
Program Transformation for Numerical Precision

Matthieu Martel
Laboratoire ELIAUS-DALI

Université de Perpignan Via Domitia
52 avenue Paul Alduy

66860 Perpignan Cedex, France
matthieu.martel@univ-perp.fr

Abstract
This article introduces a new program transformation in order to
enhance the numerical accuracy of floating-point computations. We
consider that a program would return an exact result if the compu-
tations were carried out using real numbers. In practice, roundoff
errors due to the finite representation of values arise during the ex-
ecution. These errors are closely related to the way formulas are
evaluated. Indeed, mathematically equivalent formulas, obtained
using laws like associativity, distributivity, etc., may lead to very
different numerical results in the computer arithmetic. We propose
a semantics-based transformation in order to optimize the numeri-
cal accuracy of programs. This transformation is expressed in the
abstract interpretation framework and it aims at rewriting pieces of
numerical codes in order to obtain results closer to what the com-
puter would output if it used the exact arithmetic.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Validation; D.3.4 [Programming Lan-
guages]: Processors—Optimization; F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
Analysis; G.1.0 [Mathematics of Computing]: Numerical Analysis—
Computer Arithmetic

General Terms Algorithms, Languages, Theory, Verification

Keywords Program Transformation, Numerical Precision, Ab-
stract Interpretation, Compiler Optimizations, Floating-Point Num-
bers

1. Introduction
This article introduces a new program transformation to enhance
the numerical accuracy of floating-point computations which com-
ply to the IEEE754 Standard [1]. We consider that a program would
return an exact result if the computations were carried out using
real numbers. Indeed, many programmers and compiler designers
use floating-point arithmetic as if it were real arithmetic. However,
in practice, round-off errors arise at run-time [8, 20]. This is be-
cause floating-point arithmetic differs strongly from real number
arithmetic: the values have a finite number of digits and algebraic
laws like associativity, distributivity, commutativity do not hold.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’09, January 19–20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-327-3/09/01. . . $5.00

The round-off errors are closely related to the way the formulas
are written. For example, the evaluation by a computer of math-
ematically equivalent expressions (e.g. x × (1 + x) and x + x2)
possibly leads to very different results. Our program transforma-
tion aims at manipulating the mathematical expressions in order to
produce new expressions which are more accurate and mathemati-
cally equivalent to the original ones.

Understanding the reasons why the implementation of a formula
is numerically bad and how to improve it is usually difficult because
computer arithmetics are particularly not intuitive. So, it is neces-
sary to provide tools to the programmers, in order to help them to
increase the numerical quality of their codes. During the last few
years, static analyses by abstract interpretation [5] of the numeri-
cal accuracy of floating-point computations have been introduced
[9, 15, 17] and implemented in the Fluctuat tool [10, 11] which is
used in many industrial contexts. A main advantage of this method
is that it enables one to bound safely all the errors arising during
a computation, for large ranges of inputs. It also provides hints on
the sources of errors, that is on the operations which introduce the
most important precision loss. This latter information is of great
interest to improve the accuracy of the implementation. More gen-
erally, program transformations to detect numerical errors are run-
time are discussed in [3] and other methods, not based on static
analysis, are compared in [16]. Concerning the transformation of
programs in order to enhance their numerical accuracy, there only
exists non-automatic methods dedicated to specific classes of for-
mulas, for example to improve the evaluation of polynomial ex-
pressions [4, 13].

Semantics-based program transformation [6, 12] for floating-
point arithmetic expressions has been introduced [18]. This method
enables one to automatically rewrite a general formula into another
mathematically equivalent and more precise formula. In [19], it has
been shown that the transformation could also be applied to the
case of fixed-point computations [21, 22].

In this article, we extend the transformation for numerical accu-
racy to the case of entire programs. While previous work [18, 19]
has only focused on how to rewrite arithmetic expressions, we con-
sider a simple imperative language with variables, conditionals and
loops. It is then possible to transform computations carried out
among many lines of code, to modify the expressions assigned to
intermediary variables and to use standard compile-time techniques
like loop unrolling to improve the numerical accuracy inside the
body of loops. Intuitively, the main originality of the program trans-
formation is to allow, in the non-standard and abstract semantics,
to evaluate either eagerly or lazily the arithmetic expressions as-
signed to variables. Then, when a variable is read, the expression
may be either evaluated or inserted into the larger expression which
uses the variable. This mechanism permits to recombine the opera-
tions among many assignments. We use P. Cousot and R. Cousot’s

framework for semantics-based program transformation [6] by ab-
stract interpretation [5] and we propose an offline transformation.
The methodology of [6] enables us to define a semantics transfor-
mation that would be far more difficult to obtain at the syntactic
level, since there is no strong syntactic relation between the source
and transformed expressions.

This article is organized as follows. Section 2 informally
presents the program transformation. Section 3 introduces the nu-
merical domains used by our semantics. The non-standard seman-
tics of programs is given in Section 4 and the abstract semantics
is introduced in Section 5. Section 6 presents the program trans-
formation based on the abstract semantics. Finally, experimental
results are given in Section 7 and Section 8 concludes.

2. Overview
This section briefly illustrates the kind of code transformations
we wish. Basically, we aim at optimizing the numerical precision
of floating-point computations, i.e. we want to minimize the dif-
ference between the result output by the machine and the math-
ematical result that we would obtain if the computer used exact
arithmetic. For example, let us consider the arithmetic expression
e=(a*((b+c)+d)) and let us assume that the inputs belong to the
following intervals:

a = [56789, 98765] b = [0, 1]
c = [0, 5e−8] d = [0, 5e−8]

(1)

Assuming that we are using the IEEE754 single precision, we want
to perform the following transformation:

e=(a*((b+c)+d)) −→ e’=((a*b)+(a*(c+d)))

The sums are parsed in order to first add the smallest terms: this
limits the errors since, in IEEE754 single precision, we have b +
c = b. Furthermore, the product is distributed and this avoids
the multiplication of the round-off errors of the additions by a
large value and, consequently, this also reduces the final error.
Using the domains introduced in Section 3 to compute an over-
approximation of the error attached to the result of a floating-
point computation, we obtain a bound on the maximal error arising
during the evaluation of the expression (for any concrete set of
inputs in the intervals given in Equation (1)). The errors for the
source and transformed expressions are:

• Error bounds on e: [-1.5679E-2,1.5680E-2],
• Error bounds on e’: [-7.8125E-3,7.8126E-3].

The error on the transformed expression is approximately half the
error on the original expression.

