
Validation of Assembler Programs for DSPs:
A Static Analyzer

Matthieu Martel
Commissariat à l’Energie Atomique

LIST-DTSI-SOL
CEA F91191 Gif-Sur-Yvette Cedex, France

matthieu.martel@cea.fr

ABSTRACT
Digital Signal Processors are widely used in critical embed-
ded systems to pilot low-level, often critical functionalities.
We describe a static analyzer based on abstract interpreta-
tion and designed to validate industrial assembler programs
for a DSP. The validation consists of guaranteeing the ab-
sence of runtime errors such as incorrect memory accesses
and of tracking the sources of inaccuracies introduced by
floating-point computations. Our first contribution is a new
static analysis for relocatable assembler programs able to
cope with dynamically computed branching addresses. Our
second contribution is the analyzer itself and its graphical
interface which helps the user to understand the numerical
inaccuracies.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—For-
mal methods, Validation; F.3.1 [Logics and meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs—Invariants, Mechanical verification; G.1.0 [Nu-
merical Analysis]: General—Computer Arithmetic, Error
Analysis, Stability and Instability

General Terms
Algorithms, Design, Experimentation, Reliability, Verifica-
tion

Keywords
Abstract Interpretation, Floating-Point Numbers, Numeri-
cal Accuracy

1. INTRODUCTION
Digital Signal Processors (DSPs) are widely used in crit-

ical embedded systems like airplanes or automobiles. They
pilot low-level, often critical functionalities such as driving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’04, June 7-8, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-910-1/04/0006 ...$5.00.

a device or acquiring and processing numerical data. These
DSPs are programmed either in C or assembler to have a
direct access to the interfaces, buses, etc. of the systems.
An important characteristic of DSPs is that they are in-
tended to perform numerical computations for signal pro-
cessing such as digital filters or Fourier’s transforms. When
these computations are carried out with floating-point num-
bers, the roundoff errors may introduce large inaccuracies,
making the resulting values irrelevant [6]. In this article we
describe a static analyzer based on abstract interpretation
[3, 4] and designed to validate assembler programs for the
TMS320 C3X processor [14], a widely used DSP. This an-
alyzer is intended to cope with industrial-size codes, and is
currently being tested by Airbus. The validation consists of
guaranteeing the absence of runtime errors such as incorrect
memory accesses or type errors and of tracking the sources of
inaccuracies introduced by floating-point computations us-
ing recent semantics [7, 9]. Recently, abstract interpreters
have shown their ability to validate industrial C programs,
for runtime error detection [2] as well as for numerical ac-
curacy [12]. In this work, our choice of assembler stems
from the fact that many DSP codes are directly written in
this language and that, otherwise, the numerical computa-
tions are very sensitive to the compiler and processor. For
instance, C compilers often do not respect the evaluation
order of arithmetic expressions and floating-point value are
stored with more digits in registers than in memory. The
validation of low-level codes cope with such details.

Our first contribution is the abstract semantics of assem-
bler codes formally defined in Section 2. We analyze re-
locatable programs in which the addresses are defined by
labels. Because relocatable programs still need to be loaded
at some absolute memory address, they contain useful infor-
mation on data structures as well as on the data and the text
(code) segments. Next, our analysis does not rely on a pre-
built control flow graph. Building a control flow graph for
assembler programs is difficult [15] and, instead, we evaluate
the branching addresses at analyze time, which yields more
precise results and enables us to cope with dynamically cal-
culated branching addresses. As a consequence, our analysis
is also accurate for recursive programs. A drawback of our
approach is that assemblers may differ from one processor to
another, making the analysis too specific. We believe that
our language is representative of many other assemblers.In
Section 5, we discuss how some aspects of our work should
be modified for other processors. Our second contribution is
the analyzer itself, which is described in Section 4. Mostly,

we show how numerical errors can be tracked by means of
the graphical interface. Because the tool uses the semantics
of error series [7, 9] to track the propagation of errors in
floating-point computations, we remind the reader of this
semantics in Section 3.

