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t. We de�ne an abstra
tion of the 
ontinuous variables thatserve as inputs to embedded software. In existing stati
 analyzers, thesevariables are most often abstra
ted by a 
onstant interval, and this ap-proa
h has shown its limits. We propose a di�erent method that analyzesin a more pre
ise way the 
ontinuous environment. This environment is�rst expressed as the semanti
s of a spe
ial 
ontinuous program, and wede�ne a safe abstra
t semanti
s. We introdu
e the abstra
t domain ofinterval valued step fun
tions and show that it safely over-approximatesthe set of 
ontinuous fun
tions. The theory of guaranteed integrationis then used to e�e
tively 
ompute an abstra
t semanti
s and we provethat this abstra
t semanti
s is safe. An example inspired by well knowndi�
ult problems shows the interest of our approa
h.1 Introdu
tionThe behavior of an embedded system depends on both a dis
rete system (theprogram) and a 
ontinuous system (the physi
al environment). The program 
on-tinuously intera
ts with the environment, pi
king up physi
al values by meansof sensors and modifying them via a
tuators. Thus, stati
 analyzers for 
riti-
al embedded software [4, 15℄ usually fa
e the dis
rete part of a wider, hybridsystem [19℄ but they often poorly abstra
t the physi
al environment in whi
h,in pra
ti
e, the embedded systems are run. To take an extreme example (morereasonable examples abound in arti
les dedi
ated to hybrid systems [1, 26℄), thestati
 analysis of avioni
 
odes should abstra
t the plane environment, that is,the engines, the wings, and the atmosphere itself.In pra
ti
e, the sensors 
orrespond to volatile variables in C programs and,at analysis time, the user must assign to these variables a range given by theminimal and maximal values the sensor 
an send. In this 
ase, a stati
 analyzerassumes that the value sent by the sensor may swit
h from its minimum toits maximum in an arbitrary short laps of time, while, in pra
ti
e, it follows



a 
ontinuous evolution. As a 
onsequen
e, the results of the stati
 analysis aresigni�
antly over-approximated, and our experien
e with Flu
tuat [15℄ has shownthat this naive abstra
tion of the 
ontinuous variables is the main sour
e of lossof pre
ision. The abstra
tion of the physi
al environment is even more 
ru
ial forembedded systems that 
annot be physi
ally tested in their real environment,like spa
e 
rafts whose safety only relies on veri�
ation tools.In this arti
le, we 
onsider a spe
ial 
ase of hybrid systems: the 
ontinuousenvironment serves as input for the dis
rete system whi
h is represented by theembedded program. We present an analysis of the 
ontinuous part of the sys-tem using the abstra
t interpretation framework [8, 9℄. Our analysis permits abetter over-approximation of the 
ontinuous variables than an abstra
tion withintervals and 
an be seen as the �rst step in the pro
ess of introdu
ing hybrid
omponents to existing stati
 analyzers. A �rst approa
h to the abstra
tion ofa 
ontinuous fun
tion 
ould be done as follows: �rst partition the time line into(not ne
essarily regular) steps and then 
hose for ea
h step an over- and under-approximation of the fun
tion on this step. This te
hnique de�nes a family ofGalois 
onne
tions between various domains (one for ea
h 
hoi
e of the parti-tioning) [25℄, but is not 
ompatible with e�
ient implementations. We indeed
ompute the over- and under-approximations using validated ODE solvers (seeSe
tion 4); modern algorithms [6, 27℄ dynami
ally 
hange the step size, and thusdynami
ally partition the time line, in order to rea
h a user de�ned pre
ision. Wemust thus 
onsider an abstra
t domain for whi
h the step sizes are not stati
allyde�ned (see Se
tion 3). This arti
le is fo
used on the de�nition and 
orre
tion ofthe abstra
t domain and we omit for the sake of 
on
iseness the purely numeri
alaspe
ts of the 
omputation. For more details on Se
tion 5, see [6℄. In addition, aguaranteed extrapolation algorithm that safely bounds a fun
tion on an interval
[t,∞[ would be ne
essary to �nd a non naive widening. These purely numeri
alaspe
ts are out of the s
ope of this arti
le.In Se
tion 2, we des
ribe the 
ontinuous environment as the 
olle
ting se-manti
s of a 
ontinuous program, des
ribed by an interval valued ODE. As most
olle
ting semanti
s of usual programs, this semanti
s is neither representable inma
hine nor 
omputable, so we present in Se
tion 3 an abstra
t domain whi
h
an be e�e
tively used for the over-approximation of 
ontinuous fun
tions. Wealso give 
riteria in order to build a safe abstra
tion of elements of the 
on
retedomain. In Se
tion 4, we show that guaranteed integration algorithms 
omputean abstra
t semanti
s of the ODE and we prove that this semanti
s is a safeover-approximation of the 
olle
ting one in Se
tion 5. Finally, we show (Se
tion6) using a basi
 example that our approa
h gives better results than a naiveabstra
tion of the environment using intervals.To our knowledge, this is the �rst formalism that allows for the integration ofthe 
ontinuous environment in an abstra
t interpretation of embedded software.Edalat et al. de�ned a domain theoreti
 
