n
2 ,Jn

1

〈℘(F(R,J n
2 )),⊆〉

defined by

αJ
n
1 ,J n

2

 ∑
u∈J n

1

ωu
i εu

 def=
∑

u∈J n
1

ωuετJn
1

,Jn
2

(u)

γJ
n
2 ,J n

1

 ∑
v∈J n

2

νuεv

 def=


∑

u∈J n
1

ωuεu :
∑

τJn
1

,Jn
2

(u)=v

ωu = νv


Again, for some sets X and Y , αJ

n
1 ,J n

2 (X) = {αJ n
1 ,J n

2 (x) : x ∈ X}
and γJ

n
2 ,J n

1 (Y ) = ∪y∈Y γJ
n
2 ,J n

1 (y).
Let J be an element of the coarser partition J2. For any first order

error term ωuεu attached to an error series rJ
n
1 =

∑
u∈J n

1
ωuεu, the ab-

straction αJ
n
1 ,J n

2 (rJ
n
1 ) defines the coefficient νJ attached to εJ as being

the sum of the coefficients ωJ ′ such that J ′ ∈ J1 and J ′ ⊆ J . The func-
tion γJ

n
2 ,J n

1 returns the set of error series for which
∑

τJn
1

,Jn
2

(u)=v ωu =
νv. Lemma 3 assesses the correctness of the operations defined by
Equations (9) to (14) for the domains introduced in this section.

LEMMA 3. Let ` be a control point, let J1 and J2 be partitions of L
such that J1⊆̇J2 and let rJ

n
1 , sJ

n
1 ∈ F(R,J n

1 ). If rJ
n
2 = αJ

n
1 ,J n

2 (rJ
n
1 ),

sJ
n
2 = αJ

n
1 ,J n

2 (sJ
n
1 ) then for any 3 ∈ {+,−,×,÷} we have

rJ
n
1 3`sJ

n
1 ∈ γJ

n
2 ,J n

1 (rJ
n
2 3`sJ

n
2 )

Proof. (Multiplication)
We use the notations

rJ
n
1 =

∑
u∈J n

1

ωu
r εu, sJ

n
1 =

∑
u∈J n

1

ωu
s εu,

rJ
n
2 =

∑
u∈J n

2

νu
r εu, sJ

n
2 =

∑
u∈J n

2

νu
s εu.

Let τ(u) = τJ n
1 ,J n

2
(u). We have:

tJ
n
1 = rJ

n
1 ×` sJ

n
1 = ↑◦(ωε

rω
ε
s)εε +

∑
u, v ∈ J n

1

|u.v| > 0

ωu
r ωv

sεu.v + ↓◦(ωε
rω

ε
s)ε`
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tJ
n
2 = rJ

n
2 ×` sJ

n
2 = ↑◦(νε

rν
ε
s)εε +

∑
u, v ∈ J n

2

|u.v| > 0

νu
r νv

s εu.v + ↓◦(νε
rν

ε
s)ε`

The main step of the proof consists of showing that for all u ∈ J n
2 ,∑

τ(v)=u ωv
t = νu

t .∑
τ(v)=u

ωv
t =

∑
τ(v1.v2)=u

ωv1
r ωv2

s =
∑

τ(v1).τ(v2) = u1.u2

u1.u2 = u

ωv1
r ωv2

s

=
∑

u1.u2=u

( ∑
τ(v1) = u1

τ(v2) = u2

ωv1
r ωv2

s

)

=
∑

u1.u2=u

( ∑
τ(v1)=u1

ωv1
r ×

∑
τ(v2)=u2

ωv2
s

)
=

∑
u1.u2=u

νu1
r νu2

s = νu
t

2

The semantics defined by the domain RJ n
for values and by the

reduction rules of Section 3 is denoted SJ n
. Proposition 3 establishes

the link between the semantics SJ n
1 and SJ n

2 for comparable partitions
J1⊆̇J2 of the set L of labels.

PROPOSITION 3. Let J1 and J2 be partitions of L such that J1⊆̇J2

and let a
`0J n

1
0 and a

`0J n
2

0 be syntactically equivalent expressions such
that for all ` ∈ L, we have:

R(a`0J n
2

0 )(`) ⊆ γJ
n
1 ,J n

2 (R(a`0J n
1

0 )(`))

If a
`0J n

1
0 → a

`1J n
1

1 then a
`0J n

2
0 → a

`1J n
2

1 such that a
`1J n

1
1 and a

`1J n
2

1 are
syntactically equivalent expressions and for all ` ∈ L, R(a`1J n

2
1 )(`) ⊆

γJ
n
1 ,J n

2 (R(a`1J n
2

1 )(`)).