We end this section with some bibliographic notes. Re-
cently, abstract interpretation has been successfully applied
to the calculation of Worst Case Execution Times (WCET)
of binary codes [5]. These analyses differ significantly from
ours in the nature of the results and also technically, since
they rely on an abstract simulation of the micro-instructions
of the processors and they use a pre-built control-flow graph
[15]. Another interesting approach, proposed by X. Rival,
concerns the validation of compiled programs. Invariants
are computed in the source code and then translated to be
checked on the binary code [13]. This approach (which re-
quires the existence of a C source program) benefits from
the techniques developed to analyze high level languages but
complicated invariants, like these used in numerical precision
[7, 9], may be difficult to translate. Finally, other work has
focused on the static analysis of binary codes, mainly to en-
sure that mnemonics are well-typed [16, 17]. Here, the lack
of relocation information makes it necessary to annotate the
programs before analysis, to specify the data types.

2. THE ANALYSIS
This section introduces the abstract semantics used by our

analyzer on a simplified assembler language. As shown in
Figure 1, we use integer and floating-point arithmetic opera-
tions (ADDI, ADDF, etc.), the MV mnemonic for load and store
operations, PUSH and POP mnemonics to manage the stack,
a procedure call mnemonic (CALL) and unconditional and
conditional branch mnemonics (BR, BLT and BEQ). CMPI and
CMPF compare the operands src1 and src2 and set the flags
LT and EQ to true or false, depending on whether src1 < src2

and src1 = src2, respectively. BLT (resp. BEQ) executes the
branchings if the LT flag (resp. the EQ flag) is true. CALL
pushes the program counter register (pc) onto the stack and
executes the branchings. The source and destination ar-
guments of the mnemonics are defined by four addressing
modes. For the sake of simplicity, we allow arbitrary ad-
dressing modes for all instructions, while in practice the
TMS320 has some restrictions. In immediate addressing,
v denotes a value, i.e. an integer, a floating-point number
or a relocatable address defined by a label. The register
mode enables to read or write the values of the registers.
The simplified register set used in this article only contains
general registers R0, . . . , Rn. In the direct mode, ∗v denotes
the value stored at the memory location v. Finally, in the
indirect mode, Ri(Rj) denotes the memory location a + b,
where a and b respectively are the values of Ri and Rj . A
program is made up of two sections, for data and text. The
data section is made up of declarations of initialized mem-
ory locations and, in the text section, we assume that each
mnemonic is encoded by exactly one memory word.

For the abstract domains, since the assembler values con-
tain pointers, the representation of global memory states
and the domains of elementary values are closely related.
Firstly, we introduce our abstraction of the global memory
states, assuming that the elementary values belong to an ab-
stract domain D!. An abstract memory state is represented
by a quintuplet M = (ρ, µ, σ,ϕ, pc) where ρ : [0, n] → D!

maps any register Ri, 1 ≤ i ≤ n, to an abstract value,

µ : Loc → D! maps any memory location to an abstract
value, σ is the abstract stack defined later, ϕ : flags → B!

assigns to each flag an abstract boolean value b ∈ B! =
{true, false,%,⊥} and pc ∈ D! is the program counter
register. µ records the values stored in the data segment. A
location $ ∈ Loc is a pair (lab, i) where lab is a data label
and i is an integer. (lab, i) denotes the location of the ith

value defined in the declaration of lab. For example, the dec-
laration d: .INT 1,2 makes µ(d, 0) = 1 and µ(d, 1) = 2.
In our analyzer, if n values are allocated at label lab then
attempting the access µ(lab, m), for m ≥ n, raises an error
comparable to an out of bound access to an array. The func-
tion ϕ maps the flags of the processor to abstract boolean
values. In our simplified language, we consider two flags, EQ
and LT, which are modified by CMPI and CMPF.

