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Abstract. We define an abstraction of the continuous variables that
serve as inputs to embedded software. In existing static analyzers, these
variables are most often abstracted by a constant interval, and this ap-
proach has shown its limits. We propose a different method that analyzes
in a more precise way the continuous environment. This environment is
first expressed as the semantics of a special continuous program, and we
define a safe abstract semantics. We introduce the abstract domain of
interval valued step functions and show that it safely over-approximates
the set of continuous functions. The theory of guaranteed integration
is then used to effectively compute an abstract semantics and we prove
that this abstract semantics is safe. An example inspired by well known
difficult problems shows the interest of our approach.

1 Introduction

The behavior of an embedded system depends on both a discrete system (the
program) and a continuous system (the physical environment). The program con-
tinuously interacts with the environment, picking up physical values by means
of sensors and modifying them via actuators. Thus, static analyzers for criti-
cal embedded software [4,15] usually face the discrete part of a wider, hybrid
system [19] but they often poorly abstract the physical environment in which,
in practice, the embedded systems are run. To take an extreme example (more
reasonable examples abound in articles dedicated to hybrid systems [1,26]), the
static analysis of avionic codes should abstract the plane environment, that is,
the engines, the wings, and the atmosphere itself.

In practice, the sensors correspond to volatile variables in C programs and,
at analysis time, the user must assign to these variables a range given by the
minimal and maximal values the sensor can send. In this case, a static analyzer
assumes that the value sent by the sensor may switch from its minimum to
its maximum in an arbitrary short laps of time, while, in practice, it follows



a continuous evolution. As a consequence, the results of the static analysis are
significantly over-approximated, and our experience with Fluctuat [15] has shown
that this naive abstraction of the continuous variables is the main source of loss
of precision. The abstraction of the physical environment is even more crucial for
embedded systems that cannot be physically tested in their real environment,
like space crafts whose safety only relies on verification tools.

In this article, we consider a special case of hybrid systems: the continuous
environment serves as input for the discrete system which is represented by the
embedded program. We present an analysis of the continuous part of the sys-
tem using the abstract interpretation framework [8,9]. Our analysis permits a
better over-approximation of the continuous variables than an abstraction with
intervals and can be seen as the first step in the process of introducing hybrid
components to existing static analyzers. A first approach to the abstraction of
a continuous function could be done as follows: first partition the time line into
(not necessarily regular) steps and then chose for each step an over- and under-
approximation of the function on this step. This technique defines a family of
Galois connections between various domains (one for each choice of the parti-
tioning) [25], but is not compatible with efficient implementations. We indeed
compute the over- and under-approximations using validated ODE solvers (see
Section 4); modern algorithms [6,27] dynamically change the step size, and thus
dynamically partition the time line, in order to reach a user defined precision. We
must thus consider an abstract domain for which the step sizes are not statically
defined (see Section 3). This article is focused on the definition and correction of
the abstract domain and we omit for the sake of conciseness the purely numerical
aspects of the computation. For more details on Section 5, see [6]. In addition, a
guaranteed extrapolation algorithm that safely bounds a function on an interval
[t, 00[ would be necessary to find a non naive widening. These purely numerical
aspects are out of the scope of this article.

In Section 2, we describe the continuous environment as the collecting se-
mantics of a continuous program, described by an interval valued ODE. As most
collecting semantics of usual programs, this semantics is neither representable in
machine nor computable, so we present in Section 3 an abstract domain which
can be effectively used for the over-approximation of continuous functions. We
also give criteria in order to build a safe abstraction of elements of the concrete
domain. In Section 4, we show that guaranteed integration algorithms compute
an abstract semantics of the ODE and we prove that this semantics is a safe
over-approximation of the collecting one in Section 5. Finally, we show (Section
6) using a basic example that our approach gives better results than a naive
abstraction of the environment using intervals.