The proof is by induction on the structure of the expression a0.
As a consequence, for a given order of error n and for a given chain

C of partitions, there is a chain of Galois connections between the
semantics based on the partitions of C. Let us assume that

C =
(
({{`} : ` ∈ L} = J0) ⊆̇ . . . ⊆̇ . . . ⊆̇ Jk ⊆̇ . . . ⊆̇ {L}

)
Then we have:

SLn
(a`0

0 ) −−→←−− . . . SJ n
k (a`0

0 ) −−→←−− . . . −−→←−− S{L}
n
(a`0

0 )
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SJ
∗
k+1 (a`0

0 )−−→←−− . . .−−−−−−−→←−−−−−−−
αn+1,n

γn,n+1

SJ
n
k+1 (a`0

0 ) −−−−−−−→←−−−−−−−
αn,n−1

γn−1,n

. . . −−→←−−S
J 0

k+1 (a`0
0 )xy xy α

Jn
k

,Jn
k+1

xyγ
Jn

k+1,Jn
k

xy xy
SJ

∗
k (a`0

0 ) −−→←−− . . . −−→←−− SJ
n
k (a`0

0 ) −−→←−− . . . −−→←−− SJ
0
k (a`0

0 )xy xy xy xy xy
. . . −−→←−− . . . −−→←−− . . . −−→←−− . . . −−→←−− . . .xy xy xy xy xy

SL∗ (a`0
0 ) −−→←−− . . . −−→←−− SLn

(a`0
0 ) −−→←−− . . . −−→←−− SL

0
(a`0

0 )

Figure 2. Links between the semantics SJ
n
k for a given order of error n and for a

chain of partitions {{`} : ` ∈ L}⊆̇ J1 ⊆̇ . . . ⊆̇ Jk ⊆̇ . . . ⊆̇{L}.

By combining Proposition 2 and Proposition 3, we can also link
the semantics SJ n

k and SJ
n+1
k for any Jk ∈ C and any n ∈ N. This

is summed up in Figure 2. For any integer n and partition Jk, SJ
n
k

describes a particular semantics:

− SL∗ is the most informative semantics,

− conversely, the semantics SL0
that computes one global error term

is the least informative semantics,

− for all k > 0, SJ 0
k = SL0

(for n = 0, any partition yields the same
semantics),

− SJ 2
0 computes the global first order and second order errors made

during a computation,

− for any Jk, SJ
1
k computes the contribution to the global error of

the first order errors made in the different pieces of code identified
by Jk.

Let us remark that the values in RJ n
2 contain fewer terms than

the ones in RJ n
1 if J1⊆̇J2. Hence, using coarser partitions leads to

significantly fewer computations.
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7. Dynamic partitioning of the control points

As shown in Figure 2, many semantics can be used to compute in more
or less detail the contribution to the global error of the roundoff errors
arising during a finite precision calculation. In practice, the number
of terms of the series is a crucial parameter of static analyses. In this
section, we show how the choice of a particular semantics SJ n

affects
the precision and the execution-time of a static analysis relying on
it. Then we discuss the problem of moving from one semantics SJ n

1

to another semantics SJm
2 during an analysis, in order to improve its

performance. This problem is called dynamic partitioning.
First of all, let 〈IF,⊆〉 denote the domain of intervals with floating-

point bounds and let us consider the abstraction:

〈℘(F(R,J n)),⊆〉 −−−→←−−−
αI

γI

〈F(IF,J n),v〉

In F(IF,J n), the error series are ordered componentwise, i.e.:∑
u∈J n

ωu
1 εu v

∑
u∈J n

ωu
2 εu ⇐⇒ ∀u ∈ J n, ωu

1 ⊆ ωu
2 (29)

Let X be a set of floating-point numbers and let Φ : ℘(F) → IF be
the function returning the convex hull Φ(X) of X, i.e. the least interval
of IF containing the set X. αI and γI are defined by:

αI

 ∑
u∈J n

ωu
i εu : i ∈ I


 def=

∑
u∈J n

Φ ({ωu
i : i ∈ I}) εu (30)

and

γI

 ∑
u∈J n

νuεu

 def=

 ∑
u∈J n

ωuεu : ∀u ∈ J n, ωu ∈ νu

 (31)

