
Accuracy Versus Time:
A Case Study with Summation Algorithms∗

Philippe Langlois
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
langlois@univ-perp.fr

Matthieu Martel
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
matthieu.martel@univ-perp.fr

Laurent Thévenoux
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
laurent.thevenoux@univ-perp.fr

ABSTRACT
In this article, we focus on numerical algorithms for which,
in practice, parallelism and accuracy do not cohabit well.
In order to increase parallelism, expressions are reparsed,
implicitly using mathematical laws like associativity, and
this reduces the accuracy. Our approach consists in focusing
on summation algorithms and in performing an exhaustive
study: we generate all the algorithms equivalent to the orig-
inal one and compatible with our relaxed time constraint.
Next we compute the worst errors which may arise during
their evaluation, for several relevant sets of data. Our main
conclusion is that relaxing very slightly the time constraints
by choosing algorithms whose critical paths are a bit longer
than the optimal makes it possible to strongly optimize the
accuracy.

We extend these results to the case of bounded parallelism
and to accurate sum algorithms that use compensation tech-
niques.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Optimization; G.1.0 [Ma-
thematics of Computing]: Numerical Analysis, Computer
Arithmetic; I.2.2 [Automatic Programming]: Program
transformation.

General Terms
Algorithms, Design, Experimentation, Performance, Relia-
bility.

Keywords
Parallelism, Summation, Floating-point numbers, Precision.

∗This work was partly supported by the project
”Compil’HD” of Région Languedoc-Roussillon (”Chercheur
d’Avenir” programme) and by the ANR project ”EvaFlo”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
Symbolic-numeric algorithms have to manage the a priori

conflicting numerical accuracy and computing time. Perfor-
mances and accuracy of basic numerical algorithms for scien-
tific computing have been widely studied, as for example the
central problem of summing floating point values – see the
numerous references in [5] or more recently in [20, 14, 19].
Instruction level parallelism is commonly used to speed-up
these implementations during compilation steps. One could
also expect that compilers improve accuracy

However as already noticed by J. Demmel [2], in practice
parallelism and accuracy do not cohabit well. To exploit
the parallelism within an expression, this one is reparsed
implicitly using mathematical laws like associativity. The
new expression is then more balanced to benefit for as much
parallelism as possible. In our scope, such re-writing should
yield algorithms that sum n numbers in a logarithmic time
O(logn). The point is that the numerical accuracy of some
algorithms is strongly sensitive to reparsing. In IEEE754
floating-point arithmetic, additions are not associative and,
in general, most algebraic laws like associativity and dis-
tributivity do not hold any longer. As a consequence, while
increasing the parallelism of some expression, its numeri-
cal accuracy may decrease and, conversely, improving the
accuracy of some computation may reduce its parallelism.
Moreover, in architectures, instruction level parallelism is
bounded and it may possible to execute an algorithm less
parallel than the optimum in the same (or very similar) ex-
ecution time.

In this article, we address the following question: How can
we improve the accuracy of numerical summation algorithms
if we relax slightly the performance constraints? More pre-
cisely, we examine how accurate can be algorithms which
are k times less efficient than the optimal one or with a con-
stant overhead with respect to the optimal one, e.g. for the
summation of n values, in k× blog(n)c or k+ blog(n)c for a
constant parameter k.

For example, let us consider the sum

s =
N∑
i=1

ai, with ai =
1

2i
, 1 ≤ i ≤ N (1)

Two extreme algorithms compute s

s1:=
(

((a1 + a2) + a3) + . . . aN−1

)
+ aN (2)

and, assuming N = 2k,

s2:=
((

(a1 + a2) + (a3 + a4)
)

+ . . .+ (aN
2
−1 + aN

2
)
)

+

((
(aN

2
+1 + aN

2
+2) + (aN

2
+3 + aN

2
+4)
)

+ . . .+ (aN−1 + aN)
)

(3)
Clearly, the sum s1 is computed sequentially while s2 corre-
sponds to a reduction which can be computed in logarithmic
time. However, in double precision, we have, for N = 10 :

s = 0.9990234375 s1 = 0.9990234375 s2 = 0.99609375

and it happens that s1 is far more precise than s2.
Our approach consists in performing an exhaustive study.

First we generate all the algorithms equivalent to the orig-
inal one and compatible with our relaxed time constraint.
Then we compute the worst errors which may arise during
their evaluation for several relevant sets of data. Our main
conclusion is that relaxing very slightly the time constraints
by choosing algorithms whose critical paths are a bit longer
than the optimal one makes it possible to strongly optimize
the accuracy. This matter of fact is illustrated using vari-
ous datasets, most of them being ill-conditioned. We extend
these results to the case of bounded parallelism and to com-
pensated algorithms. For bounded parallelism we show that
more accurate algorithms whose critical path is not optimal
can be executed in as many cycles as optimal algorithms,
e.g. on VLIW [7] architectures. Concerning compensation,
we show that elaborated summation algorithms can be dis-
covered automatically by inserting systematically compen-
sations and then reparsing the resulting expression.