The domain D! of values is composed of integers, floating-
point numbers and data and text pointers belonging to I,
F , D∗ and T∗, respectively. The abstract integers belong to
the domain I of intervals with integer bounds. The floats
are abstracted by error series [7, 9] belonging to F , (see
Section 3). Let LD denote the set of labels defined in the
data section and let ℘(X) denote the powerset of X. The
abstract domain of pointers to the data section is

D∗ = ℘(LD) × I (1)

The concretization of an abstract value (L, I) ∈ D∗ is:

γD∗(L, I) =
˘
(lab, i) : lab ∈ L, i ∈ I

¯
(2)

The join and comparison operators over D∗ are defined com-
ponentwise. The text pointers are defined similarly to the
data pointers, using the set LT of text labels instead of LD

. Finally, the domain D! of abstract values is defined by:
D! = {⊥D! ,%D!} ∪ I ∪ F ∪D∗ ∪ T∗.

Our choice of domains, mainly to model pointers, enables
the analysis to detect possible runtime errors, some of which
are specific to assembler programs. The analyzer detects
the read and write operations of data into the text segment,
possible runtime errors comparable to the out of bound ac-
cesses to arrays in high-level languages, branchings out of
the text segment, absolute references to the memory (in re-
locatable programs), type mismatch errors and the use of
non-initialized registers. Even if some programmers may
occasionallly use the preceding dangerous statements, they
are error-prone in general and our validation tool reports
them. Prohibited branchings even make the analyzer stop
since it does not know the next control point.

The abstract semantics is given in Figure 2. M〈pc →
mnem〉 ,→ {M1, . . . ,Mn} means that the current memory
state M in which the program counter register pc points to
the mnemonic mnem leads to one new memory state Mi

for some 1 ≤ i ≤ n. A memory state M is a quintuplet
(ρ, µ,σ,ϕ, pc) as defined previously. M〈loc:=v〉 denotes the
memory state M in which the location loc is set to v.

The operands of the mnemonics are addressing modes
whose abstract semantics must be defined. We treat source
and destination operands differently. The semantics [[a]]s of
a source operand is:

[[v]]s = v [[Ri]]s = ρ(Ri) (3)

[[∗v]]s =
[

"∈γD∗ (v)

µ(") [[Ri(Rj)]]s =
[

"∈γD∗

`
ρ(Ri)+intρ(Rj)

´
µ(") (4)

For the direct and indirect modes, the argument is evaluated
yielding an abstract label $! ∈ D∗ and the final result joins

mnem ::= ADDI src1, src2, dst | SUBI src1, src2, dst | MULI src1, src2, dst
| ADDF src1, src2, dst | SUBF src1, src2, dst | MULF src1, src2, dst | MV src, dst
| BR src | BLT src | BEQ src | CMPI src1, src2 | CMPF src1, src2 | PUSH src | POP dst | CALL src

src, dst ::= val (Immediate)
| R0 | R1 | . . . | Rn (Register)
| ∗val (Direct)
| Ri(Rj) (Indirect)

val ::= int | float | label

decl ::= label : .INT (int list) | label : .FLOAT (float list)

prog ::= (decl list)((label)? mnem) list

Figure 1: Syntax of the language.

the values stored at concrete locations $, for all $ ∈ γD∗($!).
+int is defined in equations (8) and (9). For destination
operands we have:

[[v]]d = error [[Ri]]d = {Ri} (5)

[[∗v]]d =

 ˘
µ(x) : x ∈ γD∗ (v)

¯
if v ∈ D∗

error otherwise
(6)

[[Ri(Rj)]]d =
˘
µ(x) : x ∈ γD∗ ([[Ri]]s +int [[Rj]]s)

¯
(7)

The evaluation of destination operands yields a set of lo-
cation or registers. M〈[[m]]d:=v〉 abbreviates M〈d1:=v, . . . ,
dn:=v〉, for d1, . . . , dn ∈ [[m]]d. In the direct and indirect
modes, the number of labels of a program being finite, γD∗(m)
always denotes a finite number of locations.

