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2 ELIAU-DALI LaboratoryUniversité de Perpignan Via Domitia66860 Perpignan CedexMatthieu.Martel�univ-perp.frAbstrat. We de�ne an abstration of the ontinuous variables thatserve as inputs to embedded software. In existing stati analyzers, thesevariables are most often abstrated by a onstant interval, and this ap-proah has shown its limits. We propose a di�erent method that analyzesin a more preise way the ontinuous environment. This environment is�rst expressed as the semantis of a speial ontinuous program, and wede�ne a safe abstrat semantis. We introdue the abstrat domain ofinterval valued step funtions and show that it safely over-approximatesthe set of ontinuous funtions. The theory of guaranteed integrationis then used to e�etively ompute an abstrat semantis and we provethat this abstrat semantis is safe. An example inspired by well knowndi�ult problems shows the interest of our approah.1 IntrodutionThe behavior of an embedded system depends on both a disrete system (theprogram) and a ontinuous system (the physial environment). The program on-tinuously interats with the environment, piking up physial values by meansof sensors and modifying them via atuators. Thus, stati analyzers for riti-al embedded software [4, 15℄ usually fae the disrete part of a wider, hybridsystem [19℄ but they often poorly abstrat the physial environment in whih,in pratie, the embedded systems are run. To take an extreme example (morereasonable examples abound in artiles dediated to hybrid systems [1, 26℄), thestati analysis of avioni odes should abstrat the plane environment, that is,the engines, the wings, and the atmosphere itself.In pratie, the sensors orrespond to volatile variables in C programs and,at analysis time, the user must assign to these variables a range given by theminimal and maximal values the sensor an send. In this ase, a stati analyzerassumes that the value sent by the sensor may swith from its minimum toits maximum in an arbitrary short laps of time, while, in pratie, it follows



a ontinuous evolution. As a onsequene, the results of the stati analysis aresigni�antly over-approximated, and our experiene with Flutuat [15℄ has shownthat this naive abstration of the ontinuous variables is the main soure of lossof preision. The abstration of the physial environment is even more ruial forembedded systems that annot be physially tested in their real environment,like spae rafts whose safety only relies on veri�ation tools.In this artile, we onsider a speial ase of hybrid systems: the ontinuousenvironment serves as input for the disrete system whih is represented by theembedded program. We present an analysis of the ontinuous part of the sys-tem using the abstrat interpretation framework [8, 9℄. Our analysis permits abetter over-approximation of the ontinuous variables than an abstration withintervals and an be seen as the �rst step in the proess of introduing hybridomponents to existing stati analyzers. A �rst approah to the abstration ofa ontinuous funtion ould be done as follows: �rst partition the time line into(not neessarily regular) steps and then hose for eah step an over- and under-approximation of the funtion on this step. This tehnique de�nes a family ofGalois onnetions between various domains (one for eah hoie of the parti-tioning) [25℄, but is not ompatible with e�ient implementations. We indeedompute the over- and under-approximations using validated ODE solvers (seeSetion 4); modern algorithms [6, 27℄ dynamially hange the step size, and thusdynamially partition the time line, in order to reah a user de�ned preision. Wemust thus onsider an abstrat domain for whih the step sizes are not statiallyde�ned (see Setion 3). This artile is foused on the de�nition and orretion ofthe abstrat domain and we omit for the sake of oniseness the purely numerialaspets of the omputation. For more details on Setion 5, see [6℄. In addition, aguaranteed extrapolation algorithm that safely bounds a funtion on an interval
[t,∞[ would be neessary to �nd a non naive widening. These purely numerialaspets are out of the sope of this artile.In Setion 2, we desribe the ontinuous environment as the olleting se-mantis of a ontinuous program, desribed by an interval valued ODE. As mostolleting semantis of usual programs, this semantis is neither representable inmahine nor omputable, so we present in Setion 3 an abstrat domain whihan be e�etively used for the over-approximation of ontinuous funtions. Wealso give riteria in order to build a safe abstration of elements of the onretedomain. In Setion 4, we show that guaranteed integration algorithms omputean abstrat semantis of the ODE and we prove that this semantis is a safeover-approximation of the olleting one in Setion 5. Finally, we show (Setion6) using a basi example that our approah gives better results than a naiveabstration of the environment using intervals.To our knowledge, this is the �rst formalism that allows for the integration ofthe ontinuous environment in an abstrat interpretation of embedded software.Edalat et al. de�ned a domain theoreti haraterization of ontinuous funtions[12, 14, 13℄ and showed that the solution of ODEs an be obtained by suessiveapproximations. Their work is loated at the onrete level, as they desribe theontinuous funtions, and it does not provide an abstration in the sense of the



abstrat interpretation theory, whih is the main result of the present artile.On the other hand, the analysis of non-linear hybrid automata using guaranteedODE solvers was implemented inHyperTeh [21℄, but the ontinuous dynamisis not de�ned by its own, whih is neessary for the analysis of embedded softwarewhere the disrete and the ontinuous subsystems are learly disjoint. Previousworks on abstrat interpretation strategies for hybrid systems mainly involvedthe analysis of hybrid automata [18, 20℄.1.1 NotationThe set of real numbers is R, while the set of non negative real numbers is R+.The set of natural numbers is N. We will also onsider the set of �oating pointnumbers F [28℄. The domain of ontinuous funtions de�ned on R+ with values in
R is C0