This article is organized as follows. Section 2 gives an
overview of summation algorithms. It also introduce our
technique to bound error terms. Section 3 presents our
main results concerning the time versus precision compro-
mise. Section 4 describes how we generate exhaustively
the summation algorithms of interest and Section 5 intro-
duces further examples involving larger sums, accuracy ver-
sus bounded parallelism and compensated sums. Finally,
some perspectives and concluding remarks are given in Sec-
tion 6.

2. BACKGROUND
In floating-point arithmetic accuracy is a critical matter,

for scientific computing as well as for critical embedded sys-
tems [11, 12, 3, 7, 6, 4]. Famous examples alas illustrate
that bad accuracy can cause human damages [13] and money
loses [10]. If accuracy is critical so is parallelism but usually
these two domains are considered separately. While focusing
on summation, this section compares the most well-known
algorithms with respect to their accuracy and parallelism
characteristics.

In Subsection 2.1 we recall background material on sum-
mation algorithms [5, 14] and we explain how we measure
the error terms in Subsection 2.2.

2.1 Summation Algorithms
Summation in floating-point arithmetic is a very rich re-

search domain. There are various algorithms that improve
accuracy of a sum of two or more terms and similarly, there
are many parallel summation algorithms.

2.1.1 Two Extreme Algorithms for Parallelism

+

+ +

+

+

+

O(log(n)) O(n)

Figure 1: Graphical representation of Algorithm 1
and Algorithm 2 by dataflow graphs.

Basically, there are two extreme algorithms with respect to
parallelism properties to compute the sum of (n+ 1) terms.
The first following algorithm is fully sequential whereas the
second one benefits from the maximum degree of parallelism.

• Algorithm 1 is the extreme sequential algorithm. It
computes a sum in O(n) operations successively sum-
ming the n + 1 floating-point numbers (see Equation
(2)).

• Pairwise summation Algorithm 2 is the most parallel
algorithm. It computes a sum in O(log(n)) successive
stages (see Equation (3)).

These algorithms are represented by dataflow graphs in
Figure 1.

Algorithm 1 Sum: Summation of n + 1 Floating-Point
Numbers
Input: p is (a vector of) n+ 1 floating-point numbers
Output: sn is the sum of p
s0 ← p0
for i = 1 to n do
si ← si−1 ⊕ pi

end for

Algorithm 2 SumPara: Parallel Summation of n + 1
Floating-Point Numbers

Input: p[l : r] is (a vector of) n+ 1 floating-point numbers
Output: the sum of p
m← b(l + r)/2c
if l = r then

return pl
else

return SumPara(p[l : m]) ⊕ SumPara(p[m+ 1 : r])
end if

Mixing Algorithm 1 and Algorithm 2 yields many algo-
rithms of parallelism degrees between those two extreme
ones.

2.1.2 Merging Parallelism and Accuracy
It is well known that these two extreme algorithms do not

verify the same worst case error bounds [5]. Nevertheless
to improve the accuracy of one computed sum, it is usual
to sort the terms according to some of their characteristics
(increasingly, decreasingly, negative or positive sort, etc.).

Summation accuracy varies with the order of the inputs.
Increase or decrease orders of the absolute values of the
operands are the first two choices for the simplest Algorithm

1. If the inputs are both negative and positive, the decrease
order is better, otherwise other orders are equivalent. If all
the inputs are of the same sign, the increase order is more
interesting than others [5]. More dynamic inserting methods
consist in sorting the inputs (in a given order), in summing
the first two numbers and in inserting the result within the
inputs conserving the initial order. Such sorting is more dif-
ficult to implement while conserving the parallelism level of
Algorithm 2.

2.1.3 More Accuracy with Compensation
A well known and efficient techniques to improve accuracy

is compensation which uses some of the following error-free
transformations [14].

Algorithm 3 computes the sum of two floating-point num-
ber x = a⊕ b and the absolute error y due to the IEEE754
arithmetic [1].

Algorithm 3 TwoSum, Result and Absolute Error in Sum-
mation of Two Floating-Point Numbers (Introduced by
Knuth [8])

Input: a and b, two floating-point numbers
Output: x = a⊕ b and y the absolute error on x
x← a⊕ b
z ← x	 a
y ← (a	 (x	 z))⊕ (b	 z)

When |a| ≥ |b| Algorithm 4 is faster than Algorithm 3.
Obviously it will be necessary to check this condition to ap-
ply it. The overcost of such practice on modern computing
environments is not so clear [19, 9]. In both cases the key
point is the error-free transformation x+ y = a+ b.

Algorithm 4 FastTwoSum, Result and Absolute Error in
Summation of Two Floating-Point Numbers

Input: a and b two floating-point numbers such that |a| ≥
|b|

Output: x = a⊕ b and y the absolute error on x
x← a⊕ b
y ← (a	 x)⊕ b

To improve the accuracy of Algorithm 1, VecSum Algo-
rithm applies this error-free transformation. Algorithm 6
uses this error-free vector transformation and yields a twice
more accurate summation algorithm [14]. Hence Sum2 com-
putes every rounding error y and adds them together before
compensating the classic Sum computed result. In other
words, Sum Algorithm applies twice, once to the n+ 1 sum-
mand and then once to the n error terms, the compensated
summation being the last addition between these two values.