The transformation of arithmetic expressions has been defined
in [18]. In this article, we generalize this work to the case of full
programs, with variables, conditionals and loops. For example,
it is well known that a sequence of numbers has to be sorted
increasingly before being added. If we take

s =

4X
i=0

xi (2)

with xi = [2i, 2i+1], we obtain the results of Figure 1, where a, b,
c, d and e stand for x0, x1, x2, x3 and x4, respectively. Depending
on the user-defined parameters giving the precision of the transfor-
mation, all the formulas of Figure 1 can be automatically found by
our technique.

In a program, a sequence of additions would typically arise
inside a loop. The usual way to implement Equation (2), assuming
that the xi are stored in an array x[] of N elements (N is supposed
even) is given on the left-hand-side of Figure 2. It would not be
reasonable to expect that a general and automatic semantics-based

Expression Error bound
(((e+d)+c)+b)+a [-7.6293E-6,7.6294E-6]
(b+a)+(c+(e+d)) [-5.9604E-6,5.9605E-6]
(c+(b+a))+(e+d) [-4.5299E-6,4.5300E-6]
(d+(c+(a+b)))+e [-3.5762E-6,3.5763E-6]

Figure 1. Error bounds on the evaluation in IEEE754 single
precision of mathematically equivalent expressions.

int i=0; int i=0;
float s=0.0; float s=0.0;
while (i<N) { −→ while (i<N) {
s=s+x[i]; l=x[i]+x[i+1];
i=i+1; s=s+l;

} i=i+2;
}

Figure 2. Example of program transformation in the case of an
array of decreasingly sorted numbers.

code transformation inserts a sort procedure in the new program.
However, the program given on the right-hand-side of Figure 2
already significantly improves the precision of the computations.
In the new program, the body of the loop has been unrolled by
a factor 2 and the computation s = (s + xi) + xi+1 has been
rewritten as s = s + (xi + xi+1). This corresponds to what
was done for expressions, in Figure 1 for example. For technical
reasons, an intermediary variable ` has been introduced and the
new program computes ` = xi + xi+1 and then s = s+ `. We use
a standard compile-time technique to unroll the loops [2] before
applying the transformation for numerical precision: the body is
replicated some number n of times (called the factor) and the loop
counter is incremented by n instead of 1. Currently, the factor is a
user-defined parameter of the transformation but there also exists
standard heuristics to find efficient unrolling factors (e.g. based on
the size of the code).

Assuming that xi = [2N−i−1, 2N−i] and that N= 4, we obtain,
in IEEE754 single precision, the following error bounds on s de-
pending on the program we use:

• Original program: [0.0, 2.861022950E − 6],
• Transformed program: [0.0, 2.145767212E − 6],
• Best bound (uses a sort): [0.0, 1.668930054E − 6].

Observe that the error bound obtained using the transformed code is
closer to the best error bound than to the error bound of the original
code.

3. Numerical Domains
This section briefly surveys the aspects of floating-point arithmetic
useful to the comprehension of the rest of this article. It also
defines the precision measure that we aim at improving by program
transformation.

The IEEE754 Standard specifies the representation of numbers
and the semantics of the elementary operations for floating-point
arithmetic [1, 8, 20]. It is implemented in most of modern general-
purpose processors. First of all, a floating-point number x in base
β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (6)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa
with digits 0 ≤ di < β, 0 ≤ i ≤ p − 1, p is the precision and
e is the exponent, emin ≤ e ≤ emax. A floating-point number
x is normalized whenever d0 6= 0. Normalization avoids multiple

(E1\)
v = v1 • v2

〈v1 • v2, τ〉 →\ v

τ(x) = v

〈x, τ〉 →\ v
(E2\)

(E3\)
〈e1, τ〉 →\ e′1

〈e1 • e2, τ〉 →\ e′1 • e2
〈e2, τ〉 →\ e′2

〈v1 • e2, τ〉 →\ v1 • e′2
(E4\)

(x]1, ε
]
1) + (x]2, ε

]
2) =

“
↑]◦ (x]1 + x]2), ε

]
1 + ε]2+ ↓

]
◦ (x]1 + x]2)

”
(3)

(x]1, ε
]
1)− (x]2, ε

]
2) =

“
↑]◦ (x]1 − x

]
2), ε

]
1 − ε

]
2+ ↓

]
◦ (x]1 − x

]
2)
”

(4)

(x]1, ε
]
1)× (x]2, ε

]
2) =

“
↑]◦ (x]1 × x

]
2), x

]
1 × ε

]
2 + x]2 × ε

]
1 + ε]1 × ε

]
2+ ↓

]
◦ (x]1 × x

]
2)
”

(5)

Figure 3. The operational semantics of arithmetic expressions and the abstract semantics of the elementary operations for the
floating-point arithmetic.

representations of the same number. IEEE754 Standard introduces
a few values for p, emin and emax. For example, single precision
numbers are defined by β = 2, p = 23, emin = −126 and
emax = +127. The IEEE754 Standard also specifies special values
(denormalized numbers, infinites and NaN) which are not used in
this article.

Let ↑◦ : R → F be the function which returns the round-off
of a real number following the rounding mode ◦ ∈ {◦−∞, ◦+∞,
◦0, ◦∼} (towards ±∞, 0 or to the nearest). ↑◦ is fully specified
by the IEEE754 Standard which also requires, for any elementary
operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (7)

Equation (7) states that the result of an operation between floating-
point numbers is the round-off of the exact result of this operation.
In this article, we also use the function ↓◦: R → R which returns
the round-off error. We have:

↓◦ (r) = r− ↑◦ (r) (8)

Enhancing the quality of the implementation of a formula f(x)
then consists of minimizing the round-off error on the result. In
other words, using the notation of Equation (8), we aim at mini-
mizing ↓◦ (f(x)), for all the possible vectors of inputs x.

We introduce a non-standard semantics for the arithmetic ex-
pressions whose syntax is given by:

e ::= v | x | e1 + e2 | e1 - e2 | e1 x e2 (9)

In Equation (9), x ∈ Var denotes a variable and v denotes a
value. The semantics of expressions is related to the measure of the
numerical accuracy. A value v ∈ D is a pair (x, ε) where x denotes
the computer number, i.e. the floating-point number manipulated
by the machine, and ε measures the numerical quality of x. In
practice, ε denotes the distance between a real number xR and the
floating-point number x corresponding to the round-off of xR (i.e.
↓◦ (xR) as defined in Equation (8)). In addition, we consider a
left-to-right evaluation order for the expressions, as given by the
straightforward reduction rules of Figure 3, where τ : Var→ D is
an environment for the variables and where • stands for one of the
operations + , - or x .

In this article, we also consider abstract values (x], ε]) ∈ D]
where x] and ε] are intervals whose bounds are floating-point
numbers. A value (x], ε]) abstracts a set of concrete values
{(xi, εi), i ∈ I} by intervals in a component-wise way. The reduc-
tion rules of Figure 3 are left unchanged for the abstract semantics.