+ and the set of di�erentiable funtions from R+ to R is C1
+. For a funtion

f ∈ C1
+, we note ḟ ∈ C0

+ its �rst derivative. We use bold symbols to representintervals: given a domain D with an order ≤D, the set of intervals on D is D.Elements of D are denoted x; for an interval x ∈ D, we note its lower bound
x and its upper bound x, suh that x = {x ∈ D | x ≤D x ≤D x}. In partiular,we will onsider the set of intervals on real numbers R, intervals on positive realnumbers R+ and intervals on �oating point numbers F . Finally, we use arrowsto represent vetors: given a domain D, the set of vetors of dimension n is Dnand elements of Dn are denoted −→x . Vetors of intervals are denoted −→x .2 Syntax and Semantis of Continuous ProessesHybrid systems are omposed of two intrinsially di�erent proesses that run inparallel: a disrete program and a ontinuous environment. In order to reasonabout and analyze the whole system, one needs to �nd a uni�ed representationof both parts. As for omputer programs, we de�ne a syntax, a olleting andan abstrat semantis of the ontinuous environment. This setion is dediatedto the de�nition of the onrete part.2.1 SyntaxThe environment represents physial quantities suh as the temperature of theair, the speed of the wind or the deeleration of a ar. Suh quantities evolveontinuously with time (i.e. their value annot instantaneously jump from a to
b), and thus follow a funtion from C0

+. Most often, this funtion is not expliitlyknown, but is de�ned as the solution of an ordinary di�erential equation (ODE).An ODE is a relation between a funtion y ∈ C1
+ and its �rst derivative ẏ viaa ontinuous funtion F : ẏ = F

(

y;−→p
). −→p is a set of onstant parameters (e.g.the gravitational onstant, the length of the plane, . . . ). This representationas an autonomous ODE of order 1 (i.e. F only depends on the spatial valueof y, and not on the time t) is expressive enough to apture other forms ofODE (non-autonomous and higher order ODEs are easily onverted into higher



dimensional autonomous ODEs of order one). An ODE links the value of thesystem at time t + dt with the value of the system at time t, whih is theontinuous equivalent to any disrete dynamial system. It onsequently formsthe syntax of the ontinuous proess. In order to ahieve more expressiveness,we allow the parameters of the funtion F to be intervals, leading to the notionof interval ODE.De�nition 1. Interval ODELet F be a ontinuous funtion with a set of parameters −→p ∈
−→
R . An in-terval ordinary di�erential equation (interval ODE) is given by the relation:

ẏ = F
(

y; −→p
)

, −→p ⊆
−→

R .This formalism is expressive enough to apture most dynamial systems and theintrodution of interval parameters makes it suitable to express unertainties onthe system. We extend the unertainty to the initial onditions of the ODE, andde�ne the notion of interval initial value problems.De�nition 2. Interval IVP.Let F be a ontinuous funtion with a set of parameters −→p . An interval initialvalue problem is given by an interval ODE and an interval initial ondition:
ẏ = F (y,−→p ) y(0) ∈ y0 (1)An interval IVP gives a omplete haraterizations of a set of ontinuous environ-ments using only three terms: a ontinuous funtion, a set of parameters and aninitial interval value. We will thus write the physial environment P:=(F,p,y),where F is the funtion, p its parameters and y the initial value. Example 1 showshow this ompat notation is used to de�ne a set of funtions.Example 1. The ontinuous proess P=(F,p,y) with F(y)=p*y, p=[-2,-1℄ andy=[0.5,3℄ orresponds to the IV ẏ = p.y, y(0) ∈ [0.5, 3], p ∈ [−2,−1]. It de�nesthe funtions y(x) = q.ep.x with q ∈ [0.5, 3], p ∈ [−2,−1] (see Figure 1).2.2 Colleting SemantisJust like the olleting semantis of a disrete program is the set of all the (dis-rete) exeution traes orresponding to a set of input parameters, the olletingsemantis of the ontinuous proess (F,p,y) is the solution of the orrespond-ing interval IVP, that is, the set of all possible dynamis (i.e. ontinuous traes)of the system. The solution of a (real valued) ODE ẏ = F