To our knowledge, this is the first formalism that allows for the integration of
the continuous environment in an abstract interpretation of embedded software.
Edalat et al. defined a domain theoretic characterization of continuous functions
[12,14,13] and showed that the solution of ODEs can be obtained by successive
approximations. Their work is located at the concrete level, as they describe the
continuous functions, and it does not provide an abstraction in the sense of the



abstract interpretation theory, which is the main result of the present article.
On the other hand, the analysis of non-linear hybrid automata using guaranteed
ODE solvers was implemented in HYPERTECH [21], but the continuous dynamics
is not defined by its own, which is necessary for the analysis of embedded software
where the discrete and the continuous subsystems are clearly disjoint. Previous
works on abstract interpretation strategies for hybrid systems mainly involved
the analysis of hybrid automata [18, 20].

1.1 Notation

The set of real numbers is R, while the set of non negative real numbers is R .
The set of natural numbers is N. We will also consider the set of floating point
numbers F [28]. The domain of continuous functions defined on R with values in
R is C% and the set of differentiable functions from Ry to R is C . For a function
f € CL, we note fe CY its first derivative. We use bold symbols to represent
intervals: given a domain D with an order <p, the set of intervals on D is D.
Elements of D are denoted «; for an interval @ € D, we note its lower bound
« and its upper bound T, such that « = {x € D | £ <p 2 <p T}. In particular,
we will consider the set of intervals on real numbers R, intervals on positive real
numbers R4 and intervals on floating point numbers F'. Finally, we use arrows
to represent vectors: given a domain D, the set of vectors of dimension n is D"
and elements of D" are denoted = . Vectors of intervals are denoted .

2 Syntax and Semantics of Continuous Processes

Hybrid systems are composed of two intrinsically different processes that run in
parallel: a discrete program and a continuous environment. In order to reason
about and analyze the whole system, one needs to find a unified representation
of both parts. As for computer programs, we define a syntax, a collecting and
an abstract semantics of the continuous environment. This section is dedicated
to the definition of the concrete part.

2.1 Syntax

The environment represents physical quantities such as the temperature of the
air, the speed of the wind or the deceleration of a car. Such quantities evolve
continuously with time (i.e. their value cannot instantaneously jump from a to
b), and thus follow a function from Cg. Most often, this function is not explicitly
known, but is defined as the solution of an ordinary differential equation (ODE).
An ODE is a relation between a function y € Ci and its first derivative y via
a continuous function F: § = F(y; p'). P is a set of constant parameters (e.g.
the gravitational constant, the length of the plane, ...). This representation
as an autonomous ODE of order 1 (i.e. F' only depends on the spatial value
of y, and not on the time t) is expressive enough to capture other forms of
ODE (non-autonomous and higher order ODEs are easily converted into higher



dimensional autonomous ODEs of order one). An ODE links the value of the
system at time ¢ + dt with the value of the system at time ¢, which is the
continuous equivalent to any discrete dynamical system. It consequently forms
the syntaz of the continuous process. In order to achieve more expressiveness,
we allow the parameters of the function F' to be intervals, leading to the notion
of interval ODE.

Definition 1. Interval ODE .
Let F be a continuous function with a set of parameters p € R. An in-
terval ordinary differential equation (interval ODE) is given by the relation:

y=F(;P), BCR.

This formalism is expressive enough to capture most dynamical systems and the
introduction of interval parameters makes it suitable to express uncertainties on
the system. We extend the uncertainty to the initial conditions of the ODE, and
define the notion of interval initial value problems.

Definition 2. Interval IVP.
Let F be a continuous function with a set of parameters p . An interval initial
value problem is given by an interval ODE and an interval initial condition:

J=F(y, P) y(0)€yo (1)

An interval IVP gives a complete characterizations of a set of continuous environ-
ments using only three terms: a continuous function, a set of parameters and an
initial interval value. We will thus write the physical environment P:=(F,p,y),
where F is the function, p its parameters and y the initial value. Example 1 shows
how this compact notation is used to define a set of functions.

Example 1. The continuous process P=(F,p,y) with F(y)=p*y, p=[-2,-1] and
y=[0.5,3] corresponds to the IV ¢ = p.y, y(0) € [0.5,3], p € [-2, —1]. It defines
the functions y(x) = ¢.e?® with ¢ € [0.5, 3], p € [-2, —1] (see Figure 1).