The abstract semantics of arithmetic operations, given in Figure
3, computes how the round-off errors are propagated. The abstract

function ↑]◦ correspond to the concrete function ↑◦. We have:

↑]◦ ([x, x]) = [↑−∞ (x), ↑+∞ (x)] (10)

The function ↓]◦ is a safe abstraction of ↓◦, i.e. ∀x ∈ [x, x], ↓◦
(x) ∈ ↓]◦ ([x, x]). For example, if the current rounding mode ◦ is
to the nearest, one may choose

↓]◦ ([x, x]) = [−y, y] with y =
1

2
ulp
`
max(|x|, |x|)

´
(11)

where the unit in the last place ulp(x) is the weight of the least
significant digit of the floating-point number x [8]. For an addition,
the errors on the operands are added to the error due to the round-
off of the result, as specified by Equation (7). For a subtraction, the
errors on the operands are subtracted. Finally, the semantics of the
multiplication comes from the development of (x]1+ε

]
1)×(x]2+ε

]
2).

The semantics of the other elementary operations (division and
square root) relies on a power series development and is more
complicated. It is fully explicited in [16, 17].

For example, let us consider the expression:

E = (a + (b + (c + d))) x e (12)

and let us assume that the variables belong to the ranges: a ∈
[−14,−13], b ∈ [−3,−2], c ∈ [3, 3.5], d ∈ [12.5, 13.5] and
e = 2. Using the semantics of Figure 3, we obtain that:

Efloat =
`
[−3, 4], [−2.861022949 · 10−6, 0]

´
This value indicates that the result returned by the machine always
belongs to the interval [−3, 4] and that, for any combination of
inputs taken in the correct ranges, the round-off error on the result
is always less than 2.861022949 · 10−6, in absolute value.

Given a value (x], ε]), the indicator ε] measures the accuracy
of the implementation of a formula in floating-point arithmetic,
assuming that the inputs belong to certain ranges. In the next
sections we introduce a program transformation enabling one to
improve this measure.

4. Non-Standard Semantics
In this section, we introduce the non-standard semantics, denoted
→, that we use to define the program transformation. Intuitively,
the non-standard semantics is a small-step operational semantics
which is non-deterministic in the sense that, from a state s, there
exists in general many elementary reduction steps s→ s1, s→ s2,
. . ., s → sn. This non-determinism comes from the fact that any
arithmetic expression e may be transformed into a mathematically

equivalent one e′ using standard rules such as associativity, com-
mutativity or distributivity. In addition, in the semantics of com-
mands, we allow two ways of evaluating the expressions which ap-
pear in the right-hand side of the assignments: eagerly or lazily (i.e.
the expressions may be fully, partly or not evaluated at all before
being assigned to variables in the environment).

(i) (e1 + e2) + e3 ≡ e1 + (e2 + e3)

(ii) e1 + e2 ≡ e2 + e1

(iii) e ≡ e+ 0

(iv) (e1 × e2)× e3 ≡ e1 × (e2 × e3)
(v) e1 × e2 ≡ e2 × e1

(vi) e ≡ e× 1

(vii) e1 × (e2 + e3) ≡ e1 × e2 + e1 × e3

Figure 5. Example of relation which may be used for the trans-
formation of mathematical expressions.

From a formal point of view, we consider the programs gener-
ated by the grammar of Equation (13).

e ::= v | x | e1 + e2 | e1 - e2 | e1 x e2
b ::= true | false | x == v | x < v
c ::= skip | c1 ; c2 | x = e | if b c1 c2

| while b do c
(13)

The arithmetic expressions have been defined in Section 3 and the
boolean expressions are boolean values or elementary comparisons.
The commands define the core of an imperative programming lan-
guage with sequences, assignments, conditionals and loops.

The semantics of the arithmetic expressions is given in Figure
4. In the reduction rules, • ∈ { + , - , x } denotes any elementary
operation. A label ` ∈ Lab is attached to each value occurring in the
expressions and we use three environments. The first environment
τ : Var → D binds variables to values. Next, ρ : Lab → Expr
maps any label ` to the expression e whose evaluation has lead to
v`. Finally, the environment σ : Expr → D maps expressions to
the result of their evaluation in the domain D. We let Envρ, Envσ
and Envτ denote the sets of such environments. The information
collected by these environments is useful in the abstract semantics
of Section 5.

Initially, a unique label is attached to each value occurring
in an expression and a fresh label is associated to the result of
each operation. For example, assuming that initially ρ(`1) = 1`1 ,
ρ(`2) = 2`2 and ρ(`3) = 3`3 , the expression (1`1 + (2`2 + 3`3))
is evaluated as follows in the non-standard semantics:
〈(1`1+(2`2+3`3)), ρ, σ, τ〉 → 〈1`1+5`4 , ρ′, σ′, τ〉 → 〈6`5 , ρ′′, σ′′, τ〉

where ρ′ = ρ[`4 7→ 2`2 + 3`3], σ′ = σ[2`2 + 3`3 7→ 5], ρ′′ =
ρ′[`5 7→ 1`1 + (2`2 + 3`3)] and s′′ = σ′[1`1 + (2`2 + 3`3) 7→ 6].
In this example, for the sake of simplicity, numbers are integers
instead of values of D.

The rules (E1) to (E3) correspond to the rules (E1\) to (E4\)
given in Figure 3 for the standard semantics. The originality of the
semantics →, concerning the arithmetic expressions, comes from
Rule (E4) which states that an expression may be rewritten into a
mathematically equivalent one before or after a reduction step. The
relation ≡ that we use in practice is given in Figure 5 but it could
be extended to other mathematical laws. Our relation ≡ allows to
transform expressions by associativity, commutativity, distributiv-
ity, and addition or product with neutral elements. Because com-
mutativity is included in ≡, we do not need, in the non-standard
semantics, a rule corresponding to Rule (E4\): in the non-standard
semantics, the evaluation of the rightmost operand is handled by a
combination of Rule (E3) and Rule (E4).

For the sake of simplicity, we only consider simple boolean
expressions of the form x == v or x < v. In the most general
case, the evaluation of tests should also introduce non-determinism
by permitting to rewrite the conditions into other mathematically
equivalent conditions. For instance, we could use the relation ≡≺
that allows one to add a constant to both terms of an equality or
inequality and to multiply by a constants both terms of an equality
or inequality (by reverting the order in case of a product by a
negative value).