In Figure 2, the first rule holds for the integer operations
ADDI, SUBI and MULI. In order to handle arithmetic opera-
tions on pointers, we allow some coercions between values
of the domains I, D∗ and T∗.

i1 ±int i2 = i1 ± i2 if i1 ∈ I and i2 ∈ I (8)

d±inti = (L, I) ∈ D∗ if d = (L, i′) ∈ D∗, i ∈ I and I = i±i′

(9)
A coercion rule similar to (9) holds for text pointers. The
abstract interpretation of the unconditional branch BR yields
a set S =

˘
M〈pc:=pc′〉 : pc′ ∈ γT∗([[src]]s)

¯
of possible con-

figurations. BLT and BEQ behave like BR whenever the related
flag is set to true. The next rule of Figure 2 concerns the
CMPI mnemonic. For CMPI, when src1 is compared to src2,
four new memory states combining the possible values of the
flags are generated. M|src1≤src2 denotes the memory state
M in which the values of the operands have been narrowed
to the only cases making the condition true.

Our abstract stack domain is designed to behave well for
loops in which the same sequence of PUSH and POP occurs
at each iteration and a PUSH argument always has the same
type. The abstract stack is described by a directed valued
graph whose nodes correspond to the PUSH and CALL opera-
tions of the analyzed program. Intuitively, an edge (n1, n2)
indicates that the PUSH or CALL related to the node n2 may
precede the one related to n2. The abstract value attached
to a node n over-approximates the abstract values pushed
by the corresponding statement. Finally, our abstract stack
also has a set of possible top elements.

Formally, an abstract stack σ is a pair (G, τ) where G =
(V, E,ω) is a valued graph and τ a set of nodes. V has one
node per PUSH and CALL statement of the analyzed program,
E ⊆ V ×V is the set of edges, ω : V → D! maps any node to
an abstract value and and τ ⊆ V is a set of possible tops of
the stack. Initially, ω(v) = (⊥D! , ∅) for any v ∈ V and τ =

∅. The semantics of PUSH, POP and CALL is given in Figure
2. In the semantics of CALL, T (pc + 1) denotes the T∗ value
pointing to the line pc+1 in the text section. When PUSH src
occurs at the ith line of code of the analyzed program, the
argument is evaluated, yielding v = [[src]]s, and v is joined
to the values already recorded in ω(i). Next, the current top
elements of τ are added to the successors of i and τ is set to
{i}. For POP dst, the argument is evaluated by [[dst]]d and the
resulting locations are set to the union of the abstract values
occurring in the possible top positions of the stack. The new
top of the stack is set to the union of the successors of the
possible tops. Finally, the semantics of CALL pushes the
return address as values and executes the branching. The
union of two abstract stacks σ1 = (G1, τ1) and σ2 = (G2, τ2)
is defined by: (G1, τ1) ∪ (G2, τ2) = (G, τ1 ∪ τ2) where, in G,
∀v ∈ V, ω(v) = ω1(v) ∪ ω2(v) and E = E1 ∪ E2. The new
top is the union of the tops of σ1 and σ2 and the levels of
the stacks are joined element by element. Our model of the
stack is accurate enough to analyze recursive procedures.

We now describe how widenings are performed and how
the abstract environments are stored in the analyzer. For
each line of code i, we assume that E(i) records the environ-
ment for which the mnemonic has been analyzed. The anal-
ysis then consists of analyzing states and updating E and a
work list containing the configurations not yet examined, un-
til the work list becomes empty. Obviously, a configuration
is not analyzed again if it has already been analyzed with a
greater environment. To decide when widenings need to be
performed, a counter is assigned to each branching. B(i) de-
notes the counter related to the branching of line i and it is
incremented every time the mnemonic of line i is evaluated.
Then a widening is performed when B(i) becomes greater
than a user defined constant, and B(i) is reset to zero.