2.2 Collecting Semantics

Just like the collecting semantics of a discrete program is the set of all the (dis-
crete) execution traces corresponding to a set of input parameters, the collecting
semantics of the continuous process (F,p,y) is the solution of the correspond-
ing interval IVP, that is, the set of all possible dynamics (i.e. continuous traces)
of the system. The solution of a (real valued) ODE ¢ = F(y; 5’) is a function
y € CL such that for every time ¢, it holds that ¢(¢) = F(y(t); 7) The solution
of a real valued initial value problem is a solution of the ODE that additionally
verifies the initial condition. The existence and/or uniqueness of this solution de-
pends mainly on the function F', and this question is not relevant for this article.
On the contrary, we will always assume that F' is smooth enough so that there
exists a solution y defined on Ry for any initial condition and any parameter.
The notion of solution to an IVP is then extended to interval IVP:
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Fig. 1. Solutions of the interval ODE of Example 1.

Definition 3. Solution of an interval IVP.

The solution of the interval IVP (1) is a set of functions Y C Ci such thaty € Y
if and only if there exists p € p and yo € Yo such that y is a solution of the (real
valued) IVP y = F(y,p), y(0) = yo.

The semantics [P] of P=(F,p,y) is the solution of the interval initial value
problem y = F(y,p)7 y(0) € y. It is thus an element of the concrete domain
D= ’P(Ci), the power set of Ci. The operations inclusion C, union U and in-
tersection N give a lattice structure to D. Each element of [P] is a continuous
function which characterizes one particular evolution of the continuous system
under one set of parameters and one input.

3 Abstract Domain

The concrete domain for the continuous processes is thus the powerset of the set
of continuous functions Ci. In this section, we present an abstract domain that
collects elements from CEL.

3.1 Interval valued step functions

Continuous functions are not representable as they assign to an infinite, uncount-
able number of elements (every ¢ € R ) a value that is itself not representable
(as a real number) on a finite precision machine. Thus, an abstraction of a set of
continuous functions must abstract the values reached by the functions as well
as the instants at which these values are obtained. The former is done by using
intervals instead of sets while the latter is done by considering step functions,
i.e. functions that are almost always constant.

Definition 4. Interval valued step functions

DF is the set of all step functions from Ry to R. We recall that given a domain
D, a function f : Ry — D is a step function if and only if there exist to = 0 <
) <o <ty <tpy1 <... such thatVn € N, f is constant between t,, and t, 1.



Representation of step functions.

Following the notations used by Julien Bertrane [2], we represent the step func-
tions as a conjunction of constraints of the form “¢; : a;”, which means that the
function switches to x; at time t;. The switching times ¢; do not need to be
ordered, nor different; the infinite conjunction f =tg: xog Aty : @31 A+ Aty :
Tn A ... represents the function f such that Vi € Ry, f(t) = x; with ¢ =
max {j € N|t; < t}. A finite sequence of constraints f = tg : ®oAt1 : T1A- - AN :
x N represents the step function f such that Vi € Ry, f(t) = x; with ¢ =
max {j € [0, N]|t; < t}. We use the more compact notation f = Aj-,«y ti : x4,
with N € NU {oo}. Let us remark that this notation is however not unique. For
example, the conjunctions 3 : [1,2) A0 : [1,2] and 0 : [1,2] A1 : [1,2] define the
same constant function with value [1,2]. This makes the equality of functions
difficult to define (we can say that f =g < Vt € Ry, f(t) = g(¢) but this is not
satisfying as it cannot be used for an implementation). To solve this problem,
we define a normal form for the conjunctions of constraints characterized by:

1. the switching times are sorted and all different, i.e. if f = A, cnti © s,
then 0 =tg <t1 <--- <tp, <...;
2. two consecutive constraints cannot have equal values: Vi € [0, N|, &; # ®i41.