Algorithm 5 VecSum, Error-Free Vector Transformation of
n+ 1 Floating-Point Numbers [14]

Input: p is (a vector of) n+ 1 floating-point numbers
Output: pn is the approximate sum of p, p[0 : n − 1] is (a

vector of) the generated errors
for i = 1 to n do

[pi, pi−1]← TwoSum(pi, pi−1)
end for

Algorithm 6 Sum2, Compensated Summation of n + 1
Floating-Point Numbers

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of p
p← V ecSum(p)
e← Sum(i = 0, n− 1, p[i])
s← pn ⊕ e

These error-free transformations have been used differ-
ently within several other accurate summation algorithm.
Previous Sum2 was also considered by [15]. A slight varia-
tion is the famous Kahan compensated summation: in Al-
gorithm 7, every rounding error e is added to the next sum-
mand (the compensating step) before adding it to the pre-
vious partial sum.

It exists many other algorithms for accurate summation
that use these error-free transformations, as for example
Priest double-compensated summation [16] or the recursive
SumK algorithms of [14] or also the very fast AccSum and
PrecSum of [19]. We do not detail these any longer.

Algorithm 7 SumComp, Compensated Summation of n
Floating-Point Numbers (Kahan [5])

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of input numbers
s← p0
s← 0
for i = 1 to n do
tmp← s
y ← pi ⊕ e
s← tmp⊕ y
e← (tmp	 s)⊕ y

end for

2.2 Measuring the Error Terms
Let x and y be two real numbers approximated by floating-

point numbers x̂ and ŷ such that x = x̂+ εx and y = ŷ + εy
for some error terms εx ∈ R and εy ∈ R. Let us consider
the sum S = x + y. In floating-point arithmetic this sum is
approximated by

Ŝ = x̂⊕ ŷ

where ⊕ denotes the floating-point addition. We write the
difference εS between S and Ŝ as in [21],

εS = S − Ŝ = εx + εy + ε+, (4)

where ε+ denotes the round-off error introduced by the op-
eration x̂⊕ ŷ itself.

In the rest of this article, we use intervals x, y, . . . instead
of floating-point numbers x̂, ŷ, . . . as well as for the error
terms εx, εy, . . . for the next two different reasons.

(i) Our long-term objective is to perform program trans-
formations at compile-time [12] to improve the numeri-
cal accuracy of mathematical expressions. It comes out
that our transformations have to improve the accuracy
of any dataset or, at least, of a wide range of datasets.
So we consider inputs belonging to intervals.

(ii) The error terms are real numbers, not necessarily rep-
resentable by floating-point numbers as εS in Equation

(4). We approximate them by intervals, using rounding
modes towards outside. Clearly, the towards outside
rouding mode correspond, in this case, at the rounding
mode towards −∞ for the lower bound of the interval
and towards +∞ for the upper bound.

An interval x with related interval error εx denotes all the
floating-point numbers x̂ ∈ x with a related error εx ∈ εx.
This means that the pair (x, εx) represents the set X of exact
results:

X = {x ∈ R : x = x̂+ εx, x̂ ∈ x, εx ∈ εx}.

Let x and y be two sets of floating-point numbers with error
terms belonging to the intervals εx ⊆ R and εy ⊆ R. We
have

S = x⊕I y (5)

where ⊕I is the sum of intervals with the same rounding
mode than ⊕ (generally to the nearest) and

εS = εx ⊕O εy ⊕O ε+ (6)

where ⊕O denotes the sum of intervals with rounding mode
towards outside. Per example:(

[x, x]; [εx, εx]
)

+
(
[y, y]; [εy, εy]

)
=

(
[x+−∞ y, x++∞ y]; [εx +−∞ εy, εx ++∞ εy]

)
In addition, ε+ denotes the round-off error introduced by
the operation x̂⊕I ŷ. Let ulp(x) denote the function which
computes the unit in the last place of x [5], i.e. the weight of
the least significant digit of x and let S = [S, S]. We bound
ε+ by the interval [−u, u] by:

u =
1

2
max(ulp(|S|), ulp(|S|)).

Using the notations of equations (4), (5) and (6), it follows
that for all x̂ ∈ x, εx ∈ εx, ŷ ∈ y, εy ∈ εy

S ∈ S and εS ∈ εS.

3. NUMERICAL ACCURACY OF NON-TIME-
OPTIMAL ALGORITHMS

The aim of this section is to show how we can improve
accuracy while relaxing the time constraints. In Subsection
3.1, we illustrate our approach using as an example a sum of
random values. We generalize our results to some significant
sets of data in Subsection 3.2.

3.1 The General Approach
In order to evaluate the algorithms to compute one sum

expression, associativity and distributivity are only needed
hereafter. Basically, while in exact arithmetic all the al-
gorithms are numerically equivalent, in floating-point arith-
metic the story is not the same. Indeed, many things may
arise like absorption, rounding errors, overflow, etc. and then
floating-point algorithms return various different results.

One mathematical expression yields a huge amount of
evaluation schemes. We propose to analyse this huge set of
algorithms with respect to accuracy and parallelism. First
we search the most accurate algorithms among all levels of
parallelism, and then we search among them the ones with
the best degrees of parallelism. We aim at finding the more

interesting ratio between accuracy and parallelism.