hara
terization of 
ontinuous fun
tions[12, 14, 13℄ and showed that the solution of ODEs 
an be obtained by su

essiveapproximations. Their work is lo
ated at the 
on
rete level, as they des
ribe the
ontinuous fun
tions, and it does not provide an abstra
tion in the sense of the



abstra
t interpretation theory, whi
h is the main result of the present arti
le.On the other hand, the analysis of non-linear hybrid automata using guaranteedODE solvers was implemented inHyperTe
h [21℄, but the 
ontinuous dynami
sis not de�ned by its own, whi
h is ne
essary for the analysis of embedded softwarewhere the dis
rete and the 
ontinuous subsystems are 
learly disjoint. Previousworks on abstra
t interpretation strategies for hybrid systems mainly involvedthe analysis of hybrid automata [18, 20℄.1.1 NotationThe set of real numbers is R, while the set of non negative real numbers is R+.The set of natural numbers is N. We will also 
onsider the set of �oating pointnumbers F [28℄. The domain of 
ontinuous fun
tions de�ned on R+ with values in
R is C0

+ and the set of di�erentiable fun
tions from R+ to R is C1
+. For a fun
tion

f ∈ C1
+, we note ḟ ∈ C0

+ its �rst derivative. We use bold symbols to representintervals: given a domain D with an order ≤D, the set of intervals on D is D.Elements of D are denoted x; for an interval x ∈ D, we note its lower bound
x and its upper bound x, su
h that x = {x ∈ D | x ≤D x ≤D x}. In parti
ular,we will 
onsider the set of intervals on real numbers R, intervals on positive realnumbers R+ and intervals on �oating point numbers F . Finally, we use arrowsto represent ve
tors: given a domain D, the set of ve
tors of dimension n is Dnand elements of Dn are denoted −→x . Ve
tors of intervals are denoted −→x .2 Syntax and Semanti
s of Continuous Pro
essesHybrid systems are 
omposed of two intrinsi
ally di�erent pro
esses that run inparallel: a dis
rete program and a 
ontinuous environment. In order to reasonabout and analyze the whole system, one needs to �nd a uni�ed representationof both parts. As for 
omputer programs, we de�ne a syntax, a 
olle
ting andan abstra
t semanti
s of the 
ontinuous environment. This se
tion is dedi
atedto the de�nition of the 
on
rete part.2.1 SyntaxThe environment represents physi
al quantities su
h as the temperature of theair, the speed of the wind or the de
eleration of a 
ar. Su
h quantities evolve
ontinuously with time (i.e. their value 
annot instantaneously jump from a to
b), and thus follow a fun
tion from C0

+. Most often, this fun
tion is not expli
itlyknown, but is de�ned as the solution of an ordinary di�erential equation (ODE).An ODE is a relation between a fun
tion y ∈ C1
+ and its �rst derivative ẏ viaa 
ontinuous fun
tion F : ẏ = F

(

y;−→p
). −→p is a set of 
onstant parameters (e.g.the gravitational 
onstant, the length of the plane, . . . ). This representationas an autonomous ODE of order 1 (i.e. F only depends on the spatial valueof y, and not on the time t) is expressive enough to 
apture other forms ofODE (non-autonomous and higher order ODEs are easily 
onverted into higher



dimensional autonomous ODEs of order one). An ODE links the value of thesystem at time t + dt with the value of the system at time t, whi
h is the
ontinuous equivalent to any dis
rete dynami
al system. It 
onsequently formsthe syntax of the 
ontinuous pro
ess. In order to a
hieve more expressiveness,we allow the parameters of the fun
tion F to be intervals, leading to the notionof interval ODE.De�nition 1. Interval ODELet F be a 
ontinuous fun
tion with a set of parameters −→p ∈
−→
R . An in-terval ordinary di�erential equation (interval ODE) is given by the relation:

ẏ = F
(

y; −→p
)

, −→p ⊆
−→

R .This formalism is expressive enough to 
apture most dynami
al systems and theintrodu
tion of interval parameters makes it suitable to express un
ertainties onthe system. We extend the un
ertainty to the initial 
onditions of the ODE, andde�ne the notion of interval initial value problems.De�nition 2. Interval IVP.Let F be a 
ontinuous fun
tion with a set of parameters −→p . An interval initialvalue problem is given by an interval ODE and an interval initial 
ondition:
ẏ = F (y,−→p ) y(0) ∈ y0 (1)An interval IVP gives a 
omplete 
hara
terizations of a set of 
ontinuous environ-ments using only three terms: a 
ontinuous fun
tion, a set of parameters and aninitial interval value. We will thus write the physi
al environment P:=(F,p,y),where F is the fun
tion, p its parameters and y the initial value. Example 1 showshow this 
ompa
t notation is used to de�ne a set of fun
tions.Example 1. The 
ontinuous pro
ess P=(F,p,y) with F(y)=p*y, p=[-2,-1℄ andy=[0.5,3℄ 
orresponds to the IV ẏ = p.y, y(0) ∈ [0.5, 3], p ∈ [−2,−1]. It de�nesthe fun
tions y(x) = q.ep.x with q ∈ [0.5, 3], p ∈ [−2,−1] (see Figure 1).2.2 Colle
ting Semanti
sJust like the 
olle
ting semanti
s of a dis
rete program is the set of all the (dis-
rete) exe
ution tra
es 
orresponding to a set of input parameters, the 
olle
tingsemanti
s of the 
ontinuous pro
ess (F,p,y) is the solution of the 
orrespond-ing interval IVP, that is, the set of all possible dynami
s (i.e. 
ontinuous tra
es)of the system. The solution of a (real valued) ODE ẏ = F