With these conditions, the representation is unique. It is moreover easy to com-
pute the normalized form Norm(f) of a given conjunction of constraints f. First
we sort the constraints by ascending switching time, with the convention that if
two constraints have the same time, then we only keep the one with the highest
index. This makes the conjunction to fulfill the first normalization condition.
Then, we remove any constraint ¢; : x; such that x;_; = x;. This way, we only
keep the longest possible steps, which satisfies the second condition. It is easy
to see that the normalization process does not change the meaning of the repre-
sentation: for a conjunction f, then it holds that Vt € Ry, f(¢) = Norm(f)(¢).
Given two normalized conjunctions, we define an equality test:

/\ titxs = /\ uj 1 y; <= N =M and Vi € [0, N], t; = u; and x; = y;. (2)

0<i<N 0<j<M

The normalization process induces an equivalence relation (f = g & Norm(f) =
Norm(g)). Thus, from now on we work in the domain Du/z, i.e. we always
consider that the conjunctions are normalized. We will however keep the notation
D for Dﬂ/E when it is clear from the context.

Proposition 1. Let f,g € D*. Then it holds that:
f=g=VteRy, f(t)=g(t) 3)

Proof. Clearly, we have f = g = Vi € Ry, f(t) = g(¢). Let us prove the other
direction. Let f,g € D* such that V¢t € Ry, f(t) = g(t), with f = Agejen ti : T3
and g = /\OSJ‘SM u; : yj. We have N = M: suppose that N # M, then we can
suppose that N < M and N # oo, so Vt > tn, f(t) = g(t) = xn; however,
g has at least on last step in [t,,o0], and thus its value changes at least once,
hence the contradiction. Now, let us suppose that A = {i € N|t; # u;} # 0,



and let £ = min A, with ¢ < wug. Then we have tp_1 = up_1 < tp < ug,
s0 f(tk—1) = g(tk-1) = Tr—1 and f(tx) = Tk, 9(tx) = g(tk—1) = Tr—1, SO
T = Tp—1, hence the contradiction. So, Vi € [0, N], t; = u;, and ¢; = y;. O

3.2 Concretisation and abstraction

The function f = Aj-,<yti : T; represents the set of continuous, differentiable

functions that remain within @; for any time t € [t;,t;+1]. The concretisation
function 7 : D¥ — D is thus defined by:

v N\ tom) ={yeCl Vi< N, Ve [t tin], y(t) € 24 ) (4)

0<i<N

If N < oo, the last constraint transforms into V¢t > tn, y(t) € N

For example, Figure 2(a) shows a step function (represented by the black bold
steps) and a function within its concretisation (the dashed curve). Among others,
the solutions of Example 1 are contained in the concretisation (gray surface).
The definition of an abstraction is not as direct as for the concretisation. As
in the case of the polyhedra domain [10], we cannot define the best one: it is
always possible to increase the quality of the abstraction by selecting smaller
steps. Thus, we only give a criteria for a function to be a safe abstraction. Let
us first define the lower- and upper-functions for a given set of continuous real
functions. Let Y € D, we define the two functions ) and Y to be the inf- and
sup-functions of V: Y = M.inf{y(t) |y € Y} and Y = M.sup{y(t) | y € V}.
Equivalently, we define the lower- and upper-functions of an interval valued step
function. Let f € D¥, the real valued step functions f and f are: f=Atf(t)

and f = At.f(t). These four functions are the basis of the Validity condition:

Definition 5. A function o : D — D* satisfy the Validity condition (V.C.) if
and only if for all Y € D, it holds that:

Vi€ Ry, a(V)(1) < Y1) < V(1) < a(¥)() (5)

This property states that the computed interval valued step function indeed
encloses the set {y(t) |y € Y} for all ¢t € R;. The V.C. is a necessary and
sufficient condition for the abstraction « to be sound (see Theorem 1).

3.3 Structure of the abstract domain

Let us now show that D! can be given a lattice structure and that, under the
V.C., the abstraction a : D — DF is sound. Intuitively, we want to define the
order C* pointwise (i.e. f CF g < Vt € Ry, f(t) C g(t)). We give a condition (6)
on the constraints that allows for the effective testing of whether f C* g. Let
f= Aogz‘SN t; :x; and g = /\OSJ‘SM uj @ yj, then

fCtge=V(i,j) €[0,N] x [0,M], [ti,tis1] N[uj,ujpa] #D =2 Cy;  (6)
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(a) An abstraction of the solutions of (b) Abstract meet operator.
Example 1.