In this section, we use random data (generated using an
uniform random distribution) defined as interval [a, a]. We
measure the interval that represents the maximum error
bound [e, e] applying the previously described error model.
Let ai = [ai, ai], 1 ≤ i ≤ n. This means that for all a1 ∈
ai, . . . , an ∈ an, the error on Σn

1ai belongs to [e, e]. We
focus the maximum error which is defined as max(|e|, |e|).
Algorithms which have the smaller maximum error are called
optimal algorithms. This maximum error is a pertinant op-
timization criteria in the compilation domain. With this
criteria we want to guarantee the maximum error which can
arise during any execution of a program.

Figure 2: Maximum errors for each algorithms for a
six terms summation reparsings.

Figure 3: Error repartition when summing ten
terms.

Each dot of Figure 2 shows the absolute error of every al-
gorithms, i.e. every parsing of the summing expression with
six terms. X-axis represents the algorithms numbered from
0 to 1,170 and Y-axis represents the maximal absolute error
which can be encounter during the algorithm evaluation. It
is not a surprise that errors are not uniformly distributed and

that the errors belong to a small number of stages. Figure
3 shows the distribution of the errors for the different stages
of a ten terms summation. The proportion of algorithms
with very few small or very large errors is small. Most of the
algorithms present an average accuracy between small and
large errors. We guess that it will be difficult to find the best
accurate algorithms (as well as the worst one), most having
an average accuracy.

It exists 46,607,400 different algorithms for an expression
of ten terms. Among this huge set, many of them are se-
quential or almost sequential. So we propose to restrict the
search to a certain level of parallelism. Let n be the num-
ber of additions and k a constant chosen arbitrarily e.g. here
k = 2. In the following of this article, if it is not precisely
defined, we sum ten terms and k is equal to two. We re-
strict our search of accurate algorithms within three included
sets: algorithms having a computing tree of height smaller or
equal to blog(n)c+ 1, blog(n)c+ k and k × blog(n)c. Using
these restrictions, there are 27,102,600 algorithms of level
k×blog(n)c, 13,041,000 algorithms of level blog(n)c+ k and
2,268,000 algorithms of level blog(n)c+ 1.

Results are given in Figure 4 and in Table 1. We observe
that the highest level of parallelism, the level blog(n)c +
1, does not allow us to compute the most accurate results.
Nevertheless if we use a less high but still reasonable level
of parallelism, e.g. levels O(blog(n)c+k) or O(k×blog(n)c),
we can compute accurate results.

The more the level of parallelism is, the harder it is to find
the more accurate algorithms among all of them. In tables 2
and 3 we observe that the level blog(n)c+k presents a better
proportion of accurate algorithms (stages with small num-
bers) than the higher parallelism level k × blog(n)c. More-
over the most accurate algorithms within the first set are
less accurate than the ones of the second set — see Figure
4.

Parallelism Error of Optimal Algorithm Percent
no parallelism 2.273e−13 0.006
blog(n)c+ 1 4.547e−13 0.007
blog(n)c+ k 2.273e−13 0.006
k × blog(n)c 2.273e−13 0.007

Table 1: Optimal error value and percentage of al-
gorithms reaching this precision.

3.2 Larger Experiments
We study a more representative sets of data using various

kinds of values chosen as well-known error-prone problems,
i.e. ill-conditioned set of summands. The condition number
for computing s =

∑N
i=1 xi, is defined as following,

cond(s) =

∑N
i=1 |(xi)|
|s| .

The larger this number is, the more ill-conditioned the sum-
mations are, the less the result is accurate.

Summation suffers from the two following problems:

• Absorption arises when adding a small and a large val-
ues. The smallest values are absorbed by the largest
ones. In our context (IEEE-754 double precision): 1016⊕

Stage Example of expression %
1 (i+ (f + g)) + ((c+ d) + ((h+ j) + (e+

(a+ b))))

0.006

2 (i+ (f + g)) + (j+ ((c+ d) + ((e+ h) +

(a+ b))))

0.024

3 (i+(f + g))+ (j+((e+(a+ h))+ (b+

(c+ d))))

0.001

...
...

...
141 (j+((c+ g)+ (b+h)))+ (e+(a+(d+

(f + i))))

0.001

142 (j+(h+(g+(c+ e))))+ (b+(a+(d+

(f + i))))

0.005

143 (j+(h+(e+(c+ g))))+ (b+(a+(d+

(f + i))))

0.002

Table 2: Repartition of the algorithms according to
their precision at the parallelism level O(blog(n)c+ k)
on ten terms summation (stages with small numbers
are the smallest errors).

Stage Example of expression %
1 (i+ (f + g)) + ((c+ d) + ((h+ j) + (e+

(a+ b))))

0.008

2 (i+ (f + g)) + (j + ((c+ d) + (h+ (e+

(a+ b)))))

0.039

3 (i+(f + g))+ (j+((e+(a+ h))+ (b+

(c+ d))))

0.004

...
...