(

y;−→p
) is a funtion

y ∈ C1
+ suh that for every time t, it holds that ẏ(t) = F

(

y(t);−→p
). The solutionof a real valued initial value problem is a solution of the ODE that additionallyveri�es the initial ondition. The existene and/or uniqueness of this solution de-pends mainly on the funtion F , and this question is not relevant for this artile.On the ontrary, we will always assume that F is smooth enough so that thereexists a solution y de�ned on R+ for any initial ondition and any parameter.The notion of solution to an IVP is then extended to interval IVP:



Fig. 1. Solutions of the interval ODE of Example 1.De�nition 3. Solution of an interval IVP.The solution of the interval IVP (1) is a set of funtions Y ⊆ C1
+ suh that y ∈ Yif and only if there exists p ∈ p and y0 ∈ y0 suh that y is a solution of the (realvalued) IVP ẏ = F (y, p), y(0) = y0.The semantis JPK of P=(F,p,y) is the solution of the interval initial valueproblem ẏ = F(y, p), y(0) ∈ y. It is thus an element of the onrete domain

D = P
(

C1
+

), the power set of C1
+. The operations inlusion ⊆, union ∪ and in-tersetion ∩ give a lattie struture to D. Eah element of JPK is a ontinuousfuntion whih haraterizes one partiular evolution of the ontinuous systemunder one set of parameters and one input.3 Abstrat DomainThe onrete domain for the ontinuous proesses is thus the powerset of the setof ontinuous funtions C0

+. In this setion, we present an abstrat domain thatollets elements from C0
+.3.1 Interval valued step funtionsContinuous funtions are not representable as they assign to an in�nite, unount-able number of elements (every t ∈ R+) a value that is itself not representable(as a real number) on a �nite preision mahine. Thus, an abstration of a set ofontinuous funtions must abstrat the values reahed by the funtions as wellas the instants at whih these values are obtained. The former is done by usingintervals instead of sets while the latter is done by onsidering step funtions,i.e. funtions that are almost always onstant.De�nition 4. Interval valued step funtions

D♯ is the set of all step funtions from R+ to R. We reall that given a domainD, a funtion f : R+ → D is a step funtion if and only if there exist t0 = 0 <
t1 < · · · < tn < tn+1 < . . . suh that ∀n ∈ N, f is onstant between tn and tn+1.



Representation of step funtions.Following the notations used by Julien Bertrane [2℄, we represent the step fun-tions as a onjuntion of onstraints of the form �ti : xi�, whih means that thefuntion swithes to xi at time ti. The swithing times ti do not need to beordered, nor di�erent; the in�nite onjuntion f = t0 : x0 ∧ t1 : x1 ∧ · · · ∧ tn :
xn ∧ . . . represents the funtion f suh that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ N|tj ≤ t}. A �nite sequene of onstraints f = t0 : x0∧t1 : x1∧· · ·∧tN :
xN represents the step funtion f suh that ∀t ∈ R+, f(t) = xi with i =
max {j ∈ [0, N ]|tj ≤ t}. We use the more ompat notation f =

∧

0≤i≤N ti : xi,with N ∈ N∪ {∞}. Let us remark that this notation is however not unique. Forexample, the onjuntions 3 : [1, 2] ∧ 0 : [1, 2] and 0 : [1, 2] ∧ 1 : [1, 2] de�ne thesame onstant funtion with value [1, 2]. This makes the equality of funtionsdi�ult to de�ne (we an say that f = g ⇔ ∀t ∈ R+, f(t) = g(t) but this is notsatisfying as it annot be used for an implementation). To solve this problem,we de�ne a normal form for the onjuntions of onstraints haraterized by:1. the swithing times are sorted and all di�erent, i.e. if f =
∧

0≤i≤N ti : xi,then 0 = t0 < t1 < · · · < tn < . . . ;2. two onseutive onstraints annot have equal values: ∀i ∈ [0, N ], xi 6= xi+1.With these onditions, the representation is unique. It is moreover easy to om-pute the normalized form Norm(f) of a given onjuntion of onstraints f . Firstwe sort the onstraints by asending swithing time, with the onvention that iftwo onstraints have the same time, then we only keep the one with the highestindex. This makes the onjuntion to ful�ll the �rst normalization ondition.Then, we remove any onstraint ti : xi suh that xi−1 = xi. This way, we onlykeep the longest possible steps, whih satis�es the seond ondition. It is easyto see that the normalization proess does not hange the meaning of the repre-sentation: for a onjuntion f , then it holds that ∀t ∈ R+, f(t) = Norm(f)(t).Given two normalized onjuntions, we de�ne an equality test:
^