The semantics of commands is given in Figure 4. It is a very
standard semantics, excepted the combination of the rules (C1)
and (C2): Rule (C1) defines a lazy evaluation of the expression
assigned to a variable x while Rule (C2) allows an eager evalu-
ation: contrarily to Rule (C2), which performs some actual oper-
ations in the evaluation of e, Rule (C1) permits to bind x to the
expression e itself. As a result, in our semantics, the expressions
may be evaluated either eagerly or lazily and the choice between
these two strategies is non-deterministic. This mechanism enables
us to insert e into a bigger expression e′ and to rewrite later the re-
sulting expression using ≡. The semantics of commands does not
directly affect the environments ρ and σ.

5. Abstract Semantics
Because of the non-determinism, there is possibly an exponential
number of execution paths for a program in the non-standard se-
mantics. Beside of the classical abstraction of data, the abstract se-
mantics aims at reducing the combinatorial explosion by only al-
lowing a polynomial number of possibilities while conservatively
approximating the non-standard semantics.

Expr]0 3 η0 ::= v` | >η
Expr]k 3 ηk ::= ηk−1 | ηk−1 + ηk−1 | ηk−1 - ηk−1

| ηk−1 x ηk−1

pv`qk = v` k ≥ 0
p>ηqk = >η k ≥ 0

pe1 • e2q0 = >η
pe1 • e2qk = pe1qk−1 • pe2qk−1 k ≥ 1

Figure 6. Abstract expressions and the abstraction function.

Concerning the arithmetic expressions, the abstract semantics
is mainly designed to limit the number of reduction paths. We
introduce abstract expressions as well as a coarser relation ≡k
which reduces the number of possibilities allowed by ≡. From a
formal point of view, the abstract semantics of expressions, given
in Figure 7, is obtained by applying the following modifications to
the non-standard semantics:

(i) To limit the combinatorial explosion of the number of traces
due to the Rule (E4), we introduce the set Expr]k of abstract
expressions of height at most k and the abstraction function
p.qk : Expr → Expr]k. The set Expr]k and the function
p.qk are defined in Figure 6. The special element >η denotes
any expression. Note that, in abstract expressions, labels are
attached to values (and only values). In the abstract semantics, a
new label, generated dynamically, is attached to the new values
coming from the result of intermediary computations.

(ii) Rule (E4]) of Figure 7 is substituted to Rule (E4) where ≡k
is a new relation which identifies mathematically equivalent
abstract expressions. In other words, the relation ≡k is the
quotient relation ≡ / ∼k where ∼k is defined by:

e ∼k e′ ⇐⇒ peqk = pe′qk.

(E1)
v = v1 • v2 ρ′ = ρ[` 7→ ρ(`1) • ρ(`2)] σ′ = σ[ρ(`1) • ρ(`2) 7→ v] ` fresh

〈v`11 • v
`2
2 , ρ, σ, τ〉 → 〈v`, ρ′, σ′, τ〉

(E2)
τ(x) = e

〈x, ρ, σ, τ〉 → 〈e, ρ, σ, τ〉
〈e1, ρ, σ, τ〉 → 〈e′1, ρ′, σ′, τ〉

〈e1 • e2, ρ, σ, τ〉 → 〈e′1 • e2, ρ′, σ′, τ〉
(E3)

(E4)
e ≡ e1 〈e1, ρ, σ, τ〉 → 〈e2, ρ′, σ′, τ〉 e2 ≡ e′

〈e, ρ, σ, τ〉 → 〈e′, ρ′, σ′, τ〉

(C1)
τ ′ = τ [x 7→ e]

〈x = e, ρ, σ, τ〉 → 〈skip, ρ, σ, τ ′〉
〈e, ρ, σ, τ〉 → 〈e′, ρ′, σ′, τ〉

〈x = e, ρ, σ, τ〉 → 〈x = e′, ρ′, σ′, τ〉 (C2)

(C3)
〈c1, ρ, σ, τ〉 → 〈skip, ρ′, σ′, τ ′〉
〈c1 ; c2, ρ, σ, τ〉 → 〈c2, ρ′, σ′, τ ′〉

〈c1, ρ, σ, τ〉 → 〈c′1, ρ′, σ′, τ ′〉
〈c1 ; c2, ρ, σ, τ〉 → 〈c′1 ; c2, ρ′, σ′, τ ′〉

(C4)

(C5)
〈b, ρ, σ, τ〉 → b′

〈if b c1 c2, ρ, σ, τ〉 → 〈if b′ c1 c2, ρ, σ, τ〉

(C6)
b = true

〈if b c1 c2, ρ, σ, τ〉 → 〈c1, ρ, σ, τ〉
b = false

〈if b c1 c2, ρ, σ, τ〉 → 〈c2, ρ, σ, τ〉
(C7)

(C8)
〈b, ρ, σ, τ〉 → b′

〈while b do c, ρ, σ, τ〉 → 〈while b′ do c, ρ, σ, τ〉

(C9)
b = true

〈while b do c, ρ, σ, τ〉 → 〈c ; while b do c, ρ, σ, τ〉
b = false

〈while b do c, ρ, σ, τ〉 → 〈skip, ρ, σ, τ〉 (C10)

Figure 4. Non-standard semantics of expressions and commands.

(iii) We use two abstract environments to manage the expressions:
a first environment ρ] : Lab → ℘(Expr]) maps the la-
bels attached to values to abstract expressions. This indicates
how the value has been calculated. The second environment
σ] : Expr] → D] maps abstract expressions to abstract val-
ues. The set D] denotes the abstract domain of floating-point
numbers with error terms introduced in Section 3. The function
σ](η) indicates the range of values in which are evaluated the
expressions abstracted by η and encountered during the execu-
tion.

(iv) Intuitively, following the framework of semantics-based pro-
gram transformations introduced in [6], our technique consists
of, first, computing fully the abstract semantics. This seman-
tics is non-deterministic because of Rule (E4]) but the abstract
expressions make the number of reductions polynomial. Next,
using the information collected by the environments ρ] and σ],
the result of each trace has a bound on the round-off errors and
we select the best one. Finally, from the best abstract trace, we
aim at building a new program, mathematically equivalent to
the original one. We use the actions attached to the transitions:
an action ω indicates which arithmetic operation has been per-
formed at this step. Actions are used to rebuild a new program
from a trace.

In summary, in the abstract semantics, we have rules of the
form:

〈e, ρ], σ], τ]〉` ω−→k 〈e′, ρ′], σ′], τ]〉`
′

(14)
where ρ], σ], τ] are environments, k is a user-defined parameter for
the maximal height of the abstract expressions, ` and `′ are labels
and ω is a sequence of actions. Actions and labels play a crucial
role for the generation of the new program. They are presented in
details in Section 6.

The abstract semantics resulting from the ideas detailed in the
enumeration above is given in Figure 7. Its correctness is given,

in the case of the floating-point arithmetic, in [18]. In Figure 7, •
denotes one of the elementary operations + , - or x and the join
operators t are based on the order relations defined at the end of
this section. The abstract environment for program variables maps
a variable to a set of expressions:

τ] : Var→ ℘(Expr)

Note that τ] is not modified by the evaluation of an expression.
Also note that Rule (E2]) introduces (a limited amount of) non-
determinism by allowing to substitute any expression e ∈ τ](x) to
the variable x.