...
171 (j + (g+ (b+ h))) + (e+ (c+ (a+ (d+

(f + i)))))

0.007

172 (j + (h+ (e+ g))) + (c+ (b+ (a+ (d+

(f + i)))))

0.015

173 (j + (h+ (c+ g))) + (e+ (b+ (a+ (d+

(f + i)))))

0.001

Table 3: Repartition of the algorithms according to
their precision at the parallelism level O(k×blog(n)c)
on ten terms summation (stages with small numbers
are the smallest errors).

10−16 = 1016. In general absorption is not so danger-
ous while adding values of the same sign: its condi-
tion number equals roughly one. Nevertheless a large
amount of small errors accumulates in large summa-
tions — this was the case in the well known Patriot
Missile failure [13].

• Cancellation arises when absorption appears within data
with different sign. In this case, the condition number
can be arbitrarily large. We will call such case as sum-
mation with ill-conditioned data. In our context an
example is : (1016 ⊕ 10−16)	 1016 = 0.

We introduce 9 datasets to generate different types of ab-
sorptions and cancellations. These two problems are clear
with scalar values. So we first use intervals with small varia-
tions around such scalar values. Every dataset is composed
of ten samples that share the same numerical characteris-
tics. We recall that these experiments are limited to ten
summands. In the following, we say that a floating-point
value is a small, medium or large when it is, respectively, of
the order of 10−16, 1 and 1016. This is justified in double

Figure 4: Error repartition with three different degrees of parallelism for ten terms summation.

precision IEEE-754 arithmetic.

• Dataset 1. Positive sign, 20% of large values among
small values. There are absorptions and accurate algo-
rithms should first sum the smallest terms (increasing
order).

• Dataset 2. Negative sign, 20% of large values among
small values. Results should be the same as in Dataset
1.

• Dataset 3. Positive sign, 20% of large values among
small and medium values. The best results should be
obtained with algorithms which sum in increase order.

• Dataset 4. Negative sign, 20% of large values among
small and medium values. Results should be equivalent
to the results of Dataset 3.

• Dataset 5. Both signs, 20% of large values that can-
cel, among small values. The most accurate algorithms
should sum the two largest values first. In a more gen-
eral case, the best algorithms should sum in decrease
order of absolute values. It is a classic ill-conditioned
summation.

• Dataset 6. Both signs, few small values and same pro-
portion of large and medium values. Only large values
cancel. The best algorithms should sum in decrease
order of absolute values.

• Dataset 7. Both signs, few small values and same
proportion of large and medium values. Large and
medium values are ill-conditioned. Results should be
the same than in Dataset 6.

• Dataset 8. Both signs, few small values and same pro-
portion of large and medium values. Only medium val-
ues cancel. Results should be the same than in Dataset
6.

• Dataset 9. In order to simulate data encounted in em-
bedded systems, this dataset is composed of intervals
defined by [0.4, 1.6]. This is representative of values
sent by a a sensor to an accumulator. This dataset is
well-conditioned.

Example of data generated for Dataset 1:
a = [2.667032062476577e16, 3.332967937523422e16]
b = [1.778021374984385e−16, 2.221978625015614e−16]
c = . . . etc.

Figure 5 shows the proportion of optimal algorithms, i.e.
the ones which return the smallest error with each dataset
for the corresponding level of parallelism. Each proportion
is the average value for the ten samples within each dataset.
Parallelism degrees are O(blog(n)c + 1), O(blog(n)c + k),
O(k×blog(n)c), and O(n) which describe all the algorithms
of all levels of parallelism, as defined in Subsection 3.1.

Figure 5: Proportion of the optimal algorithm on
ten terms summation (average on 10 datasets).

First, we can observe that the proportion of optimal al-
gorithms is tiny: the average of optimal algorithms with
respect to the best accuracy is less than one percent except
for the well-conditioned Dataset 9. Results in Table 1 match
those displayed in Figure 5. In most cases, among all the
levels of parallelism, the highest degree in O(blog(n)c+ 1) is
not able to keep the most accurate algorithms, particularly
when there is absorption (percentage equals zero and no bar
is plotted). We observe that the more the level of parallelism
is, the harder it is to find a good algorithm. But if we relax

the time constraint, i.e. the parallelism, it is easier to get an
optimal algorithm.

For example, results of Dataset 1 show that if we limit the
algorithms to all the algorithms of complexity O(blog(n)c+
1) there are no algorithm with the best error. If the level of
parallelism is not so good, for example O(blog(n)c + k) or
O(k × blog(n)c) there are algorithms with the best errors.

Results in Figure 5 show that for Dataset 9, the proportion
of optimal algorithms with the highest degree of parallelism
is larger than the ones with less parallelism. In this case of
well-conditioned summation, it reflects that whereas there
are less algorithms of this parallelism level, these ones do
not particularly suffer from inaccuracy. For well-conditioned
summation, it seems that it is easier and easier to find an
optimal algorithm as parallelism increases.

4. GENERATION OF THE ALGORITHMS
In this section, we describe how our tool generates all the

algorithms. Our program, written in C++, builds all the
reparsing of an expression. In the case of summation, the
combinatory is huge, so it is very important to reduce the
reparsing to the minimum.

The combinatory of summation is important, this was of-
ten studied but no general solution exists. For example, see
CGPE [17] which computes equivalent polynomial expres-
sions.