0≤i≤N

ti : xi =
^

0≤j≤M

uj : yj ⇐⇒ N = M and ∀i ∈ [0, N ], ti = ui and xi = yi . (2)The normalization proess indues an equivalene relation (f ≡ g ⇔ Norm(f) =
Norm(g)). Thus, from now on we work in the domain D♯

/≡, i.e. we alwaysonsider that the onjuntions are normalized. We will however keep the notation
D♯ for D♯

/≡ when it is lear from the ontext.Proposition 1. Let f, g ∈ D♯. Then it holds that:
f = g ⇐⇒ ∀t ∈ R+, f(t) = g(t) (3)Proof. Clearly, we have f = g ⇒ ∀t ∈ R+, f(t) = g(t). Let us prove the otherdiretion. Let f, g ∈ D♯ suh that ∀t ∈ R+, f(t) = g(t), with f =

∧

0≤i≤N ti : xiand g =
∧

0≤j≤M uj : yj . We have N = M : suppose that N 6= M , then we ansuppose that N < M and N 6= ∞, so ∀t ≥ tN , f(t) = g(t) = xN ; however,
g has at least on last step in [tn,∞], and thus its value hanges at least one,hene the ontradition. Now, let us suppose that A = {i ∈ N|ti 6= ui} 6= ∅,



and let k = minA, with tk < uk. Then we have tk−1 = uk−1 < tk < uk,so f(tk−1) = g(tk−1) = xk−1 and f(tk) = xk, g(tk) = g(tk−1) = xk−1, so
xk = xk−1, hene the ontradition. So, ∀i ∈ [0, N ], ti = ui, and xi = yi. �3.2 Conretisation and abstrationThe funtion f =

∧

0≤i≤N ti : xi represents the set of ontinuous, di�erentiablefuntions that remain within xi for any time t ∈ [ti, ti+1]. The onretisationfuntion γ : D♯ → D is thus de�ned by:
γ

`
^

0≤i≤N

ti : xi

´

=
˘

y ∈ C1
+ | ∀i ≤ N, ∀t ∈ [ti, ti+1], y(t) ∈ xi

¯ (4)If N <∞, the last onstraint transforms into ∀t ≥ tN , y(t) ∈ xN .For example, Figure 2(a) shows a step funtion (represented by the blak boldsteps) and a funtion within its onretisation (the dashed urve). Among others,the solutions of Example 1 are ontained in the onretisation (gray surfae).The de�nition of an abstration is not as diret as for the onretisation. Asin the ase of the polyhedra domain [10℄, we annot de�ne the best one: it isalways possible to inrease the quality of the abstration by seleting smallersteps. Thus, we only give a riteria for a funtion to be a safe abstration. Letus �rst de�ne the lower- and upper-funtions for a given set of ontinuous realfuntions. Let Y ∈ D, we de�ne the two funtions Y and Y to be the inf- andsup-funtions of Y: Y = λt.inf {y(t) | y ∈ Y} and Y = λt.sup {y(t) | y ∈ Y}.Equivalently, we de�ne the lower- and upper-funtions of an interval valued stepfuntion. Let f ∈ D♯, the real valued step funtions f and f are: f = λt.f(t)and f = λt.f(t). These four funtions are the basis of the Validity ondition:De�nition 5. A funtion α : D → D♯ satisfy the Validity ondition (V.C.) ifand only if for all Y ∈ D, it holds that:
∀t ∈ R+, α

(

Y
)

(t) ≤ Y(t) ≤ Y(t) ≤ α
(

Y
)

(t) (5)This property states that the omputed interval valued step funtion indeedenloses the set {y(t) | y ∈ Y} for all t ∈ R+. The V.C. is a neessary andsu�ient ondition for the abstration α to be sound (see Theorem 1).3.3 Struture of the abstrat domainLet us now show that D♯ an be given a lattie struture and that, under theV.C., the abstration α : D → D♯ is sound. Intuitively, we want to de�ne theorder ⊆♯ pointwise (i.e. f ⊆♯ g ⇔ ∀t ∈ R+, f(t) ⊆ g(t)). We give a ondition (6)on the onstraints that allows for the e�etive testing of whether f ⊆♯ g. Let
f =

∧

0≤i≤N ti : xi and g =
∧

0≤j≤M uj : yj , then
f ⊆♯

g ⇐⇒ ∀(i, j) ∈ [0, N ] × [0, M ], [ti, ti+1] ∩ [uj , uj+1] 6= ∅ ⇒ xi ⊆ yj (6)