(

y;−→p
) is a fun
tion

y ∈ C1
+ su
h that for every time t, it holds that ẏ(t) = F

(

y(t);−→p
). The solutionof a real valued initial value problem is a solution of the ODE that additionallyveri�es the initial 
ondition. The existen
e and/or uniqueness of this solution de-pends mainly on the fun
tion F , and this question is not relevant for this arti
le.On the 
ontrary, we will always assume that F is smooth enough so that thereexists a solution y de�ned on R+ for any initial 
ondition and any parameter.The notion of solution to an IVP is then extended to interval IVP:



Fig. 1. Solutions of the interval ODE of Example 1.De�nition 3. Solution of an interval IVP.The solution of the interval IVP (1) is a set of fun
tions Y ⊆ C1
+ su
h that y ∈ Yif and only if there exists p ∈ p and y0 ∈ y0 su
h that y is a solution of the (realvalued) IVP ẏ = F (y, p), y(0) = y0.The semanti
s JPK of P=(F,p,y) is the solution of the interval initial valueproblem ẏ = F(y, p), y(0) ∈ y. It is thus an element of the 
on
rete domain

D = P
(

C1
+

), the power set of C1
+. The operations in
lusion ⊆, union ∪ and in-terse
tion ∩ give a latti
e stru
ture to D. Ea
h element of JPK is a 
ontinuousfun
tion whi
h 
hara
terizes one parti
ular evolution of the 
ontinuous systemunder one set of parameters and one input.3 Abstra
t DomainThe 
on
rete domain for the 
ontinuous pro
esses is thus the powerset of the setof 
ontinuous fun
tions C0

+. In this se
tion, we present an abstra
t domain that
olle
ts elements from C0
+.3.1 Interval valued step fun
tionsContinuous fun
tions are not representable as they assign to an in�nite, un
ount-able number of elements (every t ∈ R+) a value that is itself not representable(as a real number) on a �nite pre
ision ma
hine. Thus, an abstra
tion of a set of
ontinuous fun
tions must abstra
t the values rea
hed by the fun
tions as wellas the instants at whi
h these values are obtained. The former is done by usingintervals instead of sets while the latter is done by 
onsidering step fun
tions,i.e. fun
tions that are almost always 
onstant.De�nition 4. Interval valued step fun
tions

D♯ is the set of all step fun
tions from R+ to R. We re
all that given a domainD, a fun
tion f : R+ → D is a step fun
tion if and only if there exist t0 = 0 <
t1 < · · · < tn < tn+1 < . . . su
h that ∀n ∈ N, f is 
onstant between tn and tn+1.



Representation of step fun
tions.Following the notations used by Julien Bertrane [2℄, we represent the step fun
-tions as a 
onjun
tion of 
onstraints of the form �ti : xi�, whi
h means that thefun
tion swit
hes to xi at time ti. The swit
hing times ti do not need to beordered, nor di�erent; the in�nite 
onjun
tion f = t0 : x0 ∧ t1 : x1 ∧ · · · ∧ tn :
xn ∧ . . . represents the fun
tion f su
h that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ N|tj ≤ t}. A �nite sequen
e of 
onstraints f = t0 : x0∧t1 : x1∧· · ·∧tN :
xN represents the step fun
tion f su
h that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ [0, N ]|tj ≤ t}. We use the more 
ompa
t notation f =

∧

0≤i≤N ti : xi,with N ∈ N∪ {∞}. Let us remark that this notation is however not unique. Forexample, the 
onjun
tions 3 : [1, 2] ∧ 0 : [1, 2] and 0 : [1, 2] ∧ 1 : [1, 2] de�ne thesame 
onstant fun
tion with value [1, 2]. This makes the equality of fun
tionsdi�
ult to de�ne (we 
an say that f = g ⇔ ∀t ∈ R+, f(t) = g(t) but this is notsatisfying as it 
annot be used for an implementation). To solve this problem,we de�ne a normal form for the 
onjun
tions of 
onstraints 
hara
terized by:1. the swit
hing times are sorted and all di�erent, i.e. if f =
∧