In the following, we illustrate how the choice of a partition affects a
static analysis. Let m ≤ n, let J1 and J2 be two partitions such that
J1⊆̇J2 and let rJ

n
1 ∈ F(IF,J n

1 ), sJ
n
1 ∈ F(IF,J n

1 ), rJ
m
2 ∈ F(IF,Jm

2 ),
and sJ

m
2 ∈ F(IF,Jm

2 ) such that

rJ
m
2 = αI ◦ αJ

n
1 ,Jm

2 ◦ γI(rJ
n
1 )

and
sJ

m
2 = αI ◦ αJ

n
1 ,Jm

2 ◦ γI(sJ
n
1 )

It often happens that rJ
m
2 v sJ

m
2 while rJ

n
1 6v sJ

n
1 and sJ

n
1 6v rJ

n
1 .

In other words, two values may be comparable in the coarser seman-
tics while being incomparable in the finer. This point is crucial for
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the static analysis of loops, when the halting condition depends on a
comparison between abstract values. The analysis may terminate after
less iterations in SJm

2 than in SJ n
1 . As an example, let us consider the

loop:

|1| while !(x<=y) {
|2| y = x;
|3| x = x+a;
|4| x = b*x;
|5| }

We assume that initially:

a = [0.0, 0.14] + [0.0, 0.002]εa b = [0.5, 0.7]

x = [0.0, 0.66] + [0.0, 0.006]εx y = [0.0, 0.0]

As in Section 2, we use for this example a simplified set of floating-point
numbers whose mantissa is made up of two digits written in base 10.
We use a partition that associates one control point per line of code.
Let α = [0.0, 0.002] and β = [0.0, 0.006]. The successive values of x at
lines |3| and |4| are:

|3| x = [0.0, 0.80]ε + αεa + βεx

|4| x = [0.0, 0.56]ε + [0.5, 0.7]αεa + [0.5, 0.7]βεx

= [0.0, 0.56]ε + [0.0, 0.0014]εa + [0.0, 0.0042]εx

|3| x = [0.0, 0.70]ε + (α + 0.7α)εa + 0.7βεx

|4| x = [0.0, 0.49]ε + (0.7α + 0.72α)εa + 0.72βεx

= [0.0, 0.49]ε + [0.0, 0.00238]εa + [0.0, 0.00294]εx

Let x1 and x2 denote the value of x after one and two iterations.
We have:

x1 = [0.0, 0.56]ε + [0.0, 0.0014]εa + [0.0, 0.0042]εx (32)

x2 = [0.0, 0.49]ε + [0.0, 0.00238]εa + [0.0, 0.00294]εx (33)

In our semantics, x2 6v x1 because of the coefficient of εa and some
more iterations must be carried out to complete the static analysis
of the program. In addition, while x2 6v x1, the static analyzer may
perform a widening that would introduce a huge imprecision. In this
case, one could obtain:

x = x1∇x2 = [0.0, 0.56]ε + [0.0,+∞]εa + [0.0, 0.0042]εx

However, in the coarser partition that merges the errors εa and εx, we
have:

x′1 = [0.0, 0.56]ε + [0.0, 0.0056]εa,x (34)
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x′2 = [0.0, 0.49]ε + [0.0, 0.00532]εa,x (35)

and x′2 v x′1. This illustrates how convergence properties may depend
on the precision of the partition. On one hand, we wish to keep the
finest partition in order to know precisely which error terms mainly
contribute to the global error. On the other hand, we wish to merge
some error terms in order to accelerate the convergence of the calcula-
tions and to avoid the widenings. This problem often happens in static
analyzers based on the semantics introduced in this article. For exam-
ple, it arises in the Fluctuat abstract interpreter which uses abstract
series whose coefficients are intervals of multi-precision floating-point
numbers [13, 30]. Reducing the number of iterations in fixed point
calculations significantly improves the performance of the tool.

Given two series x1 and x2 indexed by a set J of control points,
like those of Equations (32) and (33), we aim at finding the greatest
partition J ′ of J that makes αJ ,J ′(x1) v αJ ,J ′(x2).

For the sake of simplicity, we focus on the upper bounds of the
intervals used as coefficients of the series. The dynamic partitioning
problem is formally specified in Definition 2.

DEFINITION 2 (Dynamic Partitioning Problem (DP)). Given two n-
tuples of non-negative integers W = 〈ω1, . . . , ωn〉 and W ′ = 〈ω′1, . . . , ω′n〉,
is there a partition P of {1, . . . , n}, of size t, such that

∀X ∈ P,
∑
i∈X

ωi ≤
∑
i∈X

ω′i (36)

An equivalent problem can be defined for the lower bounds of the
intervals. For the sake of simplicity and without loss of generality, DP
is defined for integer coefficients.