Fig. 2. Abstract domain.

Proposition 2. If f,g € D! are in a normalized form, then it holds that:
fChgeVteRy, f(t) Cg(t) (7)
Proof. Let f = Ngcicnti @ @i and g = A\gcjpruy @ Y5 be such that f cty,
and let ¢t € R;. There exist ¢ € [0, N] and j € [0, M] such that ¢ € [t;,¢;41] and
t € [uj, uj1]. Thus, [t tiy1] N [uy,ujpa] # 0, 50 f(1) = x5 Cy; = g(t).
Now, let f,g € D* such that V¢t € Ry, f(t) C g(t), f and g written as above.
Let i,7 € [0, N] x [0, M] such that [t;,ti41] N [uj, uj11] # 0, and let ¢ € [t;, ti41]N
[uj, ujt1]. Then, f(t) = x; and g(t) = y;, so z; C y;. O
The equality (Equation (2)) and the order (Equation (6)) we defined on D*
are equivalent to the usual equality and order on functions, but the characteri-
zations we provide permits an efficient implementation of them (in linear time).
The meet operator Nt on D! is defined as follows. If f= /\ogigN t; : x; and
g= /\OSJ‘SM uj : yj, then

fﬂﬁg:Norm( /\ Lt X A /\ uj:y'j> where (8)

0<i<N 0<j<M
€; = x; Ny where k = max{jlu; < t;} (9)
Y; = y; N where k = max{i|t; < u;} (10)

The intersection fN#g creates a new step function whose value is at every time ¢
the intersection f(¢) N g(t). If this intersection is empty (i.e. £; = () for some i or
y; = 0 for some j), we define fN¥g as 1*, the bottom element of D¥. A graphical
representation of the effect of N* is shown in Figure 2(b): the intersection of two
step functions (bold and dashed steps) is computed. The result is the gray area,
and the vertical dashed lines represent the switching times.

The abstract join operator U* is defined in the same way. Let h = f Uf g, h is
given as for the meet N, except that Equations (9) and (10) are changed into:

&; = x¢; Uyr where k = max{jlu; < t;} (11)
y; = y; Uxp where k = max{i|t; < u;} (12)



The only difference is that we set the value of h at any time ¢ to be f(¢) U g(¢).

Proposition 3. Let T# = 0 : [—o0, 00] be the step function with only one step

with value R. We define a special element 1* such that v(L*) = 0 and Vf €

Dt L8 CE f. Then (D, TH, L¥ CE NE UY) is a lattice.

Proof. Clearly, Vf € D, 1% Ct f C# Tf. We still need to prove that:

1. N* is a meet operator. Let f,g € D¥ and h = f g, with f = Agc,cn ti : Ts
and ¢ = MAg<j<prus @ y;- We first show that h C! f by showing that
Vi € Ry, h(t) C f(t). Let t € Ry, and 4,5 € [0,N] x [0, M] be such that
t € [ti,tit1] and ¢ € [uj, u;jy1]. Then, depending on the relative positions of
ti, ti+1, u; and w11, the computation of h (Equation (8)) defines h(t) to be
&; or ¥;, with £; = &;Ny; and ¥; = y;Nx,;. Thus, we have h(t) € z; = f(t).
So, h C* f. Equivalently, we have h C* g. Now, let H € D* such that H C* f
and H Qj g. Let t € R+ and i, such that t € [ti,ti+1] and t € [Uj,Uj+1].
Then, H(t) C f(t) = =; and H(t) C ¢(t) = y;, so H(t) C =; Nyj, ie.
H(t) C h(t). So, H C* h.

2. Ut is a join operator. The proof runs as the one for Nf. ([

We now formulate the main theorem of this section that guarantees the sound-
ness of the abstraction.