A widening M1∇M2 consists of separately widening each
register, memory location, and flag. The widening of stacks
is described later on. Concerning the elementary values,
the intervals of integers are widened in a usual way and,
for pointers, no widening is performed: let d1, d2 ∈ D∗ and
t1, t2 ∈ T∗. d1∇d2 = d1 ∪ d2 and t1∇t2 = t1 ∪ t2. Note that,
since the set of data and text locations is finite, the analy-
sis always terminates even if the abstract pointers are not
widened. Let σ = (G, τ), σ1 = (G1, τ1) and σ2 = (G2, τ2)
be stacks such that σ = σ1∇σ2, G1 = (V1, E1,ω1) and
G2 = (V2, E2,ω2). Then σ is defined by τ = τ1 ∪ τ2,
E = E1∪E2 and ∀v ∈ V, ω(v) = ω1(v)∇ω2(v). The stack is
widened level by level and the sets of possible top elements
are joined.

Our last point about the analyzer concerns the manage-
ment of an environment E(i) containing the abstract mem-

M〈pc → ADDI src1, src2, dst〉 &→
˘
M〈[[dst]]d:=[[src1]]s +int [[src2]]s, pc:=pc + 1〉

¯

M〈pc → ADDF src1, src2, dst〉 &→
˘
M〈[[dst]]d:=[[src1]]s +float [[src2]]s, pc:=pc + 1〉

¯

M〈pc → MV src, dst〉 &→
˘
M〈[[dst]]d:=[[src]]s, pc:=pc + 1〉

¯

M〈pc → BR src〉 &→
˘
M〈pc:=pc′〉 : pc′ ∈ γT∗ ([[src]]s)

¯

M〈pc → BLT src〉 &→
˘
M〈pc:=pc′〉 : pc′ ∈ γT∗ ([[src]]s)

¯
if ϕ(LT) ' true

M〈pc → BLT src〉 &→
˘
M〈pc:=pc + 1〉

¯
if ϕ(LT) ' false

M〈pc → CMPI src1, src2〉 &→˘
M|src1≤src2〈ϕ(LT):=true,ϕ(EQ):=true, pc:=pc + 1〉,M|src1<src2〈ϕ(LT):=true,ϕ(EQ):=false, pc:=pc + 1〉,

M|src1=src2〈ϕ(LT):=false,ϕ(EQ):=true, pc:=pc + 1〉,M|src1>src2〈ϕ(LT):=false,ϕ(EQ):=false, pc:=pc + 1〉
¯

M〈pc → PUSH src〉 &→ M〈ω(pc):=ω(pc) ∪ [[src]]s, ∀t ∈ τ : E:=E ∪ (pc, t), τ:={pc}, pc:=pc + 1〉

M〈pc → POP dst〉 &→ M〈[[dst]]d:=
S

t∈τ ω(t), τ:={t′ : (t, t′) ∈ V ∧ t ∈ τ}, pc:=pc + 1〉

M〈pc → CALL src〉 &→ M〈ω(pc):=ω(pc) ∪ T (pc + 1), ∀t ∈ τ : E:=E ∪ (pc, t), τ:={pc}, pc:=γT∗ ([[src]]s)〉

Figure 2: Abstract semantics of the language.

ory state of the ith line of code. Basically, it is too imprecise
to record, for each line of code i, a single memory state
M. This stems from the fact that the abstract semantics
of the comparison operators CMPI and CMPF yields many en-
vironments with different values of the flags and differently
narrowed values of the arguments. For example, let us as-
sume that a comparison occurs at the ith line of code of a
program. If E(i + 1) only recorded one memory state then
all the memory states generated by the comparison of line
i would be merged at line i + 1, leading to a very imprecise
analysis. So the analyzer separately records the memory
states for which a mnemonic has been analyzed, depend-
ing on the values of the flags. In other words, E(i, bLT, bEQ)
records the memory states M for which a program has been
analyzed and such that, in M, ϕ(LT) = bLT and ϕ(EQ) = bEQ.
So, four abstract environments are stored per line of code,
our language using two flags. This is memory-consuming
but it is necessary since, otherwise, the information inferred
from comparisons is lost.