(a) An abstration of the solutions ofExample 1. (b) Abstrat meet operator.Fig. 2. Abstrat domain.Proposition 2. If f, g ∈ D♯ are in a normalized form, then it holds that:
f ⊆♯

g ⇐⇒ ∀t ∈ R+, f(t) ⊆ g(t) (7)Proof. Let f =
∧

0≤i≤N ti : xi and g =
∧

0≤j≤M uj : yj be suh that f ⊆♯ g,and let t ∈ R+. There exist i ∈ [0, N ] and j ∈ [0,M ] suh that t ∈ [ti, ti+1] and
t ∈ [uj , uj+1]. Thus, [ti, ti+1] ∩ [uj , uj+1] 6= ∅, so f(t) = xi ⊆ yj = g(t).Now, let f, g ∈ D♯ suh that ∀t ∈ R+, f(t) ⊆ g(t), f and g written as above.Let i, j ∈ [0, N ]× [0,M ] suh that [ti, ti+1]∩ [uj , uj+1] 6= ∅, and let t ∈ [ti, ti+1]∩
[uj , uj+1]. Then, f(t) = xi and g(t) = yj , so xi ⊆ yj . �The equality (Equation (2)) and the order (Equation (6)) we de�ned on D♯are equivalent to the usual equality and order on funtions, but the harateri-zations we provide permits an e�ient implementation of them (in linear time).The meet operator ∩♯ on D♯ is de�ned as follows. If f =

∧

0≤i≤N ti : xi and
g =

∧

0≤j≤M uj : yj , then
f ∩♯

g = Norm

0

@

^

0≤i≤N

ti : x̃i ∧
^

0≤j≤M

uj : ỹj

1

A where (8)
x̃i = xi ∩ yk where k = max{j|uj ≤ ti} (9)
ỹj = yj ∩ xk where k = max{i|ti ≤ uj} (10)The intersetion f∩♯ g reates a new step funtion whose value is at every time tthe intersetion f(t)∩g(t). If this intersetion is empty (i.e. x̃i = ∅ for some i or

ỹj = ∅ for some j), we de�ne f∩♯ g as ⊥♯, the bottom element of D♯. A graphialrepresentation of the e�et of ∩♯ is shown in Figure 2(b): the intersetion of twostep funtions (bold and dashed steps) is omputed. The result is the gray area,and the vertial dashed lines represent the swithing times.The abstrat join operator ∪♯ is de�ned in the same way. Let h = f ∪♯ g, h isgiven as for the meet ∩♯, exept that Equations (9) and (10) are hanged into:
x̃i = xi ∪ yk where k = max{j|uj ≤ ti} (11)
ỹj = yj ∪ xk where k = max{i|ti ≤ uj} (12)



The only di�erene is that we set the value of h at any time t to be f(t) ∪ g(t).Proposition 3. Let ⊤♯ = 0 : [−∞,∞] be the step funtion with only one stepwith value R. We de�ne a speial element ⊥♯ suh that γ(⊥♯) = ∅ and ∀f ∈
D♯, ⊥♯ ⊆♯ f . Then (D♯,⊤♯,⊥♯,⊆♯,∩♯,∪♯) is a lattie.Proof. Clearly, ∀f ∈ D♯, ⊥♯ ⊆♯ f ⊆♯ ⊤♯. We still need to prove that:1. ∩♯ is a meet operator. Let f, g ∈ D♯ and h = f ∩♯ g, with f =

∧

0≤i≤N ti : xiand g =
∧

0≤j≤M uj : yj . We �rst show that h ⊆♯ f by showing that
∀t ∈ R+, h(t) ⊆ f(t). Let t ∈ R+, and i, j ∈ [0, N ] × [0,M ] be suh that
t ∈ [ti, ti+1] and t ∈ [uj , uj+1]. Then, depending on the relative positions of
ti, ti+1, uj and uj+1, the omputation of h (Equation (8)) de�nes h(t) to be
x̃i or ỹj , with x̃i = xi∩yj and ỹj = yj∩xi. Thus, we have h(t) ∈ xi = f(t).So, h ⊆♯ f . Equivalently, we have h ⊆♯ g. Now, let H ∈ D♯ suh that H ⊆♯ fand H ⊆♯ g. Let t ∈ R+ and i, j suh that t ∈ [ti, ti+1] and t ∈ [uj, uj+1].Then, H(t) ⊆ f(t) = xi and H(t) ⊆ g(t) = yj , so H(t) ⊆ xi ∩ yj , i.e.
H(t) ⊆ h(t). So, H ⊆♯ h.2. ∪♯ is a join operator. The proof runs as the one for ∩♯. �We now formulate the main theorem of this setion that guarantees the sound-ness of the abstration.Theorem 1. If α satis�es the V.C., then for every Y ∈ D, Y ⊆ γ

(

α(Y)
).Proof. Let Y ∈ D and f = α

(

Y
)

