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Abstract. Exact computations being in general not tractable for com-
puters, they are approximated by floating-point computations. This is
the source of many errors in numerical programs. Because the floating-
point arithmetic is not intuitive, these errors are very difficult to detect
and to correct by hand and we consider the problem of automatically syn-
thesizing accurate formulas. We consider that a program would return an
exact result if the computations were carried out using real numbers. In
practice, roundoff errors arise during the execution and these errors are
closely related to the way formulas are written. Our approach is based
on abstract interpretation. We introduce Abstract Program Equivalence
Graphs (APEGs) to represent in polynomial size an exponential num-
ber of mathematically equivalent expressions. The concretization of an
APEG yields expressions of very different shapes and accuracies. Then,
we extract optimized expressions from APEGs by searching the most
accurate concrete expressions among the set of represented expressions.

1 Introduction

In computers, exact computations are approximated by the floating-point arith-
metic which relies on a finite representation of the numbers [1, 12, 15]. Although
this approximation is often accurate enough, in some cases, it may lead to ir-
relevant or too inaccurate results. In programs, these roundoff errors are very
difficult to understand and to rectify by hand. At least this task is strongly time
consuming and, sometimes, it is almost impossible. Recently, validation tech-
niques based on abstract interpretation [2] have been developed to assert the
numerical accuracy of floating-point computations and to help the programmer
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to correct their codes [11, 10]. For example, Fluctuat is a static analyzer that
computes the inaccuracies of floating-point computations in C codes and helps
to understand their origin [5, 6]. This tool has been successfully used in many
industrial projects, in aeronautics and other industries [4]. However, this method
does not indicate how to correct programs in order to produce smaller errors.
It is up to the programmers to write a new version of their program until they
reach a version with the desired accuracy. As floating-point arithmetic is not
intuitive and as there are many ways to write a program this process can be
long and tedious.

Our work concerns the automatic optimization, at compile-time, of the accu-
racy of arithmetic expressions. To synthesize an accurate expression, we proceed
in two phases. In the first phase, we build a large but yet polynomial under-
approximation of all its mathematically equivalent expressions. In the second
phase, we explore our abstract representation to find, still in polynomial-time,
the expression with the best accuracy. More precisely, we select an expression
which minimizes the roundoff errors in the worst case, i.e. for the worst inputs
taken in the ranges specified by the user. This article mainly focuses on the first
phase, the second phase not being described in details because of space limi-
tations. Briefly speaking, this second phase uses an analysis à la Fluctuat to
guide a local exploration of the abstract structure in order to extract an accu-
rate expression. In this article, we present a new method to generate a large set
of arithmetic expressions all mathematically equivalent. This kind of semantics-
based transformation [3] has been introduced in [10, 11] and the current work
strongly improves the existing transformations as it allows the generation of
alternative expressions of very different shapes.

Technically, we define a intermediate representation called Abstract Program
Expression Graph (APEG), presented in Section 2 and defined in Section 3,
which is inspired from the Equivalence Program Expression Graphs (EPEG)
introduced in [17]. Our APEGs are built thanks to a set of polynomial algorithms
presented in Section 4. We have proven the correctness of our approach in Section
5, by introducing a Galois connection between sets of equivalent expressions
and APEGs and we introduce an abstract semantics to under-approximate by
APEGs the set of transformation traces of an arithmetic expression. We present
in Section 6 an overview of how we extract an accurate expression from an APEG.
Finally, Section 7 describes experimental results obtained with the Sardana tool
which implements these techniques.

2 Overview

In this section, we give an overview of the methodology used to construct APEGs.
APEGs are designed to represent, in polynomial size, many expressions that are
equal to the original one we intend to optimize. Mathematical equality is defined
with respect to a certain set B of transformation rules of expressions, for example
associativity and distributivity. Our goal is to build a tractable abstraction of
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Fig. 1. Syntactic tree of expression e.
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Fig. 2. APEG built on e by associativity.
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Fig. 4. APEG with abstraction boxes.

the set of equal expressions and then to explore this abstract set to find an
expression which minimizes the roundoff errors arising during its evaluation.

First of all, an APEG is built upon the syntactic tree of an arithmetic expres-
sion. We assume that, for each input variable, an interval describing its range
is provided by the user. An APEG then contains the usual arithmetic operators
(like +,× or −), variables and constants in the interval domain. An example of
syntactic tree is given in Figure 1 (intervals are written between brackets). An
APEG has two main features: First, it is a compact data structure, of polynomial
size, which is able to cope with the issue of a combinatorial explosion thanks
to the concept of classes of equivalent nodes. Next, it contains abstraction boxes
which represent an exponential number of expressions.