3. NUMERICAL ACCURACY
This section briefly introduces the concrete domain of er-

ror series [7, 9]. Our analyzer uses an abstraction of this
domain which can be straightforwardly defined. Let F be
the set of floating-point numbers and let ↑◦: R → F be
the function which returns the roundoff to the nearest of
a real number r ∈ R. The TMS320 specification states
that any datum d is rounded to ↑◦ (d). In addition, the
TMS320 specification states that, like in the IEEE 754 Stan-
dard [1, 6], the elementary operations are correctly rounded,
i.e.! ∈ {+,−,×},

∀f1, f2 ∈ F, f1!Ff2 =↑◦ (f1!Rf2) (10)

For our needs, we also introduce the function ↓◦: R → R
defined by ↓◦ (r) = r− ↑◦ (r). To define the domain of error
series, we assume that any line of code is identified by its
number $ ∈ L and that L denotes the set L∪{h} where h is
a special symbol used to denote the higher-order errors and
which corresponds to no particular line of code. An error

series r is defined by:

r = f'εν +
X

"∈L
ω"'ε" (11)

In Equation (11), f is the floating-point number used by the
processor. f is always attached to the formal variable)εν . A
term ω")ε" denotes the contribution to the global error of the
first-order error introduced by the operation of line $ during
the evaluation of r. ω" ∈ R is the scalar value of this error
term and)ε" is a formal variable.

The elementary operations on error series are defined in
Figure 3 for r1 = f1)εν +

P
"∈L+ ω"

1)ε" and r2 = f2)εν +P
"∈L+ ω"

2)ε". ων and f are used interchangeably to denote

the coefficient of a variable)εν . The formal series
P

"∈L ω")ε"

related to the result of the operation ! of Line $i contains
the combination of the errors on the operands plus a new
error term ↓◦ (f1!Rf2))ε"i corresponding to the error in-
troduced by the operation of Line $i. The rules for addi-
tion and subtraction are natural. The elementary errors are
added or subtracted componentwise in the series and the
new error due to Line $i corresponds to the roundoff of the
result. Multiplication requires more care because it intro-
duces higher-order errors due to the multiplication of the
first-order errors. The initial first-order errors ω"1

1)ε"1 and
ω"2

2)ε"2 are multiplied by f2 and f1 respectively and products
of first order error terms yield higher order error terms. ⊗ is
a rewriting rule over L∪{ν} defined for $, $′ ∈ L by ν⊗ν = ν,
ν ⊗ $ = $⊗ ν = $, $⊗ $′ = h and $⊗ h = h ⊗ $ = h⊗ h = h.
Finally, the multiplication introduces a new first-order er-
ror ↓◦ (f1f2) which is attached to the formal variable)ε"i in
order to indicate that this error is due to the product oc-
curring at Line $i. The TMS320 assembler does not offer
division but the semantics of this operation is given in [9].

Our semantics details the contribution to the global er-
ror of the first-order error terms and globally computes the
higher-order error arising during the calculation. In prac-
tice, higher-order errors are often negligible. Our seman-
tics allows us to determine the sources of imprecision while
checking that the higher-order errors are actually negligible.

r1 +"i r2
def
= ↑◦ (f1 + f2)'ε+

X

"∈L
(ω"

1 + ω"
2)'ε"+ ↓◦ (f1 + f2)'ε"i

(12)

r1 −"i r2
def
= ↑◦ (f1 − f2)'ε+

X

"∈L
(ω"

1 − ω"
2)'ε"+ ↓◦ (f1 − f2)'ε"i

(13)

r1 ×"i r2
def
= ↑◦ (f1f2)'ε+

X

"1, "2 ∈ L ∪ {ν}, "1 ⊗ "2 0= ν

ω"1
1 ω"2

2 'ε"1⊗"2+ ↓◦ (f1f2)'ε"i
(14)

Figure 3: Elementary operations over error series.