0≤i≤N ti : xi,then 0 = t0 < t1 < · · · < tn < . . . ;2. two 
onse
utive 
onstraints 
annot have equal values: ∀i ∈ [0, N ], xi 6= xi+1.With these 
onditions, the representation is unique. It is moreover easy to 
om-pute the normalized form Norm(f) of a given 
onjun
tion of 
onstraints f . Firstwe sort the 
onstraints by as
ending swit
hing time, with the 
onvention that iftwo 
onstraints have the same time, then we only keep the one with the highestindex. This makes the 
onjun
tion to ful�ll the �rst normalization 
ondition.Then, we remove any 
onstraint ti : xi su
h that xi−1 = xi. This way, we onlykeep the longest possible steps, whi
h satis�es the se
ond 
ondition. It is easyto see that the normalization pro
ess does not 
hange the meaning of the repre-sentation: for a 
onjun
tion f , then it holds that ∀t ∈ R+, f(t) = Norm(f)(t).Given two normalized 
onjun
tions, we de�ne an equality test:
^

0≤i≤N

ti : xi =
^

0≤j≤M

uj : yj ⇐⇒ N = M and ∀i ∈ [0, N ], ti = ui and xi = yi . (2)The normalization pro
ess indu
es an equivalen
e relation (f ≡ g ⇔ Norm(f) =
Norm(g)). Thus, from now on we work in the domain D♯

/≡, i.e. we always
onsider that the 
onjun
tions are normalized. We will however keep the notation
D♯ for D♯

/≡ when it is 
lear from the 
ontext.Proposition 1. Let f, g ∈ D♯. Then it holds that:
f = g ⇐⇒ ∀t ∈ R+, f(t) = g(t) (3)Proof. Clearly, we have f = g ⇒ ∀t ∈ R+, f(t) = g(t). Let us prove the otherdire
tion. Let f, g ∈ D♯ su
h that ∀t ∈ R+, f(t) = g(t), with f =

∧

0≤i≤N ti : xiand g =
∧

0≤j≤M uj : yj . We have N = M : suppose that N 6= M , then we 
ansuppose that N < M and N 6= ∞, so ∀t ≥ tN , f(t) = g(t) = xN ; however,
g has at least on last step in [tn,∞], and thus its value 
hanges at least on
e,hen
e the 
ontradi
tion. Now, let us suppose that A = {i ∈ N|ti 6= ui} 6= ∅,



and let k = minA, with tk < uk. Then we have tk−1 = uk−1 < tk < uk,so f(tk−1) = g(tk−1) = xk−1 and f(tk) = xk, g(tk) = g(tk−1) = xk−1, so
xk = xk−1, hen
e the 
ontradi
tion. So, ∀i ∈ [0, N ], ti = ui, and xi = yi. �3.2 Con
retisation and abstra
tionThe fun
tion f =

∧

0≤i≤N ti : xi represents the set of 
ontinuous, di�erentiablefun
tions that remain within xi for any time t ∈ [ti, ti+1]. The 
on
retisationfun
tion γ : D♯ → D is thus de�ned by:
γ

`
^

0≤i≤N

ti : xi

´

=
˘

y ∈ C1
+ | ∀i ≤ N, ∀t ∈ [ti, ti+1], y(t) ∈ xi

¯ (4)If N <∞, the last 
onstraint transforms into ∀t ≥ tN , y(t) ∈ xN .For example, Figure 2(a) shows a step fun
tion (represented by the bla
k boldsteps) and a fun
tion within its 
on
retisation (the dashed 
urve). Among others,the solutions of Example 1 are 
ontained in the 
on
retisation (gray surfa
e).The de�nition of an abstra
tion is not as dire
t as for the 
on
retisation. Asin the 
ase of the polyhedra domain [10℄, we 
annot de�ne the best one: it isalways possible to in
rease the quality of the abstra
tion by sele
ting smallersteps. Thus, we only give a 
riteria for a fun
tion to be a safe abstra
tion. Letus �rst de�ne the lower- and upper-fun
tions for a given set of 
ontinuous realfun
tions. Let Y ∈ D, we de�ne the two fun
tions Y and Y to be the inf- andsup-fun
tions of Y: Y = λt.inf {y(t) | y ∈ Y} and Y = λt.sup {y(t) | y ∈ Y}.Equivalently, we de�ne the lower- and upper-fun
tions of an interval valued stepfun
tion. Let f ∈ D♯, the real valued step fun
tions f and f are: f = λt.f(t)and f = λt.f(t). These four fun
tions are the basis of the Validity 
ondition:De�nition 5. A fun
tion α : D → D♯ satisfy the Validity 
ondition (V.C.) ifand only if for all Y ∈ D, it holds that:
∀t ∈ R+, α

(

Y
)

(t) ≤ Y(t) ≤ Y(t) ≤ α
(

Y
)

(t) (5)This property states that the 
omputed interval valued step fun
tion indeeden
loses the set {y(t) | y ∈ Y} for all t ∈ R+. The V.C. is a ne
essary andsu�
ient 
ondition for the abstra
tion α to be sound (see Theorem 1).3.3 Stru
ture of the abstra
t domainLet us now show that D♯ 
an be given a latti
e stru
ture and that, under theV.C., the abstra
tion α : D → D♯ is sound. Intuitively, we want to de�ne theorder ⊆♯ pointwise (i.e. f ⊆♯ g ⇔ ∀t ∈ R+, f(t) ⊆ g(t)). We give a 
ondition (6)on the 
onstraints that allows for the e�e
tive testing of whether f ⊆♯ g. Let
f =