∈ D♯. We want to prove that Y ⊆ γ
(

f
). As αsatis�es the V.C., we know that ∀t ∈ R+, ∀y ∈ Y, y(t) ∈ f(t). Let now y ∈ Y;

y is a ontinuous funtion that veri�es ∀t ∈ R+, y(t) ∈ f(t), thus y ∈ γ
(

f
). So,it holds that Y ⊆ γ

(

f
). �4 Guaranteed IntegrationIn this setion, we present a tehnique alled guaranteed (or validated) integra-tion of ODEs that, as shown in Setion 5, enables one to ompute the abstratsemantis of the ontinuous proesses. Guaranteed integration of ODEs tries toanswer the following question: given an ODE (possibly with interval parame-ters), an initial value (possibly an interval) and a �nal time T , an we omputebounds on the value of the solution of the IVP at T ? There are basially twokinds of methods for omputing suh bounds on the solution of the IVP. On theone side, lassial methods use the Taylor series deomposition of the solutionand then interval arithmetis. Advaned tehniques are used in order to limit thewrapping e�et inherent to the interval omputations, and the �rst tools (e.g.VNODE [27℄ or AWA [23℄) use suh tehniques. On the other side, new methodshave reently been proposed [6, 29℄ that ompute the bounds as the sum of anon-validated approximation point and a guaranteed error, i.e. an interval that isproved to ontain the distane between the real solution and the approximationpoint. We give the main ideas of how the GRKLib [6℄ method works in the proofof Theorem 2. The reader an �nd more detailed explanations about GRKLiband a omplete proof in [6℄.



Theorem 2. Given an interval ODE ẏ = F (y,p) and an interval initial valuedenoted y(0) ∈ yn + en, where en is the error and yn the approximation point,it is possible to �nd a step size h, a global enlosure ỹ, an approximation point
yn+1 and a loal enlosure en+1 of the error suh that ∀t ∈ [0, h], y(t) ⊆ ỹ and
y(h) ⊆ yn+1 + en+1, where y is any solution of the interval IVP.Proof sketh. Let us �rst assume that the step size h is given. The next point
yn+1 is omputed by the lassial RK4 algorithm [17℄ that uses four evaluationsof F to approximate the mean derivative between t and t+h. yn+1 is a funtionof yn and h only. So, yn+1 = ψ(yn, h), where ψ is expressed using F only.The omputation of en+1 requires a two steps proess: �rst we ompute the apriori bound ỹ and then we use it to ompute a tighter bound on the global errorat t+ h. The omputation of ỹ uses the Piard interval operator and a Banah�x-point argument as in [23℄. Using results from [3, 22℄, we ompute en+1 as
en+1 = η + χ + µ. The three terms are omputed as follows:� η represents the disretization error and is omputed as the distane betweenthe �ows of the real valued solution of the IVP and the real valued funtion

ψ. Both funtions are equal at time t and so are their �rst 4 derivatives. Asa onsequene, η an be expressed as a funtion of their �fth derivative only(we use Taylor expansion to prove it).� χ represents the propagation of the error en into en+1. In other words, itis the distane between the images by ψ of two points inside yn + en. Thisis omputed using the Jaobian matrix of ψ and this is mainly where thewrapping e�et ours (if the matrix is a rotation matrix, then big over-approximations arise).� µ represents the implementation error, i.e. the distane between the om-puted �oating point number yn+1 and the real value that would have beenobtained on an in�nite preision omputer. We use the global error domain[24℄ to ompute yn+1 so that we obtain both the �oating point numberand an over-approximation of its distane to the real number, i.e. an over-approximation of µ.By ombining this three omputations, we obtain an over-approximation of theglobal error at time t+ h based on the error at time t. We leave the problem of�nding an appropriate step size h open for now and show in Setion 5 how todeal with it, and that it an be seen as some kind of dynami partitioning [7℄ ofthe set of ontrol points of the ontinuous semantis. �5 Abstrat SemantisIn this setion, we show that the guaranteed integration methods provide a safeabstrat semantis for the ontinuous proesses. An abstrat semantis JPK♯ ofa ontinuous proess P=(F,p,y) is an interval valued step funtions (i.e. an ele-ment of D♯) that provides two things. On the one side, we have an abstrationof the values that represents as an interval the set {y(t)|y ∈ JPK} at all time