Intuitively, to generate all the expressions for a sum of n
terms we process as follows.

• Step 1 : Generate all the parsings using the associativ-
ity of summation ((a+b)+c = a+(b+c)). The number
of parsings is given by the Catalan Number Cn [18]:

Cn =
(2n)!

n! (n+ 1)!

• Step 2 : Generate all the permutations for all the ex-
pressions found in Step 1 using the commutativity of
summation (a+b = b+a). There is n! ways to permute
n terms in a sum.

So, the total number of equivalent expressions for a n
terms summation is

Cn · n! (7)

Figure 6 shows this first combinatory result.
Our tool finds all the equivalent expressions of an original

expression but it only generates the different equivalent ex-
pressions. For example, a+(b+c) is equivalent to a+(c+b)
but it is not different because it corresponds to the same al-
gorithm: these expressions correspond to the same sequence
of operation. In Subsection 4.1, we present how we generate
the structurally different trees and in Subsection 4.2, how
we generate the permutations.

Table 4 and Figure 6 represent the number of algorithms
generated for n terms as n grows.

The summation is a complex case, for example CGPE [17]
generate equivalent polynomial expressions using heuristics
to find a result as fast as possible. We want to do a study
on exhaustive expressions reparsings, so because the combi-
natory is huge, we use ten terms during this work.

Terms All expressions Different expressions
5 1680 120
10 1.76432e+10 4.66074e+07

15 3.4973e+18 3.16028e+14

20 4.29958e+27 1.37333e+22

Table 4: Number of terms and expressions.

Figure 6: Number of trees when summing n terms.

4.1 Exhaustive Generation of Structurally Dif-
ferent Trees

We represent one algorithm with one binary tree. Nodes
are sum operators and leaves are values. We describe how to
generate all the structurally different trees. It is a recursive
method defined as follows.

• We know that the number of terms is n ≥ 1. An
expression is composed of one term at least.

• A leaf x has only one representation, it is a tree of one

term represented like this: 1 .

x

Then the number of structures for one term trivially
reduces to one.

• Expression x1 + x2 is a tree of two terms 2 . It has
the following structural representation.

+

1 1

With two terms we can create only one tree. So again
the number of structures for two terms equals 1.

+

x1 x2

• Recursively, we apply the same rules. For a tree of n
terms, we generate all the different structural trees for
all the possible combinations of sub-trees, i.e. for all
i ∈ [1, n − 1], two sub-trees with, respectively, i and
(n − i) terms. Because summation is commutative, it
is sufficient to generate these (i;n− i)-sub-trees for all
i ∈ [1, bn

2
c]. This is represented as follows:

∀i ∈ [1, bn
2
c],

+

i n− i

• So, for n terms, we generate the following numbers of
structurally different trees,

Struct(1) = Struct(2) = 1, (8)

Struct(n) =

bn
2
c∑

i=1

Struct(n− i) · Struct(i). (9)

4.2 Generation of Permutations
To generate only different permutations, the leaves are

related to the tree structure. For example, we do not wish
to have the following two permutations, a+ (d+ (b+ c)) and
a+ ((c+ b) + d).

+

a +

d +

b c

Indeed, these expressions have the same accuracy and the
same degree of parallelism.

In order to generate all the permutations, we use a similar
algorithm as in the previous subsection.

• Firstly, we know that for an expression of one term, we
may generate only one permutation. Perm(1) = 1.

• Using our permutation restriction, it is sufficient to
generate one permutation for an expression of two terms;
so, again, Perm(2) = 1.

• Permutations are related to the tree structures and we
count them with the following recursive relation,

Perm(1) = Perm(2) = 1, (10)

Perm(n) =

bn
2
c∑

i=1

(
i

n

)
· Perm(n− i) · Perm(i). (11)

Equations Struct(n) and Perm(n) are asymptotically ex-
ponential.

5. FURTHER EXAMPLES
In this section, we present results for larger or more so-

phisticated examples. Subsection 5.1 introduces a sum of
twenty terms, Subsection 5.2 focuses on compensation and
we discuss about bounded parallelism in Subsection 5.3

5.1 An Example Over More Terms
We now consider a sum of 20 terms. We chose a dataset

where all the values belong to the interval [0.4, 1.6]. Again
this is representative, for example, of what may happen in
an embedded system when accumulating values provided by
a sensor, like a sinusoidal signal.

Critical path Average of optimal algorithms (%)
blog(n)c+ 1 54.08

k = 2 k = 3
blog(n)c+ k 19.75 12.41
k × blog(n)c 5.26 4.15

n 4.13

Table 5: Proportion of optimal algorithms.

We can see that the results in Table 5 are similar to the
results of Dataset 9. We obtain the same repartition of op-
timal algorithms with ten or twenty terms. This confirms
that the sum length does not govern the accuracy – at least
while overflow does not appear.

In this case, we show that for a sum of identical intervals,
the more parallelism, the easier to find an algorithm which
preserves the maximum accuracy.

5.2 Compensated Summation
Now we present an example to illustrate one of the core

motivation of this work. The question is the following: Start-
ing from the simplest sum algorithm, are we able to auto-
matically generate a compensated summation algorithm that
improves the evaluation ? Here we describe how to introduce
one level of compensation as in the algorithms presented in
Section 2 (TwoSum, Sum2, SumComp).