∧

0≤i≤N ti : xi and g =
∧

0≤j≤M uj : yj , then
f ⊆♯

g ⇐⇒ ∀(i, j) ∈ [0, N ] × [0, M ], [ti, ti+1] ∩ [uj , uj+1] 6= ∅ ⇒ xi ⊆ yj (6)



(a) An abstra
tion of the solutions ofExample 1. (b) Abstra
t meet operator.Fig. 2. Abstra
t domain.Proposition 2. If f, g ∈ D♯ are in a normalized form, then it holds that:
f ⊆♯

g ⇐⇒ ∀t ∈ R+, f(t) ⊆ g(t) (7)Proof. Let f =
∧

0≤i≤N ti : xi and g =
∧

0≤j≤M uj : yj be su
h that f ⊆♯ g,and let t ∈ R+. There exist i ∈ [0, N ] and j ∈ [0,M ] su
h that t ∈ [ti, ti+1] and
t ∈ [uj , uj+1]. Thus, [ti, ti+1] ∩ [uj , uj+1] 6= ∅, so f(t) = xi ⊆ yj = g(t).Now, let f, g ∈ D♯ su
h that ∀t ∈ R+, f(t) ⊆ g(t), f and g written as above.Let i, j ∈ [0, N ]× [0,M ] su
h that [ti, ti+1]∩ [uj , uj+1] 6= ∅, and let t ∈ [ti, ti+1]∩
[uj , uj+1]. Then, f(t) = xi and g(t) = yj , so xi ⊆ yj . �The equality (Equation (2)) and the order (Equation (6)) we de�ned on D♯are equivalent to the usual equality and order on fun
tions, but the 
hara
teri-zations we provide permits an e�
ient implementation of them (in linear time).The meet operator ∩♯ on D♯ is de�ned as follows. If f =

∧

0≤i≤N ti : xi and
g =

∧

0≤j≤M uj : yj , then
f ∩♯

g = Norm

0

@

^

0≤i≤N

ti : x̃i ∧
^

0≤j≤M

uj : ỹj

1

A where (8)
x̃i = xi ∩ yk where k = max{j|uj ≤ ti} (9)
ỹj = yj ∩ xk where k = max{i|ti ≤ uj} (10)The interse
tion f∩♯ g 
reates a new step fun
tion whose value is at every time tthe interse
tion f(t)∩g(t). If this interse
tion is empty (i.e. x̃i = ∅ for some i or

ỹj = ∅ for some j), we de�ne f∩♯ g as ⊥♯, the bottom element of D♯. A graphi
alrepresentation of the e�e
t of ∩♯ is shown in Figure 2(b): the interse
tion of twostep fun
tions (bold and dashed steps) is 
omputed. The result is the gray area,and the verti
al dashed lines represent the swit
hing times.The abstra
t join operator ∪♯ is de�ned in the same way. Let h = f ∪♯ g, h isgiven as for the meet ∩♯, ex
ept that Equations (9) and (10) are 
hanged into:
x̃i = xi ∪ yk where k = max{j|uj ≤ ti} (11)
ỹj = yj ∪ xk where k = max{i|ti ≤ uj} (12)



The only di�eren
e is that we set the value of h at any time t to be f(t) ∪ g(t).Proposition 3. Let ⊤♯ = 0 : [−∞,∞] be the step fun
tion with only one stepwith value R. We de�ne a spe
ial element ⊥♯ su
h that γ(⊥♯) = ∅ and ∀f ∈
D♯, ⊥♯ ⊆♯ f . Then (D♯,⊤♯,⊥♯,⊆♯,∩♯,∪♯) is a latti
e.Proof. Clearly, ∀f ∈ D♯, ⊥♯ ⊆♯ f ⊆♯ ⊤♯. We still need to prove that:1. ∩♯ is a meet operator. Let f, g ∈ D♯ and h = f ∩♯ g, with f =

∧

0≤i≤N ti : xiand g =
∧

0≤j≤M uj : yj . We �rst show that h ⊆♯ f by showing that
∀t ∈ R+, h(t) ⊆ f(t). Let t ∈ R+, and i, j ∈ [0, N ] × [0,M ] be su
h that
t ∈ [ti, ti+1] and t ∈ [uj , uj+1]. Then, depending on the relative positions of
ti, ti+1, uj and uj+1, the 
omputation of h (Equation (8)) de�nes h(t) to be
x̃i or ỹj , with x̃i = xi∩yj and ỹj = yj∩xi. Thus, we have h(t) ∈ xi = f(t).So, h ⊆♯ f . Equivalently, we have h ⊆♯ g. Now, let H ∈ D♯ su
h that H ⊆♯ fand H ⊆♯ g. Let t ∈ R+ and i, j su
h that t ∈ [ti, ti+1] and t ∈ [uj, uj+1].Then, H(t) ⊆ f(t) = xi and H(t) ⊆ g(t) = yj , so H(t) ⊆ xi ∩ yj , i.e.
H(t) ⊆ h(t). So, H ⊆♯ h.2. ∪♯ is a join operator. The proof runs as the one for ∩♯. �We now formulate the main theorem of this se
tion that guarantees the sound-ness of the abstra
tion.Theorem 1. If α satis�es the V.C., then for every Y ∈ D, Y ⊆ γ