Theorem 1. If « satisfies the V.C., then for every Y € D, Y C ”y(a()})).

Proof. Let Y € D and f = a(y) € D*. We want to prove that ) C W(f) As a
satisfies the V.C., we know that Vt € Ry, Vy € Y, y(t) € f(¢). Let now y € );
y is a continuous function that verifies V¢ € Ry, y(t) € f(t), thus y € y(f). So,
it holds that Y C v(f). 0

4 Guaranteed Integration

In this section, we present a technique called guaranteed (or validated) integra-
tion of ODEs that, as shown in Section 5, enables one to compute the abstract
semantics of the continuous processes. Guaranteed integration of ODEs tries to
answer the following question: given an ODE (possibly with interval parame-
ters), an initial value (possibly an interval) and a final time 7', can we compute
bounds on the value of the solution of the IVP at T'? There are basically two
kinds of methods for computing such bounds on the solution of the IVP. On the
one side, classical methods use the Taylor series decomposition of the solution
and then interval arithmetics. Advanced techniques are used in order to limit the
wrapping effect inherent to the interval computations, and the first tools (e.g.
VNODE [27] or AWA [23]) use such techniques. On the other side, new methods
have recently been proposed [6,29] that compute the bounds as the sum of a
non-validated approximation point and a guaranteed error, i.e. an interval that is
proved to contain the distance between the real solution and the approximation
point. We give the main ideas of how the GRKLib [6] method works in the proof
of Theorem 2. The reader can find more detailed explanations about GRKLib
and a complete proof in [6].



Theorem 2. Given an interval ODE y = F(y,p) and an interval initial value
denoted y(0) € y, + en, where e, is the error and y,, the approvimation point,
it is possible to find a step size h, a global enclosure ¥y, an approzimation point
Yn+1 ond a local enclosure eny1 of the error such that Vt € [0,h], y(t) C § and
y(h) C Ynt1 + €nt1, where y is any solution of the interval IVP.

Proof sketch. Let us first assume that the step size h is given. The next point
Yn+1 is computed by the classical RK4 algorithm [17] that uses four evaluations
of F to approximate the mean derivative between ¢ and ¢+ h. y, 41 is a function
of y, and h only. So, Yn+1 = ¥ (yn, h), where 1 is expressed using F' only.

The computation of e,41 requires a two steps process: first we compute the a
priori bound y and then we use it to compute a tighter bound on the global error
at t + h. The computation of ¢ uses the Picard interval operator and a Banach
fix-point argument as in [23]. Using results from [3,22], we compute e,41 as
en+1 =1+ X + p. The three terms are computed as follows:

— m represents the discretization error and is computed as the distance between
the flows of the real valued solution of the IVP and the real valued function
1. Both functions are equal at time ¢ and so are their first 4 derivatives. As
a consequence, 1) can be expressed as a function of their fifth derivative only
(we use Taylor expansion to prove it).

— x represents the propagation of the error e,, into e,41. In other words, it
is the distance between the images by % of two points inside y,, + e,. This
is computed using the Jacobian matrix of 4 and this is mainly where the
wrapping effect occurs (if the matrix is a rotation matrix, then big over-
approximations arise).

— p represents the implementation error, i.e. the distance between the com-
puted floating point number y,; and the real value that would have been
obtained on an infinite precision computer. We use the global error domain
[24] to compute y,4+1 so that we obtain both the floating point number
and an over-approximation of its distance to the real number, i.e. an over-
approximation of p.

By combining this three computations, we obtain an over-approximation of the
global error at time ¢ + h based on the error at time ¢. We leave the problem of
finding an appropriate step size h open for now and show in Section 5 how to
deal with it, and that it can be seen as some kind of dynamic partitioning [7] of
the set of control points of the continuous semantics. (Il