The first feature of APEGs is the notion of equivalent nodes. Equivalent
nodes are obtained by attaching to each node of the tree a set of additional
nodes (written inside dashed ellipses in the figures). An APEG is always built
by adding new nodes in these sets of equivalent nodes, or by adding a new
node with its own set of equivalent nodes. An important point is that nodes are
never discarded. For example, if B contains only the associativity of addition, we
construct the APEG of Figure 2 over the expression e = 7.61−2.0×([3.14; 3.15]+
(2.62 + 8.62)). Remark that the APEG of Figure 2 represents the expressions
7.61−2.0×([3.14; 3.15]+(2.62+8.62)) and 7.61−2.0×(([3.14; 3.15]+2.62)+8.62)
without duplicating the common parts of both expressions.

In order to produce various shapes of expressions, we use several algorithms
to expand the APEG while keeping its size polynomial. First, by propagating
the products in the APEG of Figure 2, we obtain the APEG of Figure 3. Next,
we propagate the subtraction in products and sums. This transformation under-
lines the interest of APEGs: A naive approach would introduce a combinatorial
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explosion, since the propagation of a negation into each product can be done
in two ways (−(a × b) = (−a) × b = a × (−b)). Instead, as APEGs do not du-
plicate the common parts, we simply add to each multiplication a new branch
connected to the lower part of the structure (see Figure 5). Thus we represent
all the possible propagations of the subtraction without growing exponentially.

The second main feature of APEGs is the notion of abstraction box. We
add abstraction boxes into APEGs in the sub-trees where the same operator is
uniformly applied. Abstraction boxes are represented in our figures by rectangles
with a double outline. Intuitively, an abstraction box is an abstraction of all the
parsings that we can obtain with the sub-expressions contained in the box and
a specific operator. For example, the box +, (a, b, c) stands for any parsing of
the sum of a, b and c. Abstraction boxes allow to represent exactly (2n − 1)!!
[13, §6.3] equivalent expressions. An example of the abstraction boxes we add to
the APEG of Figure 2 is given in Figure 4.

Our approach consists of combining all these transformations, in order to
generate the largest (yet polynomial) APEG. The key idea is that we only add
to APEGs expressions which are equivalent to the original one. The correct-
ness relies on a Galois connection between a collecting semantics containing
traces of transformation and evaluation of expressions and APEGs. This Galois
connection is constructed as an under-approximation of the set of equivalent ex-
pressions in order to cover only equivalent expressions. Hence, we do not cover
all the equivalent expressions but we represent an exponential number of them.

3 Formal Definition of APEGs

APEGs are inspired from the EPEG intermediate representation introduced in
[17]. Initially, EPEGs were defined for the phase ordering problem, to represent
multiple equivalent versions of an imperative program. They are built upon a C
program by application of a set of rewriting rules until saturation. These rules
correspond for example to constant propagations or loop unfoldings. This process
is arbitrary stopped at a certain depth to avoid infinite processing. Our APEGs



are not built from a set of rewriting rules applied until saturation. Instead, we
use a set of deterministic and polynomial algorithms described in Section 4.
An APEG is built from an initial expression e with respect to a certain set of bi-
nary relations B = {Bi, 1 ≤ i ≤ n}, representing the mathematically equivalent
transformations we allow to perform on e. Usually we define B as a subset of
rules of the real field containing associativity, commutativity, distributivity and
factorization. Formally, if an expression e1 can be transformed into the expres-
sion e2 using a relation of B, then e1 and e2 are mathematically equivalent. We
generalize this property with the B-equal relation.

Definition 1. B-equal : Let e1 and e2 be two arithmetic expressions, e1 is
B-equal to e2 if (e1, e2) ∈ B? where B? is the transitive reflexive closure of
the set of Bi relations.

APEGs are syntactic trees whose nodes are sets of B-equal expressions, and
which contain abstraction boxes representing efficiently large sets of B-equal ex-
pressions. Abstraction boxes are defined by a binary symmetric operator ∗ (like
+ or ×) and a set of operands L. Note that L may contain constants, variables,
expressions or other abstraction boxes (abstraction boxes may be nested). The
abstraction box B = ∗, L represents the set of expressions made of the ∗ op-

erator applied to the operands of L. For example, +, (x1, x2, x3, x4) abstracts

all the parsings of
∑i=4
i=1 xi and, for a nested box, +, (x1, x2, +, (y1, y2, y3) )

abstracts all the parsings of ∪x3∈Y {
∑i=3
i=1 xi} where Y denotes all the parsings

of
∑i=3
i=1 yi.