PROPOSITION 4. DP is NP-complete.

The proof is by transformation from the well-known NP-complete
problem Partition [9], whose definition is recalled below.

DEFINITION 3 (Partition). Given a finite set of positive integers A =
{a1, . . . , an}, is there a subset I of A such that∑

ai∈I

ai =
∑

ai∈A\I
ai

Proof. (Proposition 4) DP belongs to NP since it is a trivial matter
to check a solution in polynomial-time. Let A = {a1, . . . , an} be an
arbitrary instance I1 of Partition. We build, in polynomial-time from
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I1, the instance I2 of DP defined by Equations (37-41). As in Definition
2, t denotes the number of classes of the partition.

t = 2 (37)

ωi =
( ∑

aj∈A

aj

)
+ ai, 1 ≤ i ≤ n (38)

ω′i =
( ∑

aj∈A

aj

)
− ai, 1 ≤ i ≤ n (39)

ωn+1 = ωn+2 = 0 (40)

ω′n+1 = ω′n+2 =
∑

aj∈A

aj (41)

By hypothesis, we assume that there exists a polynomial time algorithm
for DP. This algorithm finds a solution to I2 which satisfies:

∀X ∈ P,
∑
i∈X

ωi ≤
∑
i∈X

ω′i (42)

First of all, we note the following fact: since t = 2, P = {X, X}, where
X = {1, 2, . . . , n+2}\X. In addition, n+1 and n+2 do not belong to
the same class. This stems from the fact that ω′i < ωi, for 1 ≤ i ≤ n. If
n + 1 and n + 2 belong to X (resp. X), then Equation (42) would not
be satisfied by X (resp. X). We focus now on the set X for which we
have: ∑

X

ωi ≤
∑
X

ω′i

|X|
∑
A

ai +
∑
X

ai ≤ |X|
∑
A

ai −
∑
X

ai + ω′n+1∑
X

ai ≤ ω′n+1 −
∑
X

ai∑
X

ai ≤
∑
A

ai −
∑
X

ai =
∑
X

ai

Next, let us focus on X. Using the same proof as above, we obtain∑
X

ai ≤
∑
X

ai

and the equality of both quantities follows. We found a partition P of
A which is a solution to Partition. Hence, DP is NP-complete. 2

Even if DP is NP-complete in the most general case, some heuristics
work well in practice. For example, the initial semantics may use a
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partition that associates different control points to the first i instances
of all the operations occurring in a loop. Next, for comparisons, the
heuristic merges all the error terms related to the same operation. In
practice, this gives good results for stable calculations like the loop of
the example developed in this section.

8. Conclusion

The semantics introduced in this article models the propagation of
roundoff errors and the introduction of new errors at each stage of a
calculation. We use a unified framework, mainly based on the equa-
tions of Figure 1, to compute the contribution, to the global error,
of the errors due to pieces of code partitioning the program, up to a
maximal order of error. Lemma 1 and Proposition 1 are essential to
ensure the correctness of the operators of Figure 1. They also represent
a stronger correctness criterion for the operators introduced in [11].
Another important point is that SLn

not only details the propagation
of the errors of order ≤ n but also verifies that higher order error
terms actually are negligible. Finally we discussed the complexity of
the dynamic partitioning problem that enables to optimally move from
one semantics to another in the grid of Figure 2. Even if this problem
is NP-complete in the most general case, some heuristics work well in
practice.

A tool called Fluctuat has been developed which implements an
abstract interpretation based on the semantics introduced in this arti-
cle. The real coefficients of the error series are abstracted by intervals
of multi-precision floating-point numbers. This tool is described in
[13, 30]. Current work concerns the precision of the abstract inter-
pretation in loops and is proceeding in two directions. First, because
narrowing operators [7] do not yield information to improve the preci-
sion of the error terms, we really need finely-tuned widening operators
for our domain. This should enable us to restrict the number of cases
where a loop is stable but is declared unstable by the abstract inter-
preter because of the approximations made during the analysis. The
second way to improve the precision in loops consists of using a rela-
tional analysis. A first solution was proposed in [24]. It can be viewed
as an automatic differentiation technique applied to the semantic equa-
tions of Figure 1. The termination criterion of the analysis relies on an
abstract calculation of the Lyapunov exponents [1].
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