The abstract semantics of commands is given in the bottom of
Figure 7. It is a big step semantics whose rules have the form:

〈c, ρ], σ], τ]〉 ω−−−−−→ k〈c
′, ρ′], σ′], τ ′]〉 (15)

Again, in Equation (15), ω denotes a sequence of actions. The rules
(C3]) to (C5]) define the abstract semantics of control flow state-
ments in a usual way, the actions on the transitions excepted. For
a conditional, both branches are analyzed in the relevant environ-
ment. The environment τ]|b=true

(resp. τ]|b=false
) is the restriction of

the environment τ] to the cases which make the condition be true
(resp. false). For a while loop, the body is executed in the relevant
environment and the old and new environments are joined in order
to run the next iteration. Note that the semantics requires that the
sequence of actions ω corresponding to the execution of the body
of the loop is the same at each iteration. With this condition, the
same sequence of commands is executed at each iteration and it is
possible to fold the loop when the transformed program is gener-
ated.

The rules (C1]) and (C2]) are abstract versions of the rules
(C1) and (C2) of the non-standard semantics. Rule (C2]) simply
performs an eager step in the evaluation of the expression. Rule
(C1]) adds the current version of the expression e to the environ-

(E1])

v] =
F˘

v′] : v′] =
`
σ](η1) •] σ](η2)

´
, η1 ∈ ρ](`1), η2 ∈ ρ](`2)

¯
E =

F˘
η : η = pη1 • η2qk, η1 ∈ ρ](`1), η2 ∈ ρ](`2)

¯
σ′] =

˛̨̨̨
σ](η) t

`
σ](η1) • σ](η2)

´
if η1 ∈ ρ](`1), η2 ∈ ρ](`2), η = pη1 • η2qk

σ](η) otherwise

〈v`11 • v
`2
2 , ρ

], σ], τ]〉` ` = `1•`2−−−−−−→ k
〈v`, ρ][` 7→ ρ](`) ∪ E], σ′], τ]〉`

(E2])
e ∈ τ](x) `′ fresh

〈x, ρ], σ], τ]〉` x=` `′−−−−−→ k
〈e, ρ], σ], τ]〉`′

(E3])
〈e1, ρ], σ], τ]〉`

′ ω−→k 〈e′1, ρ′], σ′], τ]〉`
′

`′ fresh

〈e1 • e2, ρ], σ], τ]〉`
ω−→k 〈e′1 • e2, ρ′], σ′], τ]〉`

(E4])
e ≡k e1 〈e1, ρ], σ], τ]〉`

ω−→k 〈e2, ρ′], σ′], τ]〉` e2 ≡k e′

〈e, ρ], σ], τ]〉` ω−→k 〈e′, ρ′], σ′], τ]〉`

(C1])
τ ′] = τ]

ˆ
x 7→ τ](x) ∪ e

˜
∀e′ ∈ τ](x), e 6≡k e′

〈x = e, ρ], σ], τ]〉 skip−−−−−→ k
〈ρ], σ], τ ′]〉

(C2])
〈e, ρ], σ], τ]〉x ω−−−−−→ k〈e

′, ρ′′], σ′′], τ]〉` 〈x = e′, ρ′′], σ′′], τ]〉 ω′
−−−−−→ k

〈ρ′], σ′], τ ′]〉
〈x = e, ρ], σ], τ]〉 ω ; ω′

−−−−−→ k
〈ρ′], σ′], τ ′]〉

(C3])
〈c1, ρ], σ], τ]〉 ω1−−−−−→ k〈ρ

′′], σ′′], τ ′′]〉 〈c2, ρ′′], σ′′], τ ′′]〉 ω2−−−−−→ k〈ρ
′], σ′], τ ′]〉

〈c1 ; c2, ρ], σ], τ]〉 ω1 ; ω2−−−−−→ k〈ρ′], σ′], τ ′]〉

(C4])
〈c1, ρ]|b=true

, σ]|b=true
, τ]|b=true

〉 ω1−−−−−→ k〈ρ
]
1, σ

]
1, τ

]
1〉 〈c2, ρ

]
|b=false

, σ]|b=false
, τ]|b=false

〉 ω2−−−−−→ k〈ρ
]
2, σ

]
2, τ

]
2〉

〈if b c1 c2, ρ], σ], τ]〉 if b ω1 ω2−−−−−−→ k
〈ρ]1 t ρ

]
2, σ

]
1 t σ

]
2, τ

]
1 t τ

]
2〉

(C5])

〈c, ρ]|b=true
, σ]|b=true

, τ]|b=true
〉 ω−−−−−→ k〈ρ

′′], σ′′], τ ′′]〉
〈while b do c, ρ′′] t ρ]|b=true

, σ′′] t σ]|b=true
, τ ′′] t τ]|b=true

〉 while b do ω−−−−−−−→ k
〈ρ′], σ′], τ ′]〉

〈while b do c, ρ], σ], τ]〉 while b do ω−−−−−−−→ k
〈ρ′] t ρ]|b=false

, σ′] t σ]|b=false
, τ ′] t τ]|b=false

〉

Figure 7. Abstract semantics of expressions and commands.

ment τ] if and only if e is not in relation by ≡k with an expression
already present in τ](x).

Concerning the arithmetic expressions, the safety of the ab-
stract semantics with respect to the non-standard semantics has
been proved in [18]. In the rest of this section, we focus on the
correctness of the abstract semantics of commands. First, we relate
the environments used in the non-standard semantics and in the ab-
stract semantics by the Galois connections:

〈℘(Envρ),⊆〉 −−−→←−−−
α
ρ
k

γ
ρ
k 〈Env]ρ,k,vρ〉, (16)

〈℘(Envσ),⊆〉 −−−→←−−−
ασk

γσk 〈Env]σ,k,vσ〉, (17)

〈℘(Envτ),⊆〉 −−−→←−−−
ατk

γτk 〈Env]τ,k,vτ 〉. (18)

The partial order as well as the abstraction and concretization
functions for the first kind of environments are defined by:

ρ]1 vρ ρ
]
2 ⇐⇒ ∀` ∈ Dom(ρ]1), ρ

]
1(`) ⊆ ρ

]
2(`), (19)

αρk(R) = ρ] : ∀` ∈ L, ρ](`) = ∪ρ∈Rpρ(`)qk, (20)

γρk(ρ
]) = {ρ ∈ Envρ : ∀` ∈ L, pρ(`)qk ∈ ρ](`)}. (21)

