
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Transformation of a PID Controller
for Numerical Accuracy

N. Damouche1,2 M. Martel1,2 A. Chapoutot3

1 Université Montpellier II & CNRS, LIRMM, UMR 5506, Montpellier, France
2 Université de Perpignan Via Domitia, DALI, Perpignan, France

3 ENSTA ParisTech, Unité d’Informatique et d’Ingénierie des Systèmes, Palaiseau, France

Abstract

Numerical programs performing floating-point computations are very sensible to the way formulas are
written. Several techniques have been proposed concerning the transformation of expressions in order to
improve their accuracy and now we aim at going a step further by automatically transforming larger pieces
of code containing several assignments and control structures. This article presents a case study in this
direction. We consider a PID controller and we transform its code in order to improve its accuracy. The
experimental data obtained when we compare the different versions of the code (which are mathematically
equivalent) show that those transformations have a significant impact on the accuracy of the computations.

Keywords: Numerical Accuracy, Semantics-Based Program Transformation, Floating-Point Arithmetic,
Validation of Numerical Programs.

1 Introduction

Numerical programs performing floating-point computations are very sensible to

the way formulas are written. Indeed, small syntactic changes in the arithmetic

expressions which do not modify their mathematical meaning may lead to significant

changes in the result of their evaluation. This sensibility to the way expressions are

written is due to the particularities of the floating-point arithmetic in which, for

example, addition is not associative or multiplication is not inversible [9,2,8]. In

addition, it is very difficult to guess which writing of a formula gives the best

accuracy when evaluated with floating-point numbers and abstract interpretation

[10] have been developed to infer safe approximations of the round-off error on the

result of a computation [4,5,1].

Our work concerns the automatic transformation of floating-point computations

in order to improve their numerical accuracy. Several results have been obtained

1 Email: nasrine.damouche@univ-perp.fr
2 Email: matthieu.martel@univ-perp.fr
3 Email: alexandre.chapoutot@ensta-paristech.fr

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:nasrine.damouche@univ-perp.fr
mailto:matthieu.martel@univ-perp.fr
mailto:alexandre.chapoutot@ensta-paristech.fr

Damouche & Martel & Chapoutot

concerning the transformation of expressions [6,7,11] and now we aim at going a

step further by automatically transforming larger pieces of code containing several

assignments and control structures.

This article presents a case study in this direction. We consider a PID controller

and we transform its code in order to improve its accuracy. More precisely, we take

an initial PID code and we apply to it several processings in order to generate other

PID programs which are mathematically equivalent to the initial one but more ac-

curate in computing. The first transformation only rewrites the assignments while,

in the second transformation, the loop is unfolded. While these transformations

are made by hand, they are applied systematically, in a way which we aim at au-

tomatizing in future work. The experimental data obtained when we compare the

executions of the three codes (which are mathematically equivalent) show that those

rewritings have a significant impact on the accuracy of the computations.

The rest of this article is organized as follows. Section 2 introduce the original

controller PID1. The transformations are done in Sections 3 and 4, yielding PID2 and

PID3. The experimental results are presented in Section 5 and Section 6 concludes.

2 Description of the PID Controller

In this section, we give a brief description of the original PID program of Listing 1.

This kind of algorithm is used in embedded and critical systems to maintain a

measure at a certain value named setpoint. The error being the difference between

the setpoint and the measure, the controller computes a correction based on the

integral i and derivative d of the error and also from a proportional error term p.

A weighted sum of these terms is computed. The weights are used to improve the

reactivity, the robustness and the speed of the program. The three terms are:

i) The proportional term p: the error e is multiplied by a proportional factor kp,

p = kp × e .

ii) The integral term i: the error e is integrated and multiplied by an integral

factor ki,

i = i + (ki × e× dt) .

iii) The derivative term d: The error e is derived with respect to time and is then

multiplied by the derivative factor kd,

d = kd× (e− eold) × 1

dt
.

3 How to Get a Better PID?

In this section, we detail the different steps needed to transform the original PID,

named PID1, into a new equivalent program named PID2. The main idea consists

of developing and simplifying the expressions of PID1 and inlining them within the

loop, in order to extract the constant expressions and to reduce the number of

2

Damouche & Martel & Chapoutot

Listing 1: Source code of PID1.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
m = 8.0; c = 5.0; eold = 0.0;
while true do

e = c - m;
p = kp * e;
i = i + ki * dt * e;
d = kd * invdt * (e - eold);
r = p + i + d;
eold = e; /* updating memory */
m = m + 0.01 * r; /* computing measure: the plant */

operations. At the nth iteration of the loop, we have:

pn = kp × en .

in = in−1 + ki × en × dt .

dn = kd × (en − en−1) × 1

dt
.

If we inline the expressions of pn, in and dn in the formula of the result expression

rn and after extracting the common factors, we get:

rn = en ×
(
kp + kd ×

1

dt
+ ki × dt

)
+ ki × dt×

n−1∑
i=0

ei − kd × en−1 ×
1

dt
. (1)

Then we remark that there exists some constant sub-expressions in Equation (1).