(

α(Y)
).Proof. Let Y ∈ D and f = α

(

Y
)

∈ D♯. We want to prove that Y ⊆ γ
(

f
). As αsatis�es the V.C., we know that ∀t ∈ R+, ∀y ∈ Y, y(t) ∈ f(t). Let now y ∈ Y;

y is a 
ontinuous fun
tion that veri�es ∀t ∈ R+, y(t) ∈ f(t), thus y ∈ γ
(

f
). So,it holds that Y ⊆ γ

(

f
). �4 Guaranteed IntegrationIn this se
tion, we present a te
hnique 
alled guaranteed (or validated) integra-tion of ODEs that, as shown in Se
tion 5, enables one to 
ompute the abstra
tsemanti
s of the 
ontinuous pro
esses. Guaranteed integration of ODEs tries toanswer the following question: given an ODE (possibly with interval parame-ters), an initial value (possibly an interval) and a �nal time T , 
an we 
omputebounds on the value of the solution of the IVP at T ? There are basi
ally twokinds of methods for 
omputing su
h bounds on the solution of the IVP. On theone side, 
lassi
al methods use the Taylor series de
omposition of the solutionand then interval arithmeti
s. Advan
ed te
hniques are used in order to limit thewrapping e�e
t inherent to the interval 
omputations, and the �rst tools (e.g.VNODE [27℄ or AWA [23℄) use su
h te
hniques. On the other side, new methodshave re
ently been proposed [6, 29℄ that 
ompute the bounds as the sum of anon-validated approximation point and a guaranteed error, i.e. an interval that isproved to 
ontain the distan
e between the real solution and the approximationpoint. We give the main ideas of how the GRKLib [6℄ method works in the proofof Theorem 2. The reader 
an �nd more detailed explanations about GRKLiband a 
omplete proof in [6℄.



Theorem 2. Given an interval ODE ẏ = F (y,p) and an interval initial valuedenoted y(0) ∈ yn + en, where en is the error and yn the approximation point,it is possible to �nd a step size h, a global en
losure ỹ, an approximation point
yn+1 and a lo
al en
losure en+1 of the error su
h that ∀t ∈ [0, h], y(t) ⊆ ỹ and
y(h) ⊆ yn+1 + en+1, where y is any solution of the interval IVP.Proof sket
h. Let us �rst assume that the step size h is given. The next point
yn+1 is 
omputed by the 
lassi
al RK4 algorithm [17℄ that uses four evaluationsof F to approximate the mean derivative between t and t+h. yn+1 is a fun
tionof yn and h only. So, yn+1 = ψ(yn, h), where ψ is expressed using F only.The 
omputation of en+1 requires a two steps pro
ess: �rst we 
ompute the apriori bound ỹ and then we use it to 
ompute a tighter bound on the global errorat t+ h. The 
omputation of ỹ uses the Pi
ard interval operator and a Bana
h�x-point argument as in [23℄. Using results from [3, 22℄, we 
ompute en+1 as
en+1 = η + χ + µ. The three terms are 
omputed as follows:� η represents the dis
retization error and is 
omputed as the distan
e betweenthe �ows of the real valued solution of the IVP and the real valued fun
tion

ψ. Both fun
tions are equal at time t and so are their �rst 4 derivatives. Asa 
onsequen
e, η 
an be expressed as a fun
tion of their �fth derivative only(we use Taylor expansion to prove it).� χ represents the propagation of the error en into en+1. In other words, itis the distan
e between the images by ψ of two points inside yn + en. Thisis 
omputed using the Ja
obian matrix of ψ and this is mainly where thewrapping e�e
t o

urs (if the matrix is a rotation matrix, then big over-approximations arise).� µ represents the implementation error, i.e. the distan
e between the 
om-puted �oating point number yn+1 and the real value that would have beenobtained on an in�nite pre
ision 
omputer. We use the global error domain[24℄ to 
ompute yn+1 so that we obtain both the �oating point numberand an over-approximation of its distan
e to the real number, i.e. an over-approximation of µ.By 
ombining this three 
omputations, we obtain an over-approximation of theglobal error at time t+ h based on the error at time t. We leave the problem of�nding an appropriate step size h open for now and show in Se
tion 5 how todeal with it, and that it 
an be seen as some kind of dynami
 partitioning [7℄ ofthe set of 
ontrol points of the 
ontinuous semanti
s. �5 Abstra
t Semanti
sIn this se
tion, we show that the guaranteed integration methods provide a safeabstra
t semanti
s for the 
ontinuous pro
esses. An abstra
t semanti
s JPK♯ ofa 
ontinuous pro
ess P=(F,p,y) is an interval valued step fun
tions (i.e. an ele-ment of D♯) that provides two things. On the one side, we have an abstra
tionof the values that represents as an interval the set {y(t)|y ∈ JPK} at all time