The environment ρ]1 is smaller than ρ]2 if, for any label `, the
set ρ]1(`) is a subset of ρ]2(`). The abstraction αρk(R) of a set

R = {ρ1, ρ2, . . . , ρn} of environments is the abstract environment
ρ] which maps any label ` to the set of abstract expressions peqk

such that ρi(`) = e for some 1 ≤ i ≤ n. Conversely, γρk is
the set of environments ρ which map ` to an expression e such
that peqk = ρ](`). Similarly, we have for the second kind of
environments:

σ]1 vσ σ
]
2 ⇐⇒ ∀η ∈ Dom(σ]1), σ

]
1(η) v

]
D σ

]
2(η), (22)

ασk(S) = σ] : ∀η ∈ Expr]k, σ
](η) = α({σ(η), σ ∈ S}), (23)

γσk (σ]) = {σ ∈ Envσ : ∀e ∈ Expr, σ(e) ∈ γ(σ](peqk))}.
(24)

The environment σ]1 is smaller than σ]2 if σ]1 maps any abstract
expression η to an abstract value smaller than σ]2(η). The orderv]D
is the component-wise order on the abstract domain of values D].
The abstraction ασk and concretization γσk are based on the Galois
connection mentioned in Section 3 to relate concrete and abstract
values.

Finally, for the third kind of environments, we have:

τ]1 vτ τ
]
2 ⇐⇒ ∀x ∈ Dom(τ]1), τ]1(x) v]E τ

]
2(x), (25)

ατk(T) = τ] : ∀x ∈ Var, τ](x) = ∪τ∈T pτ(x)qk, (26)

γτk (τ]) = {τ ∈ Envτ : ∀x ∈ Var, pτ(x)qk ∈ τ](x)}. (27)
The correctness of the abstract semantics is based on the follow-

ing proposition.

PROPOSITION 1. Let 〈c, ρ, σ, τ〉 −→n 〈skip, ρ′, σ′, τ ′〉 denote
a sequence of reduction steps of length n in the non-standard
semantics. Then, if αρk(ρ) vρ ρ

], ασk(σ) vσ σ] and ατk(τ) vτ τ]
then

〈c, ρ], σ], τ]〉 ω−−−−−→ k〈ρ
′], σ′], τ ′]〉

such that αρk(ρ
′) vρ ρ′], ασk(σ′) vσ σ′] and ατk(τ

′) vτ τ ′].

Because of the abstract expressions, for a given program, the
number of reduction paths in the abstract semantics is polynomial
of degree k, where k is the user parameter used in the function p.qk.

6. Program Transformation
The code transformation consists of generating a new program
from the best abstract trace. For an arithmetic expression, the best
trace is the trace which minimizes the greatest round-off error [18].
However, for programs with many variables, the way to determine
the best trace is not unique and it may depend on user requirements.
In particular, we have to consider the following alternatives:

• the measure of the errors may concern either all the variables
of the program or a (possibly user-defined) subset of them,
for example the only variables storing the final results of a
computation,
• for a given set of relevant variables, different measures can be

used: we may either minimize the worst error associated to
variables, or minimize the mean error, or use a least square
method.

These choices modify significantly the results of the transformation
but they introduce no theoretical difficulty and we consider them
rather as implementation details.

Given a measure ≺] of the quality of traces as discussed in
the previous paragraph, the transformation is based on the mini-
mal abstract trace 〈c, ρ], σ], τ]〉 ω−−−−−→ k〈ρ

′], σ′], τ ′]〉, i.e. the
trace which yields the minimal state in the sense of ≺]. Remark
that, since ω−→k uses abstract values of D], the transformation min-
imizes the worst error ε which may occurs during an evaluation. In
other words, it minimizes the precision lost which may arise dur-
ing an evaluation in the worst case, that is for the most pessimistic
combination of data.

(G1) P[[(` = `1 • `2, ι)]] = (ι(`) = ι(`1) • ι(`2), ι)

(G2) P[[
`
x = ` `′, ι

´
]] =

`
skip, ι[`′ 7→ x, ` 7→ x]

´
(G3) P[[(ω1 ; ω2, ι)]] =

˛̨̨̨
˛̨ let (c1, ι1) = P[[(ω1, ι)]]
and (c2, ι

′) = P[[(ω2, ι1)]]
in (c1 ; c2, ι

′)

(G4) P[[(if b ω1 ω2, ι)]] =

˛̨̨̨
˛̨ let (c1, ι1) = P[[(ω1, ι)]]
and (c2, ι

′) = P[[(ω2, ι1)]]
in (if b c1 c2, i

′)

(G5) P[[(while b do ω, ι)]] =

˛̨̨̨
let (c, ι′) = P[[(ω, ι)]]
in (while b do c′, ι′)

Figure 8. Generation of the new program.

The key point of the code transformation is the sequences of
actions attached to the transitions of the abstract semantics. They
are generated by the grammar:

ω ::= ` = `1 • `2 | x = ` `′ | ω1 ; ω2

| if b ω1 ω2 | while b do ω (28)

The actions indicate which operation has been executed during a
transition. The action ` = `1 • `2, where • ∈ { + , - , x }, means

that an operation between the values labeled `1 and `2 is performed
and that the result is assigned to `. The labels belong to the set
Lab. The label ` attached to a state 〈e, ρ, σ, τ〉` indicates that the
result of the evaluation of the expression e has to be assigned to the
label `. In the abstract semantics of expressions, this label is only
modified by Rule (E2]): when a variable is met, we stop evaluating
the current expression and we evaluate the expression assigned to
x instead. In addition, the action x = ` `′ is inserted to create
indirections by letting ` and `′ point to x.

For a given abstract trace 〈c, ρ], σ], τ]〉 ω−−−−−→ k〈ρ
′], σ′],

τ ′]〉, the code transformation P[[(ω, ι)]], given in Figure 8, is based
on the sequence ω of actions and on the environment

ι : Lab ∪ Var→ Expr (29)

which maps a label or variable to either another label or a variable
or an expression. We assume that, initially, for any value v` occur-
ring in the program, ι(`) = v.

Concerning the arithmetic expressions, for the sake of simplic-
ity, the code transformation generates a sequence of elementary
operations, using the labels as auxiliary variables. In the abstract
semantics, an action ` = `1 • `2 arises in Rule (E1]), when an op-
eration between two values is performed. In this case, P generates
an assignment

` = ι(`1) • ι(`)
where ` is a variable named as the label. The environment ι trans-
forms labels into expressions. For example, if v`1 is a value occur-
ring in the original program and if ι(`2) = `3 then `3 is a variable
named as some label and P[[(` = `1 + `2, ι)]] = v + `3 where v + `3
is the syntax of the arithmetic expression adding the value v to the
variable `3.