t ∈ R+. On the other side, we have an abstration of the time line that ol-lets the instants whose values are abstrated by the same interval. In Setion4, we showed that these abstrations are provided by the guaranteed integra-tion algorithms: given an abstration of the values at one time t (y(t) ∈ yn),a funtion GRK(F, P,yn) exists that omputes h (i.e. the abstration on theinstants), ỹ (i.e. the abstration on the values) and a new interval y suh that
∀u ∈ [t, t+h], y(u) ∈ ỹ and y(t+h) ∈ y. Let us brie�y explain how the step size
h is hosen: �rst, during the omputation of the a priori approximation ỹ, weuse a Banah �x-point argument, and thus ompute ỹ as the limit of the iteratesof a ontrating funtion. On a omputer, this an loop forever either due torounding errors or beause the �x-point is reahed after an in�nite iteration.Thus, we use a limit on the number of iterations and we use a smaller step sizeif this limit is reahed. Seondly, after eah step, the width of y is ompared tothe user spei�ed tolerane and ontrol theoreti tehniques are used in order toadjust the next step-size and avoid the error to grow. Thus, the partitioning ofthe time line is dynamially omputed at eah step.De�nition 6. Abstrat semantisLet P=(F,p,y) be a ontinuous proess. The abstrat semantis JPK♯ of P is theresult of Algorithm 1.The abstrat semantis is omputed by iterating the guaranteed integration pro-ess. Let us remark that the implementation of the GRK funtion an fail to �nd
h, ỹ and y if the seleted step size beomes smaller than the mahine preision.Whenever this happens, a sort of widening is performed as we end the onstraintonjuntion by t : R+.Theorem 3. Let P=(F,p,y) be a ontinuous proess. Then the abstrat seman-tis JPK♯ is a safe abstration of the onrete semantis, i.e.:

JPK ⊆ γ
(

JPK♯
) (13)Proof. Let α : D → D♯ be the abstration funtion de�ned by α(

JPK) = JPK♯ and
∀Y ∈ D, Y 6= JPK, α(Y) = ⊤♯. If we show that α veri�es the V.C., then Equation(13) holds. Let Y ∈ D, we show that α(Y) veri�es Equation (5). This is learlythe ase if Y 6= JPK. Let us suppose that Y = JPK, and let JPK♯ =

∧

0≤i≤N ti : xi.We need to prove that ∀i ∈ [0, N ], ∀t ∈ [ti, ti+1] and ∀y ∈ Y, y(t) ∈ xi. WeInput: P=(F,p,y)Output: JPK♯

t = 0; h = InitialGuess(F);
yn = y;while (h, ỹ, y) = GRK

`F, p, yn
´ do

res = res ∧ t : ỹ; yn = y;endreturn res ∧ t : RAlgorithm 1: Abstrat semantis omputation.



prove this by indution on i.For i = 0, we have ∀y ∈ Y, y(0) ∈ y and the GRK funtion gives h, ỹ and y1suh that ∀t ∈ [0, h], ∀y ∈ Y, y(t) ∈ ỹ. The algorithm 1 sets x0 to ỹ, whihproves the ase i = 0.Let now i ∈ [0, N ] be suh that ∀y ∈ Y, ∀t ∈ [ti, ti+1], y(t) ∈ xi. Clearly,the algorithm 1 also gives an interval yi suh that ∀y ∈ Y, y(ti+1) ∈ yi.Let P'=(F,p,yi) be the interval IVP whih di�ers from P only for the ini-tial value. Then, for every H > 0, it holds that {y(t)|t ∈ [0, H ], y ∈ JP'K} =
{y(t)|t ∈ [ti+1, ti+1 +H ], y ∈ JPK}, i.e. the solutions of the initial IVP for timebetween ti+1 and ti+1 +H are the same as the solutions of the IVP P' for timebetween 0 and H . The GRK funtion gives ỹ and h suh that ∀t ∈ [0, H ], ∀y ∈
JP'K, y(t) ∈ ỹ. The algorithm 1 sets xi+1 to be ỹ and ti+2 to ti+1 + h, so wehave ∀t ∈ [ti+1, ti+2], ∀y ∈ Y, y(t) ∈ xi+1. �6 Example of useWe present an example that illustrates how we intend to inlude our work intoexisting stati analyzers. We onsider a ode that is often used in embeddedprograms: an integrator. The program in Listing 1 (inspired from [16℄) integratesusing the retangle method the input data. The integration is arried out up tosome threshold de�ned by the interval [INF,SUP℄. The input data are given bya sensor (hene the volatile variable x) at a frequeny of 8KHz. The integratoris a well known di�ult problem for the analysis of numerial preision [11℄. Itsbehavior is extremely depending of the input data (i.e. the physial environment)of the frequeny of the integration proess (i.e. the sampling rate) and of thepreision of the sensor.1 #define SUP 42 #define INF −43 // assume x '=2∗Pi∗y and y'=−2∗Pi∗x4 volat i l e f loat x ;5 stat i f loat i n tg rx =0.0 ,h=1.0/8;6 void main ( ) {7 while ( t rue ) { // assume frequeny = 8 KHz8 x i = x ; in tg rx += x i∗h ;9 i f ( i n tg rx > SUP)10 in tg rx = SUP;11 i f ( i n tg rx < INF)12 in tg rx = INF ;13 }} Listing 1. Simple integrator.The omments on the ode in Listing 1 indiate how we give the analyzers hintson the physial environment. The �rst one (Line 5) gives the di�erential equa-tion followed by x and y while the seond one (Line 8) indiates the frequenyof the main loop. Suh omments ould be understood by the stati analyzerand are often already present (although not in this form) in embedded pro-grams (it is very frequent to �nd a omment suh as �this loop runs at 8KHz�in the ode usually given to stati analyzers). In this example, the input signalis x(t) = sin(2πt). In theory (i.e. with a perfet knowledge of the environment