4. THE ANALYZER
The analyzer, written in OCaml, accepts assembler pro-

grams for the TMS320 C3X [14], a widely used DSP. It is
based on the abstract interpretation of Section 2 and uses,
for the floating-point computations, abstract error series in
which the coefficients f and ω" respectively are abstracted
by intervals of floating-point numbers and intervals of mul-
tiple precision numbers provided by the MPFR library [8].

The tool detects the runtime errors mentioned in Section
2 but the interface is mainly designed to validate and to help
to improve the numerical accuracy of floating-point compu-
tations. In addition to the errors introduced by the elemen-
tary operations, error terms are introduced by the opera-
tions that copy values from 40 bits registers to 32 memory
locations (STF and PUSHF). Next, the user may write asser-
tions to specify the range and error of values stored in some
registers or memory locations. For example the assertions
.float x [0.0,1.0,0.05,0.1] states that the memory lo-
cation x is initialized with a value belonging to [0.0, 1.0] and
that the error attached to this value belongs to [0.05, 0.1].
Once a program has been analyzed, the tool opens three
windows, as shown in Figure 4. The bottom left window
displays a synthesis of the results of the analysis. A colored
box is drawn at the beginning of each line of code to indicate
the intensity of the most important numerical inaccuracy at
this line. More precisely, the analyzer finds the most inaccu-
rate value in the abstract memory state of the current line
and draws an orange box of proportional intensity. A low
intensity corresponds to a small error (an invisible white
box corresponds to no error at all) while large errors are
represented by dark boxes. This enables the user to easily
locate the inaccuracies. The rightmost window of Figure 4
displays the abstract value of a register or memory location
at a given line of code. For values of type float, a range is
given for the floating-point number as well as for the global
error, i.e. the sum of the error terms of the series. Next,
the user may see the source of this global error by opening
a new window like the top left window of Figure 4. This
window represents by an histogram the error series related
to the considered floating-point value. In front of each line
of code $ of the program, a bar proportional to the error
term ω" of the series is displayed. The user can easily recog-
nize which error terms contribute most to the global error:
they correspond to the largest bars of the histogram. So, the
programmer knows which statements need to be modified to
improve the accuracy of the calculation. For example, if the
precision loss due to the copy of a value from a register to
memory is the source of a large inaccuracy, the programmer
may decide to keep the value in the register.

The program analyzed in Figure 4 implements a first or-
der recursive filter yn = axn + byn−1. The coefficients a and

b are set to [0.4, 0.45, 0.0, 0.005] and [0.2, 0.3, 0.0, 0.01] in or-
der to validate a family of filters with slightly inaccurate
coefficients. xn and yn−1 are stored in a two element array
x. An assertion states that the entry signal xn is bound by
0.5 ≤ xn ≤ 1.0 for all n. yn is computed repeatedly, in an in-
finite loop. The rightmost and the top left windows display
information on the output y, stored in x[1]. We can see
in the rightmost window that the output always belongs to
[0.0, 0.6428571367] and that the error attached to this out-
put never exceeds 0.016563320767. The error is never much
more important than the initial error on the coefficients, in-
dependently of how long we iterate. The top left window
gives the sources of this error. As expected in this example,
the main errors are introduced by the multiplications whose
operands are inaccurate and the second product introduces
more inaccuracy than the first one.

5. CONCLUSION
In this article, we have introduced a static analyzer to

detect runtime errors in DSP programs and to analyze the
numerical accuracy of floating-point calculations. This an-
alyzer is intended to precisely analyze industrial programs,
mainly embedded airplane systems. For large codes, the
histograms displayed by the tool are of primary interest to
identify the sources of inaccuracies. The analysis of floating-
point computations at the assembler level presents many
advantages, with respect to higher-level languages. Firstly,
the accuracy of a computation depends on the way it is com-
piled and, secondly, assembler programs contain additional
information such as which values are stored in registers and
consequently are represented with more bits than in mem-
ory.