Recall from Section 5 that an action x = ` `′ arises in the
abstract semantics in Rule (E2]), when a variable is read:

(E2])
e ∈ τ](x) `′ fresh

〈x, ρ], σ], τ]〉` x=` `′−−−−−→ k
〈e, ρ], σ], τ]〉`′

This rule works together with Rule (C2]) which handles the eager
assignments:

(C2])

〈e, ρ], σ], τ]〉x ω−−−−−→ k〈e
′, ρ′′], σ′′], τ]〉`

〈x = e′, ρ′′], σ′′], τ]〉 ω′
−−−−−→ k

〈ρ′], σ′], τ ′]〉
〈x = e, ρ], σ], τ]〉 ω ; ω′

−−−−−→ k
〈ρ′], σ′], τ ′]〉

At program generation time, when the action x = ` `′ is
encountered, no command is generated by Rule (G2) but skip.
Instead, indirections are introduced in the environment ι: the label `
is the label attached to the source state of the transition. Because of
the labels of the states used in the first premise of (C2]), the label
` of the indirection indicates which variable was being computed
and the computation as lead to a variable x. So we set ι(`) = x
and ι(`′) = x. Then, later, when ` will be accessed the value
of x will be returned. Similarly, instead of being assigned to `′,
the expression will be assigned to x. For example, assuming that
ι(x) = 7 x 5, the expression y = x + 3 will lead to the commands
x = (7 x 5) + 3 ; y = x.

The other rules, named (G3), (G4) and (G5) concern the
control-flow structures and are more classical. Rule (G3) deals
with sequences and Rule (G4) with conditionals. In Rule (G5),
the body of the loop is built from the sequence ω corresponding
to the actions of the abstract semantics. Note that, Rule (C5]) re-
quires that the same the sequence of actions ω is performed at each
iteration.

We end this section by discussing the correctness of the code
transformation. We show that, at an observational level [6], the se-
mantics of the original program c and the semantics of the trans-

formed program ct are equal. Our observation consists of showing
that, for a set of observational variables VO ⊆ Var, c and ct com-
pute the same thing in the exact arithmetic of real numbers.

Let αO be an observational abstraction αO : D → R which
transforms a floating-point number with errors (x, ε) ∈ D into a
real number, i.e. αO(x, ε) = x+ε. We first introduce a proposition
concerning the non-standard semantics.

PROPOSITION 2. Let c be a command and let

〈c, ρ, σ, τ〉 −→∗ 〈skip, ρ′, σ′, τ ′〉
and

〈c, ρ, σ, τ〉 −→∗ 〈skip, ρ′′, σ′′, τ ′′〉
be two paths of the non-standard semantics. Then for any variable
x ∈ VO , αO(τ ′(x)) = αO(τ ′′(x)).

Proposition 2 stems from the fact that, in D, the errors are exactly
computed. So, from the perspective of αO , the traces of →D are
identical to the traces of→R.

PROPOSITION 3. Let ct = P[[(ω, ι)]] for some trace

〈c, ρ], σ], τ]〉 ω−−−−−→ k〈ρ
′], σ′], τ ′]〉.

Then for all ρ ∈ γρk(ρ
]), σ ∈ γσk (σ]) and τ ∈ γτk (τ]), if

〈c, ρ, σ, τ〉 −→∗ 〈skip, ρ′, σ′, τ ′〉
and

〈ct, ρ, σ, τ〉 −→∗ 〈skip, ρ′′, σ′′, τ ′′〉
then for any variable x ∈ VO , αO(τ ′(x)) = αO(τ ′′(x)).

As a consequence, in the non-standard semantics c and ct lead to
observationally equivalent environments. In particular, this prop-
erty holds for the minimal trace chosen in order to generate ct.

7. Experiments
In this section, we show how our program transformation for nu-
merical precision works on some examples. We also discuss how
the set of rules defining the relation ≡ between arithmetic expres-
sions can be chosen, in order to allow some transformations useful
in practice.

First, we reconsider the program introduced in Section 2 to
compute the sum of decreasing terms. Let p denote the original
program and pt the transformed program. Assuming that xi =
[2N−i−1, 2N−i], we obtain, for different values of N, the error bounds
given in Figure 9. The evolution of both error bounds is also given
by the curve of Figure 9. We can see how the transformation
improves the quality of the computation.

A variant of the previous example is the well-known Patriot bug
[14]: a counter has been repeatedly incremented by 0.1 for a long
time. It is well-known that the constant 0.1 is not representable ex-
actly in binary and, as a consequence, the counter diverges. How-
ever, at compile-time, a program transformer could detect that the
mathematical constant 0.1 cannot be stored exactly in the formats
allowed by the IEEE754 Standard. Assuming that the body of the
loop has been unrolled at least 5 times, by extending the relation
≡ which governs the program transformation, we could detect that
by adding 0.1 five times we obtain 0.5 which is a power of 2, ex-
actly represented in machine. We could obtain a program with the
body of the loop unrolled five times, and 0.5 added to the counter.
In order to obtain this result, the relation ≡ has to be augmented.
Because it is not possible to add the rules a • b ≡ c for every triple
(a, b, c) and for every operation • ∈ { + , - , x } such that a•b = c
in real arithmetic, it is necessary to use a dynamic technique which
computes, for any operation • between some constants a and b of
the program, the exact result c and adds the rule a • b ≡ c to the
relation of Figure 5.

Case Error for p Error for pt
N=4 [0.0,2.861022950E-6] [0.0,2.145767212E-6]
N=6 [0.0,1.907348633E-5] [0.0,1.263618470E-5]
N=8 [0.0,1.068115235E-4] [0.0,6.604194642E-5]
N=10 [0.0,5.493164063E-4] [0.0,3.254413605E-4]

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 4 5 6 7 8 9 10

Error bounds on the original program
Error bounds on the transformed program

Figure 9. Evolution of the error bounds for the program
adding decreasing numbers.

float a=[0.0,100.0]; float a=[0.0,100.0];
float b=[0.0,0.001]; float b=[0.0,0.001];
float c=[5.0,10.0]; float c=[5.0,10.0];
float d=2.0; float d=2.0;
if (a>0.1) { −→ if (a>0.1) {
r=d*(a+(b+c)); r=d*(a+(b+c));
... ...
} else { } else {
r=d*(a+(b+c)); r=d*((a+b)+c);
... ...
} }

Case Error bound on r
p, a > 0.1 [-8.583068847E-6,-7.629394532E-6]
pt, a ≤ 0.1 [-1.907348632E-6,-9.536743165E-7]
p, a > 0.1 [-8.583068847E-6,-7.629394532E-6]
pt, a ≤ 0.1 [-9.611248970E-7,-9.536743165E-7]

Figure 10. Example of program transformation with condi-
tionals.