5 Abstract Semantics

In this section, we show that the guaranteed integration methods provide a safe
abstract semantics for the continuous processes. An abstract semantics [[P]]ﬁ of
a continuous process P=(F,p,y) is an interval valued step functions (i.e. an ele-
ment of D¥) that provides two things. On the one side, we have an abstraction
of the values that represents as an interval the set {y(t)|y € [P]} at all time



t € Ri. On the other side, we have an abstraction of the time line that col-
lects the instants whose values are abstracted by the same interval. In Section
4, we showed that these abstractions are provided by the guaranteed integra-
tion algorithms: given an abstraction of the values at one time ¢ (y(t) € yn),
a function GRK (F,P,y,,) exists that computes h (i.e. the abstraction on the
instants), g (i.e. the abstraction on the values) and a new interval y such that
Yu € [t,t+h], y(u) € g and y(t+h) € y. Let us briefly explain how the step size
h is chosen: first, during the computation of the a priori approximation y, we
use a Banach fix-point argument, and thus compute ¢ as the limit of the iterates
of a contracting function. On a computer, this can loop forever either due to
rounding errors or because the fix-point is reached after an infinite iteration.
Thus, we use a limit on the number of iterations and we use a smaller step size
if this limit is reached. Secondly, after each step, the width of y is compared to
the user specified tolerance and control theoretic techniques are used in order to
adjust the next step-size and avoid the error to grow. Thus, the partitioning of
the time line is dynamically computed at each step.

Definition 6. Abstract semantics
Let P=(F,p,y) be a continuous process. The abstract semantics [P]* of P is the
result of Algorithm 1.

The abstract semantics is computed by iterating the guaranteed integration pro-
cess. Let us remark that the implementation of the G RK function can fail to find
h, g and y if the selected step size becomes smaller than the machine precision.
Whenever this happens, a sort of widening is performed as we end the constraint
conjunction by ¢ : Ry.

Theorem 3. Let P=(F,p,y) be a continuous process. Then the abstract seman-
tics [[Pﬂu is a safe abstraction of the concrete semantics, i.e.:

[7] < ~([7]F) (13)

Proof. Let a : D — D be the abstraction function defined by o([P]) = [P]* and
VY € D, Y # [P], a(Y) = T*. If we show that « verifies the V.C., then Equation
(13) holds. Let Y € D, we show that a()) verifies Equation (5). This is clearly
the case if Y # [P]. Let us suppose that J = [P], and let [P]* = Aycicn ti : T4
We need to prove that Vi € [0, N], Vt € [t;,t;11] and Vy € Y, y(t) € x;. We

Input: P=(F,p,y)

Output: [P]*

t = 0; h = InitialGuess(F);

yn =y;

while (h,g,y) = GRK(F,p, yn) do
| res=resAt:yg; yn =w1y;

end

return res At: R | . .
Algorithm 1: Abstract semantics computation.



prove this by induction on 3.

For i = 0, we have Yy € ), y(0) € y and the GRK function gives h, § and y;
such that Vt € [0,h], Yy € YV, y(t) € g. The algorithm 1 sets z¢ to g, which
proves the case 7 = 0.

Let now ¢ € [0, N] be such that Vy € Y, Vt € [t;,ti+1], y(t) € x;. Clearly,
the algorithm 1 also gives an interval y; such that Vy € Y, y(tiv1) € vi-
Let P’=(F,p,y;) be the interval IVP which differs from P only for the ini-
tial value. Then, for every H > 0, it holds that {y(¢)|t € [0,H], y € [P’]} =
{y(@®)|t € [tix1,ti+1 + H], y € [P]}, i-e. the solutions of the initial IVP for time
between t;11 and t;11 + H are the same as the solutions of the IVP P’ for time
between 0 and H. The GRK function gives § and h such that V¢ € [0, H], Vy €
[P’], y(t) € y. The algorithm 1 sets ®;4+1 to be § and t;42 to tiy1 + h, so we
have Vt € [ti+1,ti+2], Vy €, y(t) € Tit1- O

6 Example of use

We present an example that illustrates how we intend to include our work into
existing static analyzers. We consider a code that is often used in embedded
programs: an integrator. The program in Listing 1 (inspired from [16]) integrates
using the rectangle method the input data. The integration is carried out up to
some threshold defined by the interval [INF,SUP]. The input data are given by
a sensor (hence the volatile variable x) at a frequency of 8KHz. The integrator
is a well known difficult problem for the analysis of numerical precision [11]. Its
behavior is extremely depending of the input data (i.e. the physical environment)
of the frequency of the integration process (i.e. the sampling rate) and of the
precision of the sensor.