and an in�nite preision omputer), the value of intgrx remains bounded by
[0, 2]. As explained in the introdution, a naive abstration of the ontinuousenvironment approximates x by the interval [−1, 1]. In this ase, the analyzerbinds the variable intgrx with the value [−n · h, n · h] after unrolling the mainloop n times. We implemented a prototype analyzer that uses the abstrationof the ontinuous environment of Setion 5 to improve this result. The analyzeruses the GRKLib library [6℄ as guaranteed integration tool and is implementedin OCAML. The analyzer takes as input language a subset of C and the om-ments are hanged into spei� assertions that the analyzer understands. Figure3 shows the results obtained by this analyzer and by an abstration using inter-vals. After 100 iterations, the value of intgrx is [−4, 4] with intervals beauseof the thresholds and [−4.353 · 10−2, 4.192 · 10−2] with our analyzer.7 ConlusionIn this artile, we provided a formalization and an abstration of the physialenvironment of embedded software whih is oherent with the analysis of thedisrete program itself. Like the olleting semantis of a program desribes allthe possible exeutions for any input data, our desription of the ontinuous en-vironment desribes all possible ontinuous evolutions for any initial onditionand parameter of the system. We then de�ned an abstrat domain that allowsfor the sound over-approximation of ontinuous funtions: the domain of intervalvalued step funtions. A major di�ulty in the de�nition of this domain was toStep funtions abstrationInterval abstration
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deal with dynami step sizes in order to ope with the most e�ient numerialalgorithms. Our representation of suh funtions as a onjuntion of onstraintsallows for an elegant de�nition of the abstrat operators and their e�ient imple-mentation. Finally, we showed that the guaranteed integration methods providean abstrat semantis for the ontinuous proess that is sound with respet tothe olleting one. A simple example derived from a well known, di�ult problemshows that our approah onsiderably improves the analysis.The analysis of the omplete hybrid system still needs some extensions. Firstof all, we do not onsider yet feedbak from the program, i.e. we do not men-tion atuators. Previous work of by Olivier Bouissou [5℄ dealt with this problemand a merge of both results is neessary. Seondly, our formalism only abstratsthe environment and does not onsider the ation of the sensors. These latterintrodue some noise inside the system as their measurements as well as theirsampling rate are impreise. In a sense, our model supposes that we have perfetsensors, i.e. that the values passed to the program are the exat values of the on-tinuous environment. Clearly, a better modeling of sensors will be neessary. Forexample, we an add omments and/or assertions in the program that desribesthe inauray of the sensors. Thus, our abstration of the environment remainsvalid, and it is only when the values are passed to the program that they aremodi�ed in order to math the spei�ation of the sensor. Finally, the additionof an extrapolation method as a widening operator will omplete the abstratinterpretation of ontinuous funtions. This is a purely numerial problem thatdoes not hange anything to our domain.Referenes1. R. Alur, C. Couroubetis, N. Halbwahs, T. A. Henzinger, P. H. Ho, X. Niollin,A. Olivero, J. Sifakis, and S. Yovine. The algorithmi analysis of hybrid systems.Theoretial Computer Siene, 138(1):3�34, 1995.2. J. Bertrane. Stati analysis by abstrat interpretation of the quasi-synhronousomposition of synhronous programs. In VMCAI, volume 3385 of LNCS, pages97�112. Springer, 2005.3. Ludwig Bieberbah. On the remainder of the runge-kutta formula. Z.A.M.P.,2:233�248, 1951.4. B. Blanhet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-aux, and X. Rival. Design and implementation of a speial-purpose stati pro-gram analyzer for safety-ritial real-time embedded software. In The Esseneof Computation: Complexity, Analysis, Transformation., volume 2566 of LNCS.Springer-Verlag, Otober 2002.5. O. Bouissou. Analyse statique par interpretation abstraite de système hybridesdisrets-ontinus. Tehnial Report 05-301, CEA-LIST, 2005.6. O. Bouissou and M. Martel. GRKLib: a guaranteed runge-kutta library. In SCAN,2006.7. F. Bourdonle. Abstrat interpretation by dynami partitioning. Journal of Fun-tional Programming, 2(4):407�423, 1992.8. P. Cousot and R. Cousot. Abstrat interpretation: a uni�ed lattie model for statianalysis of programs by onstrution or approximation of �xpoints. In POPL, pages238�252. ACM Press, 1977.
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