
Static Analysis of Embedded Programs
with Continuous I/O.

Olivier Bouissou Matthieu Martel

CEA, LIST, Gif-sur-Yvette, F-91191 France
{olivier.bouissou,matthieu.martel}@cea.fr

ABSTRACT
The validation of embedded programs requires that we compute all their possible executions. However, such programs usually interact with their
environment in two ways: their inputs come from the discretization of a continuous function via sensors and their outputs modify the dynamics of
these functions via actuators. Thus, their executions strongly depend on the physical environment in which they are run. Therefore, good results
can only be obtained if one considers the program as the discrete part of a more general system, in which the continuous dynamics is taken into
account. This poster presents our work on the analysis of such hybrid systems. We chose to split our analysis into two parts: an analysis of the
continuous system via validated integration and an analysis of the discrete system via abstract interpretation techniques. This approach may be used
for industrial systems as it does not require big changes of the existing codes.

EMBEDDED PROGRAMS
AS HYBRID SYSTEMS
We are interested in the verification and validation of industrial
systems. These are generally composed of two distinct parts: a
discrete embedded program and the continuous physical environ-
ment surrounding it. Each subsystem has its own particularities
and modelling each requires a good expertise of the domain (see
Figure 1). Therefore, we try to analyse these systems without us-
ing models where the discrete and continuous worlds are mixed.

Figure 1: A hybrid system

We thus proposed [1] a model for hybrid systems in which we
basically add hybrid actions (like sensors and actuators) to an im-
perative language. The program is then coupled to a description
of the continuous physical environment. We base our analysis on
this model.

GOAL OF THE ANALYSIS
We want to prove that the uncertainties due to the implementa-
tion of the system do not affect its behaviour. These uncertainties
are due first to the imprecision of the numerical computations in
floating-point numbers, but also to the imprecision of the sen-
sors. In addition, the time at which the sensors and/or actuators
are activated is in practice unknown, which introduces new po-
tential errors. Our analysis aims at proving that the differences
between the implementation where all these errors occur and the
ideal model with perfect sensors/actuators and real numbers com-
putations do not modify the behaviour of the system (see Figure
2).

Discrete Time

Discrete Time

Continuous Time

Implementation
with floating point numbers

Model using
real numbers

Figure 2: Actions taken by the ideal model (top) and by the
implementation (bottom)

We thus only focus on some actions: sensors (dark red arrows) and
actuators (blue) activations, as well as alarms (red), and we show
that these actions occur almost at the same time in both cases.

STATIC ANALYSIS AND
ABSTRACT INTERPRETATION
Validating programs means proving that they will never enter un-
safe regions. However, as the inputs of most programs are un-
known, it is generally not possible to test all the possible execu-
tions (Figure 3 shows some of them).

x

t

Figure 3: Some executions of a program.

The idea of the abstract interpretation theory [3] is to compute a set
which is guaranteed to contain all the possible values taken by a
variable during the execution of the program. Thus, if this set does
not intersect with the unsafe regions, then so does the real execu-
tion of the program. However, if the set enters a forbidden state,
we cannot conclude whether the error is inherent to the program
or if the computed set is too large.

x

t

Figure 4: The abstract values of x along the program.

FIRST RESULTS
DISCRETE WORLD

The difficulty in the analysis of the discrete system is that we must take time into account.
Thus, the semantics of the program will associate to every variable not a value but a
signal, i.e. a function of time with non-continuous jumps (blue lines on Figure 5). A
jump of such a signal may affect the continuous environment by changing its dynamics
(blue arrow).
Our abstract domain unites all the equivalent paths into one where the time of the jump
is no longer exactly known (green rectangles). The result of this time uncertainty is that
the continuous dynamics changes at an unknown time, and we thus need to compute
two functions that enclose all the possible curves (green arrows).

CONTINUOUS WORLD

The continuous part of an hybrid system is modeled as a family of differential equa-
tions. These equations define functions which are the inputs of embedded programs.
The abstract interpretation framework requires that we compute overapproximations of
these functions. Therefore, we developed a library for the guaranteed integration [4]
of autonomous differential equations. The method we propose is based on a classical
Runge-Kutta integration scheme, where all kinds of errors (methodological and numeri-
cal) are safely overapproximated [2].
We then use this method to compute two step functions which over- and under-
approximate a set of implicitly defined functions (see Figure 6).

Figure 5: Concrete (blue) and abstract (green) signals. Figure 6: The concrete continuous dynamics (blue) and its approximation by step
functions (green).

REFERENCES

[1] O. Bouissou. Analyse statique par interpretation abstraite de
systèmes hybrides discrets-continus. Technical Report 05-301,
CEA-LIST, 2005.

[2] O. Bouissou and M. Martel. A runge-kutta method for comput-
ing guaranteed solutions of odes. In SCAN, 2006.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, 1977.

[4] N. S. Nedialkov, K. R. Jackson1, and G. F. Corliss. Validated so-
lutions of initial value problems for ordinary differential equa-
tions. Applied Mathematics and Computation, 105(1), 1999.

WORK IN PROGRESS
• Continuous analysis: validated integration

• Discrete analysis: we need better widening operators on our abstract domain

• Hybrid analysis: – coupling discrete and continuous analysis

– expressing validated integration as an application of abstract interpretation

– extending our analysis to a wider class of continuous functions