#define SUP 4
#define INF —4
// assume z’=2xPixy and y’'=—2«Pixz
volatile float x;
static float intgrx=0.0,h=1.0/8;
void main() {
while (true) { // assume frequency = 8 KHz
xi = x; intgrx 4= xixh;
if (intgrx > SUP)
10 intgrx = SUP;
11 if (intgrx < INF)
12 intgrx = INF;
E S

© 00D U W

Listing 1. Simple integrator.

The comments on the code in Listing 1 indicate how we give the analyzers hints
on the physical environment. The first one (Line 5) gives the differential equa-
tion followed by x and y while the second one (Line 8) indicates the frequency
of the main loop. Such comments could be understood by the static analyzer
and are often already present (although not in this form) in embedded pro-
grams (it is very frequent to find a comment such as “this loop runs at 8KHz”
in the code usually given to static analyzers). In this example, the input signal
is z(t) = sin(2nt). In theory (i.e. with a perfect knowledge of the environment



and an infinite precision computer), the value of intgrx remains bounded by
[0,2]. As explained in the introduction, a naive abstraction of the continuous
environment approximates x by the interval [—1,1]. In this case, the analyzer
binds the variable intgrx with the value [—n - h, n - h] after unrolling the main
loop n times. We implemented a prototype analyzer that uses the abstraction
of the continuous environment of Section 5 to improve this result. The analyzer
uses the GRKLib library [6] as guaranteed integration tool and is implemented
in OCAML. The analyzer takes as input language a subset of C and the com-
ments are changed into specific assertions that the analyzer understands. Figure
3 shows the results obtained by this analyzer and by an abstraction using inter-
vals. After 100 iterations, the value of intgrx is [—4,4] with intervals because
of the thresholds and [—4.353 - 1072,4.192 - 10~2] with our analyzer.

7 Conclusion

In this article, we provided a formalization and an abstraction of the physical
environment of embedded software which is coherent with the analysis of the
discrete program itself. Like the collecting semantics of a program describes all
the possible executions for any input data, our description of the continuous en-
vironment describes all possible continuous evolutions for any initial condition
and parameter of the system. We then defined an abstract domain that allows
for the sound over-approximation of continuous functions: the domain of interval
valued step functions. A major difficulty in the definition of this domain was to

1 1
Interval abstraction
3 Step functions abstraction -

0 20 40 60 80 100 120

Number of steps

Fig. 3. Result of the analysis of the integrator.



deal with dynamic step sizes in order to cope with the most efficient numerical
algorithms. Our representation of such functions as a conjunction of constraints
allows for an elegant definition of the abstract operators and their efficient imple-
mentation. Finally, we showed that the guaranteed integration methods provide
an abstract semantics for the continuous process that is sound with respect to
the collecting one. A simple example derived from a well known, difficult problem
shows that our approach considerably improves the analysis.

The analysis of the complete hybrid system still needs some extensions. First
of all, we do not consider yet feedback from the program, i.e. we do not men-
tion actuators. Previous work of by Olivier Bouissou [5] dealt with this problem
and a merge of both results is necessary. Secondly, our formalism only abstracts
the environment and does not consider the action of the sensors. These latter
introduce some noise inside the system as their measurements as well as their
sampling rate are imprecise. In a sense, our model supposes that we have perfect
sensors, i.e. that the values passed to the program are the exact values of the con-
tinuous environment. Clearly, a better modeling of sensors will be necessary. For
example, we can add comments and/or assertions in the program that describes
the inaccuracy of the sensors. Thus, our abstraction of the environment remains
valid, and it is only when the values are passed to the program that they are
modified in order to match the specification of the sensor. Finally, the addition
of an extrapolation method as a widening operator will complete the abstract
interpretation of continuous functions. This is a purely numerical problem that
does not change anything to our domain.
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