Our toy language is representative of most existing as-
semblers but should be adapted for some processors. The
main modification may concern the stack. In this article,
we assumed that the stack was accessed by PUSH and POP
mnemonics, as for the TMS320 processor [14]. Some assem-
blers such as the Sparc or 680X0 processors do not offer
these operations and let the programmer directly manage
a stack pointer SP . Our abstract stack should be revised
in this case. A solution would be to assign an interval of
integers to SP and to use a graph similar to the one of Sec-
tion 2 in which the nodes would correspond to the concrete
integer values taken by SP . Finally, we used separate com-
pare and branch mnemonics as in most processors. However
some processors have compare-and-branch mnemonics that
merge the CMPI/CMPF and the BLT/BEQ statements. In this
case, the analysis becomes simpler and the E environments
introduced in Section 2 may only assign one memory state
per line.

In further work, we plan to improve the iteration strategy

Figure 4: Screenshot of the analyzer.

of the analyzer by using dynamic partitionning techniques
[11]. This would enable us to obtain more precise results
in a minimal number of iterations instead of using analysis
parameters like a widening threshold [11]. We also plan to
add relational numerical domains for loops [10].

6. REFERENCES
[1] ANSI/IEEE. IEEE Standard for Binary Floating-point

Arithmetic, std 754-1985 edition, 1985.
[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret,

L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
Programming Language Design and Implementation,
PLDI’03. ACM Press, 2003.

[3] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Principles of Programming Languages, POPL’77,
pages 238–252, 1977.

[4] P. Cousot and R. Cousot. Abstract interpretation
frameworks. Journal of Logic and Symbolic
Computation, 2(4):511–547, 1992.

[5] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise wcet determination
for a real-life processor. In Embedded Software,
EMSOFT’2001, number 2211 in LNCS.
Springer-Verlag, 2001.

[6] D. Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM
Computing Surveys, 23(1):5–48, 1991.

[7] E. Goubault. Static analyses of the precision of
floating-point operations. In Static Analysis
Symposium, SAS’01, number 2126 in LNCS, pages

234–259. Springer-Verlag, 2001.
[8] G. Hanrot, V. Lefevre, Rouillier F., and

P. Zimmermann. The MPFR library. Institut de
Recherche en Informatique et Automatique, 2001.

[9] M. Martel. Propagation of roundoff errors in finite
precision computations: a semantics approach. In
European Symposium on Programming, ESOP’02,
number 2305 in LNCS, pages 194–208.
Springer-Verlag, 2002.

[10] M. Martel. Static analysis of the numerical stability of
loops. In Static Analysis Symposium, SAS’02, number
2477 in LNCS. Springer-Verlag, 2002.

[11] M. Martel. Improving the static analysis of loops by
dynamic partitioning techniques. In Source Code
Analysis and Manipulation. IEEE Press, 2003.

[12] S. Putot, E. Goubault, and M. Martel. Static analysis
based validation of floating-point computations. In
Numerical Software with Result Verification, number
2991 in LNCS, pages 306–313, 2004.

[13] X. Rival. Symbolic transfer function-based approaches
to certified compilation. In Principles of Programming
Languages, POPL, ACM Press, 2004.

[14] Texas Instruments. TMS320C3x User’s Guide, 1997.
[15] H. Theiling. Ilp-based interprocedural path analysis.

In Embedded Software, EMSOFT’2001, number 2491
in LNCS. Springer-Verlag, 2001.

[16] Z. Xu, T. Reps, and Miller B. Safety checking of
machine code. In Programming Language Design and
Implementation, PLDI. ACM, 2000.

[17] Z. Xu, T. Reps, and Miller B. Typestate checking of
machine code. In European Symposium on
Programming, ESOP’01, number 2028 in LNCS.
Springer-Verlag, 2001.