To improve the accuracy of expression E, we compute an
expression Ecmp.

For values X and Y , we introduce the function C(X,Y)
which computes the compensation of X ⊕ Y (like in Algo-
rithm TwoSum, see section 2.1).

For example, for three terms we have:
E = (X ⊕ Y)⊕ Z
Ecmp =

[
((X ⊕ Y)⊕ C(X,Y))⊕ Z

]
⊕ C(X + Y,Z)

Ecmp is the expression we obtain automatically by system-
atically compensating the original sums. It could be gener-
ated by a compiler. To illustrate this, we present one exam-
ple with a summation of five terms ((((a+ b) + c) + d) + e).
Terms are defined as follows,

a = −9.5212224350e−18

b = −2.4091577979e−17

c = 3.6620086288e+03

d = −4.9241247828e+16

e = 1.4245601293e+04

As before we can identify the two followings cases. The
maximal accuracy which can be obtained, among all the
reparsing of this five terms expression, is given by the follow-
ing algorithm: (((a+b)+c)+e)+d. It generates the absolute
error ∆ = 4.0000000000020472513. We observe that this al-
gorithm is Algorithm 1 at Section 2 with increase order.

The maximal accuracy given by the maximal level of par-
allelism is obtained by the algorithm ((a+ c) + (b+ e)) + d.

a b c d e f g h i j

+ +

+ +

++

++

+

1

2

3

4

5

a b c de f gh ij

+ +

+ +

+ +

+ +

+

1

2

3

4

5

a) Fully Parallel and Non-Fully Accurate Algorithm. b) Fully Accurate and Non-Fully Parallel Algorithm.

Figure 7: Dataflow Graphs of Algorithms in Bounded Parallelism on 2sums/cycle architecture.

a b c d e f g h i j

+ + + +

+++

+

+

1

2

3

4

a b c de f gh ij

+ + ++

+ +

+

+

+

1

2

3

4

5

i bc d ef g hj a

+++

++

+

+

+

+

1

2

3

4

5

6

a) Fully Parallel and Non-Fully Accu-
rate Algorithm.

b) Fully Accurate and log(n) + k Par-
allelism Degree Algorithm.

c) Fully Accurate and k× log(n) Par-
allelism Degree Algorithm.

Figure 8: Dataflow Graphs of Algorithms in Bounded Parallelism on 4sums/cycle architecture.

In this case, the absolute error is

δnocomp = 4.0000000000029558578.

When applying compensation on this algorithm, we obtain
the following algorithm :

(f + (g + (h+ i))) + (d+ ((b+ e) + (a+ c))),

with :

f = C(a, c) = −9.5212224350000e−18

g = C(b, e) = −2.4091577978999e−17

h = C(f, g) = −1.8189894035458e−12

i = C(h, d) = 3.6099218000017

Now, we measure the improved absolute error δcomp =
4.0000000000000008881. It happens that this algorithm found
with the application of compensation is actually the Sum2
algorithm –Algorithm 6 at Section 2. This results illustrates
that we can automatically find algorithms existing in the
bibliography and that the transformation improves the ac-
curacy.

5.3 Bounded Instruction Level Parallelism
Section 3 showed that in the case of maximum parallelism,

maximum accuracy is not possible (or very difficult) to have.
The fastest algorithms (O(blog(n)c+ 1) are rarely the most
accurate but by relaxing the time constraint, it becomes pos-
sible to find an optimally accurate algorithm.

This subsection is motivated by the following fact. In pro-
cessor architectures, parallelism is bounded. So it is possible
to execute an algorithm less parallel in the same execution
time, or in a very closed time, as the fastest parallel one. We
show here two examples to illustrate this. Firstly we use a

processor which executes two sums per cycle and secondly
one which executes four sums per cycle.

For an expression of ten terms :

• 2 sums/cycle:

The execution of the fastest algorithm (blog(n)c + 1)
for the expression does not provide the maximum ac-
curacy. It takes five cycles to compute the expression
as shown in a), in Figure 7. Now we take another al-
gorithm, with less parallelism but that provides the
maximum accuracy (See Line 1, Table 2, Subsection
3.1). In bounded parallelism this algorithm takes the
same time than the more parallel one as shown in b),
in Figure 7.

• 4 sums/cycle:

Again, execution of the fastest algorithm (blog(n)c+1)
of this expression, do not have the maximum accuracy.
It takes four cycles to compute the expression (See a),
in Figure 8). We take two other algorithms, both with
less parallelism but with the maximum accuracy. The
first algorithm is described at Line 1, Table 2, Subsec-
tion 3.1. It takes one more cycle than the most parallel
one (See b), in Figure 8). The second algorithm is in
k × blog(n)c; it corresponds to Line 2, Table 3, Sub-
section 3.1. This one takes two more cycles than the
most parallel one (See c), in Figure 8).

This confirms our claim that in current architectures, we
can improve accuracy without lowering too much the execu-
tion.