t ∈ R+. On the other side, we have an abstra
tion of the time line that 
ol-le
ts the instants whose values are abstra
ted by the same interval. In Se
tion4, we showed that these abstra
tions are provided by the guaranteed integra-tion algorithms: given an abstra
tion of the values at one time t (y(t) ∈ yn),a fun
tion GRK(F, P,yn) exists that 
omputes h (i.e. the abstra
tion on theinstants), ỹ (i.e. the abstra
tion on the values) and a new interval y su
h that
∀u ∈ [t, t+h], y(u) ∈ ỹ and y(t+h) ∈ y. Let us brie�y explain how the step size
h is 
hosen: �rst, during the 
omputation of the a priori approximation ỹ, weuse a Bana
h �x-point argument, and thus 
ompute ỹ as the limit of the iteratesof a 
ontra
ting fun
tion. On a 
omputer, this 
an loop forever either due torounding errors or be
ause the �x-point is rea
hed after an in�nite iteration.Thus, we use a limit on the number of iterations and we use a smaller step sizeif this limit is rea
hed. Se
ondly, after ea
h step, the width of y is 
ompared tothe user spe
i�ed toleran
e and 
ontrol theoreti
 te
hniques are used in order toadjust the next step-size and avoid the error to grow. Thus, the partitioning ofthe time line is dynami
ally 
omputed at ea
h step.De�nition 6. Abstra
t semanti
sLet P=(F,p,y) be a 
ontinuous pro
ess. The abstra
t semanti
s JPK♯ of P is theresult of Algorithm 1.The abstra
t semanti
s is 
omputed by iterating the guaranteed integration pro-
ess. Let us remark that the implementation of the GRK fun
tion 
an fail to �nd
h, ỹ and y if the sele
ted step size be
omes smaller than the ma
hine pre
ision.Whenever this happens, a sort of widening is performed as we end the 
onstraint
onjun
tion by t : R+.Theorem 3. Let P=(F,p,y) be a 
ontinuous pro
ess. Then the abstra
t seman-ti
s JPK♯ is a safe abstra
tion of the 
on
rete semanti
s, i.e.:

JPK ⊆ γ
(

JPK♯
) (13)Proof. Let α : D → D♯ be the abstra
tion fun
tion de�ned by α(

JPK) = JPK♯ and
∀Y ∈ D, Y 6= JPK, α(Y) = ⊤♯. If we show that α veri�es the V.C., then Equation(13) holds. Let Y ∈ D, we show that α(Y) veri�es Equation (5). This is 
learlythe 
ase if Y 6= JPK. Let us suppose that Y = JPK, and let JPK♯ =

∧

0≤i≤N ti : xi.We need to prove that ∀i ∈ [0, N ], ∀t ∈ [ti, ti+1] and ∀y ∈ Y, y(t) ∈ xi. WeInput: P=(F,p,y)Output: JPK♯

t = 0; h = InitialGuess(F);
yn = y;while (h, ỹ, y) = GRK

`F, p, yn
´ do

res = res ∧ t : ỹ; yn = y;endreturn res ∧ t : RAlgorithm 1: Abstra
t semanti
s 
omputation.