So, we compute them once before entering into the loop. We have:

c1 = kp + kd ×
1

dt
+ ki × d , c2 = ki × dt , c3 = kd ×

1

dt
.

Next, we record in a variable s the sum s =
∑n−1

i=0 ei which adds the different errors

from e0 to en−1. Finally, we have:

rn = R + c2 × s with R = c1 × en − c3 × en−1 .

Our PID2 algorithm is given in Listing 2.

Listing 2: source code of PID2.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
m = 8.0; c = 5.0; eold = 0.0; R = 0.0; s = 0.0;
c1 = kp + kd * invdt + ki * dt; c2 = kd * invdt; c3 = ki * dt;
while true do

e = c - m;
R = (c1 * e) - (c2 * eold);
s = s + eold;
r = R + (c3 * s);
eold = e;
m = m + 0.01 * r;

4 How to Get an Even Better PID?

The initial PID can be transformed even more drastically by unfolding the loop.

In our case, we arbitrarily choose to unfold it four times in order to keep for each

3

Damouche & Martel & Chapoutot

execution the sum of the last four errors. Then, we change the order of the oper-

ations, either by summing the terms pairwise, or in increasing or decreasing order.

The process applied to reach the third PID algorithm, named PID3, is given in the

following. Let us begin by unfolding four times the integral term:

in−1 = in−2 + ki × dt× en−1 in−2 = in−3 + ki × dt× en−2

in−3 = in−4 + ki × dt× en−3 in−4 = in−5 + ki × dt× en−4

We inline the previous expressions in in. We obtain:

in = in−5 + (ki × dt× en−4) + (ki × dt× en−3) + (ki × dt× en−2)

+ (ki × dt× en−1) + (ki × dt× en) (2)

with in−5 = i0 + ki × dt×
∑n−5

i=0 ei . Equation (2) can be even more simplified and

assuming i0 = 0, we have:

in = ki × dt×
n−5∑
i=0

ei + (ki × dt× ((((en−4 + en−3) + en−2) + en−1) + en)) .

Now, if we come back to the result expression after having done some manipulations,

like developing the derivative and factorizing, we obtain as final expression:

rn = en ×
(
kp + kd ×

1

dt

)
+ ki × dt×

n−5∑
i=0

ei − kd ×
1

dt
× en−1

+ ki × dt× ((((en−4 + en−3) + en−2) + en−1) + en) .

Denoting by s =
(
((en−4 + en−3) + en−2) + en−1

)
, k1 = kp +

(
kd × 1

dt

)
+ (ki × dt)

k2 = ki × dt and k3 = kd × 1
dt , the final expression of rn is:

rn = R + k2 ×
(
s +

n−5∑
i=0

ei
)

with R = (en × k1) − (k3 × en−1)

The complete code of PID3 is given in Listing 3.

Listing 3: source code of PID3.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
R = 0.0; S = 0.0; s = 0.0; m = 8.0; c = 5.0; eold= 0.0;
e1 = e2 = e3 = e4 = 0.0; k1 = kp + kd * invdt; k2 = kd * invdt; k3 = ki * dt;
while true do

e = c - m;
R = (k1 * e) - (k2 * eold);
S = s + (e4 + (e3 + (e2 + e1)));
r = R + (k3 * S);
eold= e; e4 = e3; e3 = e2; e2 = e1; e1 = e;
m = m + 0.01 * r;

4

Damouche & Martel & Chapoutot

5 Experimentations

Let us focus now on the execution of the three PID programs. In our Python

implementation using the GMPY2 library for multiple precision computations, the

results obtained show that there is a significant difference between PID1, PID2 and

PID3 on the first digit of the decimal values of the result and sometimes less. To

better visualize these results, the curves corresponding to the three PID algorithms

are given in Figure 1. We can observe a significant difference between the curves

corresponding to the three PID, mainly between 0 and 150 of the x-axis.

Figure 2 shows the difference between the three PID. This difference, which is

important, is computed with many precisions. So, the same behavior was observed

by using 24, 53 and 50000 bits of the mantissa. The error between PID1 and PID3

oscillates between 0.03 and 0.06 while the value ranges between 5 and 8.

We also observe that the differences between PID1 and PID2 are significant.

Indeed, we can remark that a small syntactic change in the code may yield an

important difference in term of accuracy. For example, let us take the following

expression r of PID1 and let us just inline the three terms p, i and d and factorize

����

��

����

��

����

��

����

�� ��� ���� ���� �	�� �	�� �
�� �
�� ����

��
���������������
��
������	�������	
��
������
�������

 4.6

 4.8

 5

 5.2

 5.4

 0 10 20 30 40 50 60 70 80

Zoom on m1 of PID1
Zoom on m2 of PID2
Zoom on m3 of PID3

Fig. 1. Value of m in the three PID algorithms.