Our next example shows that, depending on the data, different
expressions can be selected. We consider the program given in the
left-hand side of Figure 10. The precision of the evaluation of the
expression r depends on the parsing of the sum a + b + c. Our
transformation uses the test a > 0.1 to restrict the environments in
both branches. As a consequence, different parsings are selected in
the branches of the conditionals in the transformed program. The
precision in all the branches is given in the table of Figure 10.

We could add more complex rules to the relation ≡ in order
to generalize what we did in the previous example. Some tests
which are not written in the original code could be added in the
transformed program, in order to obtain more precise formulas
depending on the data. However this technique cannot be applied
systematically since it would lead to a combinatorial explosion.
This technique can also be related to program specialization (by
partial evaluation) where a program is optimized for certain data.

8. Conclusion
In this article, we have defined a code transformation to enhance
the numerical precision of floating-point computations. This work

extends previous work on arithmetic expressions to the case of
full programs with assignments, conditional and loops. The trans-
formed program may assign to the variables expressions which are
very different from the original ones while still computing the same
mathematical formulas. The quality of the transformation depends
on a user-defined parameter corresponding to the height of the ab-
stract expressions.

In [19], we have shown that the transformation of expressions
can be extended to other arithmetic, like the fixed-point arithmetic.
This result can be generalized to full programs, for which the
techniques introduced in this article can be applied to the case of
fixed-point computations.

We believe that it would be very interesting to mix our trans-
formation for numerical precision with other program transforma-
tions. First, our transformation can go against usual compiler op-
timizations which attempt to speedup the execution-time of pro-
grams and combined techniques should be studied. Second, we
could use our transformation to specialize numerical programs, in
the sense of partial evaluation [12], with respect to certain sets of
inputs: depending on the data, we chose some parsing of a formula
or another. The connections with partial evaluation should be stud-
ied more deeply. Finally, other transformations could be mixed, like
code watermarking and obfuscation for which round-off errors on
floating-point computation could be used, e.g. to encode a water-
mark [7].

The relation ≡ used in this article identifies expressions which
are equal in the reals. These laws enable us to rewrite arithmetic
expressions. However, the relation ≡ is not unique and could be
extended by many other laws, as shown in Section 7. For example,
some laws can be used to improve the precision of floating-point
computations, like Sterbenz’s theorem for subtraction [23]. In the
case of fixed-point arithmetic, yet another set of rules is probably
needed. The study of the most useful sets of rules for the most
common computer arithmetic is one of our current work direction.

In the future, we also aim at implementing a program trans-
former able to handle large codes. This tool should work both in
floating-point and fixed-point arithmetic since there are many in-
dustrial needs in both contexts.

References
[1] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic,

std 754-1985 edition, 1985.

[2] David F. Bacon, Graham Susan L., and Oliver J. Sharp. Compiler
transformations for high-performance computing. ACM Comput.
Surv., 26(4):345–420, 1994.

[3] Christian Bischof, Paul D. Hovland, and Boyana Norris. Implemen-
tation of automatic differentiation tools. In Partial Evaluation and
Semantics-Based Program Transformations, PEPM’02. ACM Press,
2002.

[4] M. Ceberio and V. Kreinovich. Greedy algorithms for optimizing
multivariate horner schemes. ACM-SIGSAM Bulletin, 38(1):8–15,
2004.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of
approximations of fixed points. In Principles of Programming
Languages 4, pages 238–252. ACM Press, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program transfor-
mation frameworks by abstract interpretation. In Conference Record
of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland,
Oregon, 2002. ACM Press, New York, NY.

[7] M. Dalla Preda and R. Giacobazzi. Control code obfuscation by
abstract interpretation. In International Conference on Software
Engineering and Formal Methods, SEFM’05, pages 301–310. IEEE
Computer Society Press, 2005.

[8] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48,
1991.

[9] E. Goubault. Static analyses of the precision of floating-point
operations. In Static Analysis Symposium, SAS’01, number 2126 in
Lecture Notes in Computer Science, pages 234–259. Springer-Verlag,
2001.

[10] E. Goubault, M. Martel, and S. Putot. Asserting the precision of
floating-point computations: a simple abstract interpreter. In 11th

European Symposium on Programming, ESOP’02, number 2305 in
Lecture Notes in Computer Science, pages 209–212, 2002.

[11] E. Goubault, M. Martel, and S. Putot. Some future challenges in
the validation of control systems. In Proceedings of the European
Congress on Embedded Real Time Software (ERTS’06), 2006.

[12] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall International, Int.
Series in Computer Science, 1993.

[13] P. Langlois and N. Louvet. How to ensure a faithful polynomial
evaluation with the compensated Horner algorithm? In P. Kornerup
and J.-M. Muller, editors, 18th IEEE International Symposium on
Computer Arithmetic, pages 141–149. IEEE Computer Society, June
2007.

[14] Information Management and Technology Division. Patriot missile
defense : Software problem led to system failure in Dhahran,
saudi arabia. Technical Report B-247-094, United State General
Accounting Office, 1992.

[15] M. Martel. Propagation of roundoff errors in finite precision
computations: a semantics approach. In 11th European Symposium
on Programming, ESOP’02, number 2305 in Lecture Notes in
Computer Science, pages 194–208. Springer-Verlag, 2002.

[16] M. Martel. An overview of semantics for the validation of
numerical programs. In Verification, Model Checking and Abstract
Interpretation, VMCAI’05, number 3385 in Lecture Notes in
Computer Science, pages 59–77. Springer-Verlag, 2005.

[17] M. Martel. Semantics of roundoff error propagation in finite precision
calculations. Journal of Higher Order and Symbolic Computation,
19:7–30, 2006.

[18] M. Martel. Semantics-based transformation of arithmetic expressions.
In Static Analysis Symposium, SAS’07, number 4634 in Lecture Notes
in Computer Science. Springer-Verlag, 2007.

[19] M. Martel. Enhancing the implementation of mathematical formulas
for fixed-point and floating-point arithmetics. In First International
Workshop on Numerical Abstractions for Software Verification,
NSV’08, 2008.

[20] D. Monniaux. The pitfalls of verifying floating-point computations.
TOPLAS, 30(3), May 2008.

[21] R. Rocher, D. Menard, N. Herve, and Sentieys. Fixed-point
configurable hardware components. EURASIP Journal on Embedded
Systems (JES), 2006, 2006.

[22] R. Rocher, D. Menard, O. Sentieys, and P. Scalart. Analytical
accuracy evaluation of fixed-point systems. In EUSIPCO’07Poznan,
Pologne, 2007.

[23] P. H. Sterbenz. Floating-point Computation. Prentice Hall
International, 1974.