prove this by indu
tion on i.For i = 0, we have ∀y ∈ Y, y(0) ∈ y and the GRK fun
tion gives h, ỹ and y1su
h that ∀t ∈ [0, h], ∀y ∈ Y, y(t) ∈ ỹ. The algorithm 1 sets x0 to ỹ, whi
hproves the 
ase i = 0.Let now i ∈ [0, N ] be su
h that ∀y ∈ Y, ∀t ∈ [ti, ti+1], y(t) ∈ xi. Clearly,the algorithm 1 also gives an interval yi su
h that ∀y ∈ Y, y(ti+1) ∈ yi.Let P'=(F,p,yi) be the interval IVP whi
h di�ers from P only for the ini-tial value. Then, for every H > 0, it holds that {y(t)|t ∈ [0, H ], y ∈ JP'K} =
{y(t)|t ∈ [ti+1, ti+1 +H ], y ∈ JPK}, i.e. the solutions of the initial IVP for timebetween ti+1 and ti+1 +H are the same as the solutions of the IVP P' for timebetween 0 and H . The GRK fun
tion gives ỹ and h su
h that ∀t ∈ [0, H ], ∀y ∈
JP'K, y(t) ∈ ỹ. The algorithm 1 sets xi+1 to be ỹ and ti+2 to ti+1 + h, so wehave ∀t ∈ [ti+1, ti+2], ∀y ∈ Y, y(t) ∈ xi+1. �6 Example of useWe present an example that illustrates how we intend to in
lude our work intoexisting stati
 analyzers. We 
onsider a 
ode that is often used in embeddedprograms: an integrator. The program in Listing 1 (inspired from [16℄) integratesusing the re
tangle method the input data. The integration is 
arried out up tosome threshold de�ned by the interval [INF,SUP℄. The input data are given bya sensor (hen
e the volatile variable x) at a frequen
y of 8KHz. The integratoris a well known di�
ult problem for the analysis of numeri
al pre
ision [11℄. Itsbehavior is extremely depending of the input data (i.e. the physi
al environment)of the frequen
y of the integration pro
ess (i.e. the sampling rate) and of thepre
ision of the sensor.1 #define SUP 42 #define INF −43 // assume x '=2∗Pi∗y and y'=−2∗Pi∗x4 volat i l e f loat x ;5 stat i
 f loat i n tg rx =0.0 ,h=1.0/8;6 void main ( ) {7 while ( t rue ) { // assume frequen
y = 8 KHz8 x i = x ; in tg rx += x i∗h ;9 i f ( i n tg rx > SUP)10 in tg rx = SUP;11 i f ( i n tg rx < INF)12 in tg rx = INF ;13 }} Listing 1. Simple integrator.The 
omments on the 
ode in Listing 1 indi
ate how we give the analyzers hintson the physi
al environment. The �rst one (Line 5) gives the di�erential equa-tion followed by x and y while the se
ond one (Line 8) indi
ates the frequen
yof the main loop. Su
h 
omments 
ould be understood by the stati
 analyzerand are often already present (although not in this form) in embedded pro-grams (it is very frequent to �nd a 
omment su
h as �this loop runs at 8KHz�in the 
ode usually given to stati
 analyzers). In this example, the input signalis x(t) = sin(2πt). In theory (i.e. with a perfe
t knowledge of the environment



and an in�nite pre
ision 
omputer), the value of intgrx remains bounded by
[0, 2]. As explained in the introdu
tion, a naive abstra
tion of the 
ontinuousenvironment approximates x by the interval [−1, 1]. In this 
ase, the analyzerbinds the variable intgrx with the value [−n · h, n · h] after unrolling the mainloop n times. We implemented a prototype analyzer that uses the abstra
tionof the 
ontinuous environment of Se
tion 5 to improve this result. The analyzeruses the GRKLib library [6℄ as guaranteed integration tool and is implementedin OCAML. The analyzer takes as input language a subset of C and the 
om-ments are 
hanged into spe
i�
 assertions that the analyzer understands. Figure3 shows the results obtained by this analyzer and by an abstra
tion using inter-vals. After 100 iterations, the value of intgrx is [−4, 4] with intervals be
auseof the thresholds and [−4.353 · 10−2, 4.192 · 10−2] with our analyzer.7 Con
lusionIn this arti
le, we provided a formalization and an abstra
tion of the physi
alenvironment of embedded software whi
h is 
oherent with the analysis of thedis
rete program itself. Like the 
olle
ting semanti
s of a program des
ribes allthe possible exe
utions for any input data, our des
ription of the 
ontinuous en-vironment des
ribes all possible 
ontinuous evolutions for any initial 
onditionand parameter of the system. We then de�ned an abstra
t domain that allowsfor the sound over-approximation of 
ontinuous fun
tions: the domain of intervalvalued step fun
tions. A major di�
ulty in the de�nition of this domain was toStep fun
tions abstra
tionInterval abstra
tion

Number of steps 120100806040200

43210-1-2-3-4 Fig. 3. Result of the analysis of the integrator.



deal with dynami
 step sizes in order to 
ope with the most e�
ient numeri
alalgorithms. Our representation of su
h fun
tions as a 
onjun
tion of 
onstraintsallows for an elegant de�nition of the abstra
t operators and their e�
ient imple-mentation. Finally, we showed that the guaranteed integration methods providean abstra
t semanti
s for the 
ontinuous pro
ess that is sound with respe
t tothe 
olle
ting one. A simple example derived from a well known, di�
ult problemshows that our approa
h 
onsiderably improves the analysis.The analysis of the 
omplete hybrid system still needs some extensions. Firstof all, we do not 
onsider yet feedba
k from the program, i.e. we do not men-tion a
tuators. Previous work of by Olivier Bouissou [5℄ dealt with this problemand a merge of both results is ne
essary. Se
ondly, our formalism only abstra
tsthe environment and does not 
onsider the a
tion of the sensors. These latterintrodu
e some noise inside the system as their measurements as well as theirsampling rate are impre
ise. In a sense, our model supposes that we have perfe
tsensors, i.e. that the values passed to the program are the exa
t values of the 
on-tinuous environment. Clearly, a better modeling of sensors will be ne
essary. Forexample, we 
an add 
omments and/or assertions in the program that des
ribesthe ina

ura
y of the sensors. Thus, our abstra
tion of the environment remainsvalid, and it is only when the values are passed to the program that they aremodi�ed in order to mat
h the spe
i�
ation of the sensor. Finally, the additionof an extrapolation method as a widening operator will 
omplete the abstra
tinterpretation of 
ontinuous fun
tions. This is a purely numeri
al problem thatdoes not 
hange anything to our domain.Referen
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