�����

�����

�����

��

�����

�����

�����

�����

����	

����

�����

�� �	� ���� ��	� ���� ��	� ���� ��	� ����

�

�
��������������������
�

�
��������������������
�

�
��������������������

Fig. 2. Error between the values of run in the three PID.

5

Damouche & Martel & Chapoutot

e in it. Initially, r = p + i + d and we obtain after factorizing:

r′ = e×
(
kp + ki × dt + kd ×

1

dt

)
+ i0 −

(
kd ×

1

dt
× eold

)
.

With this simple modification, the difference in accuracy is already important,

as shown in Figure 3 which gives the difference between r and r′ and between m

and m′ for the first iterations of the loop.

It r r’ m m’

1 −71.449235999999999 −71.863271999999995 7.2855076399999996 7.2813672799999996

2 −12.165627583387671 −12.38244654421103 7.1638513641661232 7.157542814557889

3 −19.748721881874111 −19.956017221473264 6.9663641453473817 6.9579826423431568

4 −17.074726204512665 −17.236242459488839 6.7956168833022552 6.7856202177482681

5 −16.089171574335889 −16.21814718941534 6.6347251675588961 6.6234387458541146

6 −14.934346159219487 −15.033378340554384 6.4853817059667014 6.4731049624485708

7 −13.892138878139511 −13.965323318091185 6.346460317185306 6.3334517292676589

8 −12.913239775385652 −12.963910797328566 6.2173279194314492 6.2038126212943734

9 −12.000031667420215 −12.031224799805722 6.0973276027572467 6.0835003732963164

10 −11.147227169037631 −11.161638699085488 5.9858553310668707 5.9718839863054614

Fig. 3. Comparaison between r and r′ and between the corresponding measures m and m′.

6 Conclusion

In this paper, our attention focused on the transformation of the PID Controller.

From the PID1, we believe that is possible to move to the PID2 and to the PID3

(see Section 3 and 4). The results obtained when running the three PID are promis-

ing and drive us to go further more by developing a prototype which can provide

automatically more equivalents programs.

Currently, we are developing a software, based on a set of rules (associativity,

commutativity, etc.) and commands (while do, if then else, etc.) in order to infer

new equivalents arithmetic expressions. This tool takes as input an initial program,

the PID1, and generates automatically other PID programs that are equivalents

mathematically and more precise. Although, we have to be careful in front of

the combinatory explosion problem which occurs when transforming the different

statement of the PID.

In the future, after we finish developing our prototype, we aim to implement it

on Lustre.

References

[1] Alexandre Chapoutot, Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables,
2010, 184-200, Static Analysis, 2010. Springer, LNCS, 6337.

[2] ANSI/IEEE, IEEE Standard for Binary Floating-point Arithmetic, Std 754-2008, ANSI/IEEE, 2008.

[3] Arnault Ioualalen, Matthieu Martel. Synthesis of arithmetic expressions for the fixed-point arithmetic:
The Sardana approach. DASIP. 2012. pages 1-8.

[4] Eric Goubault, Static Analysis by Abstract Interpretation of Numerical Programs and Systems, and
FLUCTUAT, 2013, 1–3, Static Analysis, 2013. Springer, LNCS, 7935.

6

Damouche & Martel & Chapoutot

[5] Eric Goubault, Sylvie Putot, Static Analysis of Finite Precision Computations, 2011, 232–247,
Verification, Model Checking, and Abstract Interpretation, 2011. Springer, LNCS, 6538.

[6] M. Martel.Semantics-Based Transformation of Arithmetic Expressions. InStatic Analysis Symposium,
SAS’07, number 4634 of Lecture Notes in Computer Science, pages 298-314, 2007. Springer-Verlag.

[7] Matthieu Martel. Accurate Evaluation of Arithmetic Expressions (Invited Talk), Electr. Notes Theor.
Comput. Sci. v 287. 2012. 3–16. website http://dx.doi.org/10.1016/j.entcs.2012.09.002

[8] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. ISBN 0-89871-482-6.

[9] Muller, Jean-Michel and Brisebarre, Nicolas and de Dinechin, Florent and Jeannerod, Claude-Pierre
and Lefèvre, Vincent and Melquiond, Guillaume and Revol, Nathalie and Stehlé, Damien and Torres,
Serge, Handbook of Floating-Point Arithmetic, Birkhäuser Boston, 978-0-8176-4704-9, 2010.

[10] Patrick Cousot, Radhia Cousot, Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints, 238–252, Principles of Programming Languages,
ACM Press, 1977.

[11] Xitong Gao, Samuel Bayliss, George A. Constantinides. SOAP: Structural optimization of arithmetic
expressions for high-level synthesis. Pacific J. Math. International Conference on Field-Programmable
Technology, 2013.

7

	Introduction
	Description of the PID Controller
	How to Get a Better PID?
	How to Get an Even Better PID?
	Experimentations
	Conclusion
	References