6. CONCLUSION AND PERSPECTIVES
We have presented our first steps towards the development

of a tool that aims at automatically improving the accuracy
of numerical expressions evaluated in floating-point arith-
metic. Since we target to embed such tool within compiler,
introducing more accuracy should not jeopardize the im-
provement of running-time performances provided by the op-
timization steps. This motivates to study the simultaneous
improvement of accuracy and timing. Of course we exhibit
that a trade-off is necessary to generate optimal transformed
algorithms. We validated the presented tool with summation
algorithms; these are simple but significant problems in our
application scope. We have shown that this trade-off can be
automatically reached, and the corresponding algorithm gen-
erated, for data belonging to intervals – and not only scalars.
These intervals included ill-conditioned summations. In the
last section, we have shown that we can automatically gener-
ates more accurate algorithms that use compensation tech-
niques. Compared to the fastest algorithms, the overcost
of these automatically generated more accurate algorithms
may be reasonable in practice. Our main conclusion is that
relaxing very slightly the time constraints by choosing algo-
rithms whose critical paths are a bit longer than the optimal
makes it possible to strongly optimize the accuracy.

Next step needs to increase the complexity of the case
study both performing more operations and different ones.
One of the main problem to tackle is the combinatory of
the possible transformations. Brute force transformation
should be replaced using heuristics or more sophisticated
transformations as, e.g. the error-free ones we introduced to
recover the compensated algorithms. Another point to ex-
plore is how to develop significant datasets corresponding to
any data intervals provided by the user of the expression to
transform. A further step will be to transform any expres-
sion up to a prescribed accuracy and to formally certified
it. Such facility is for example necessary to apply such tool
for symbolic-numeric algorithms. In this scope, this project
plans to use static analysis and abstract interpretation as in
[12].

7. REFERENCES
[1] ANSI/IEEE. IEEE Standard for Binary Floating-point

Arithmetic, revision of std 754-1985 edition, 2008.

[2] James Demmel. Trading off parallelism and numerical
stability, 1992.

[3] Stef Graillat and Philippe Langlois. Real and complex
pseudozero sets for polynomials with applications.
Theoretical Informatics and Applications, 41(1):45–56,
2007.

[4] Nicholas J. Higham. The accuracy of floating point
summation. SIAM Journal on Scientific Computing,
14:783–799, 1993.

[5] Nicholas J. Higham. Accuracy and Stability of
Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002.

[6] Claude-Pierre Jeannerod, Hervé Knochel, Christophe
Monat, and Guillaume Revy. Faster floating-point
square root for integer processors. In IEEE Symposium
on Industrial Embedded Systems (SIES’07), Lisbon,
Portugal, July 2007.

[7] Claude-Pierre Jeannerod and Guillaume Revy.
Optimizing correctly-rounded reciprocal square roots
for embedded VLIW cores. In Proceedings of the 43rd
Asilomar Conference on Signals, Systems, and
Computers (Asilomar’09), Pacific Grove, CA, USA,
november 2009.

[8] Donald E. Knuth. The art of computer programming,
volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[9] Philippe Langlois. Compensated algorithms in floating
point arithmetic. In 12th GAMM - IMACS
International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics,
Duisburg, Germany, September 2006. (Invited plenary
speaker).

[10] Jean Louis Lions, Remy Hergott (CNES),
Bernard Humbert (Aerospatiale), and Eric Lefort
(ESA). Ariane 5, flight 501 failure, report by the
inquiry board. european space agency, 1996.

[11] Matthieu Martel. Semantics of roundoff error
propagation in finite precision calculations. Journal of
Higher Order and Symbolic Computation, 19:7–30,
2006.

[12] Matthieu Martel. Enhancing the implementation of
mathematical formulas for fixed-point and
floating-point arithmetics. Journal of Formal Methods
in System Design, 35:265–278, 2009.

[13] United States General Accounting Office. Patriot
missile defense: Software problem led to system failure
at Dhahran, Saudi Arabia. Report
GAO/IMTEC-92-26, Information Management and
Technology Division, Washington, D.C., February
1992.

[14] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi
Oishi. Accurate sum and dot product. SIAM Journal
on Scientific Computing, 26, 2005.

[15] Michèle Pichat. Correction d’une somme en
arithmétique à virgule flottante. Applied Numerical
Mathematics, 19:400–406, 1972.

[16] Douglas M. Priest. Algorithms for arbitrary precision
floating point arithmetic. In Peter Kornerup and
David W. Matula, editors, Proc. 10th IEEE
Symposium on Computer Arithmetic, pages 132–143.
IEEE Computer Society Press, Los Alamitos, CA,
USA, 1991.

[17] Guillaume Revy. Implementation of binary
floating-point arithmeric on embedded integer
processors. PhD thesis, École Normale Supérieure de
Lyon, 2009.

[18] Fred S. Roberts. Applied combinatorics. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1984.

[19] Siegfried M. Rump. Ultimately fast accurate
summation. SIAM Journal on Scientific Computing,
31(5):3466–3502, 2009.

[20] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi
Oishi. Accurate floating-point summation –part I:
Faithful rounding. SIAM Journal on Scientific
Computing, 31(1):189–224, 2008.

[21] Josef Stoer and Roland Bulirsch. Introduction to
Numerical Analysis. Springer-Verlag, New York,
second edition, 1993.