Abstraction boxes are essential for our abstraction as they allow to represent
efficiently an exponential number of B-equal expressions.

From a formal point of view, the set ΠB of APEGs is defined inductively as
the smallest set such that:

(i) a ∈ ΠB where a is a leaf (a constant or an identifier or an interval [x, y]
abstracting all the values a such that x ≤ a ≤ x),

(ii) ∗(lop, rop) ∈ ΠB where ∗ is a binary operator, lop and rop are APEGs
representing the left and right operands of ∗,

(iii) ∗, (p1, . . . , pn) ∈ ΠB is an abstraction box defined by the operator ∗ and
the APEGs p1, . . . , pn as operands,

(iv) 〈p1, . . . , pn〉 ∈ ΠB is a class of B-equal expressions, where p1, . . . , pn are
APEGS. Note that p1, . . . , pn cannot be classes of B-equal expressions them-
selves, i.e. p1, . . . , pn must be induced by the cases (i) to (iii) of the definition.

Case (iv) of the definition forbids nested equivalence classes since any equiv-
alence class of the form 〈p1, . . . , pn, 〈p′1, . . . , p′m〉〉 could always be rewritten in
〈p1, . . . , pn, p

′
1, . . . , p

′
m〉. Examples of APEGs are given in figures 2 to 4. Equiv-

alence classes are represented by dashed ellipses in the pictures.



4 APEG Construction

In this section, we introduce the transformations which add to APEGs new
B-equal expressions and abstraction boxes. Each transformation is intended to
only add new nodes into the APEGs without discarding any other node. First
of all, recall from Section 3 that abstraction boxes are defined by a symmetric
operator and a set of expressions. In order to produce the largest abstraction
boxes, we have to introduce homogeneous parts inside APEGs.

Definition 2. Full homogeneity Let ∗ be a symmetric binary operator and π
an APEG. We say that π is fully homogeneous if it contains only variables or
constants and the operator ∗.
Partial homogeneity We say that an APEG is partially homogeneous if it con-
tains a fully homogeneous sub-expression e1 ∗ . . . ∗ en where ∀i, 1 ≤ i ≤ n, ei is
any sub-expression.

For example, the expression e = a+(b+c) is a fully homogeneous expression,
while e′ = ((a× b) + (c+ d))× e is partially homogeneous since, for e1 = a× b
the sub-expression e1 + (c+ d) of e′ is fully homogeneous.

We introduce two kinds of transformations. First, we perform the homoge-
nization of the APEG by adding new nodes which introduce new homogeneous
sub-expressions. Next we apply the expansion functions which insert abstrac-
tion boxes in the homogenized APEGs. Both transformations are designed to be
executed in sequence, in polynomial-time. The homogenization transformations
insert into an APEG as many B-equal expressions as possible.

4.1 Homogenization Transformations

Transformation of multiplication Multiplication may yield two B-equal ex-
pressions: Either by applying the distributivity over the addition or subtraction,
or by applying a further factorization to one or both of its operands (whenever
it is possible). For example, the expression e = a × (b + c) + a × d can be dis-
tributed either in e1 = (a × b + a × c) + a × d or factorized into the expression
e2 = a× ((b+ c) + d). In both cases e1 and e2 contain an homogeneous part for
the + operator. This transformation is illustrated in the upper part of Figure 6.
Transformation of minus The minus operator introduces three kinds of trans-
formations depending on which expression it is applied to. If the minus operator
is applied to an addition then it transforms the addition into a subtraction plus
an unary minus operator. For example, −(a+ b) is transformed into (−a)− b. If
the minus operator is applied to a multiplication then it generates two B-equal
expressions, depending on the operands. For example, −(a × b) generates the
B-equal expressions (−a)× b and a× (−b). If the minus operator is applied on
another minus operator they anneal each other. This transformation is illustrated
in the lower part of Figure 6. Note that, as shown in the graphical representa-
tion of the transformation given in Figure 6, in both cases (transformation of
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Fig. 6. Graphical representation of the homogenization transformations. B-equal ex-
pressions e1 . . . ek are represented by dashed trees. The top transformation corresponds
to the transformation over multiplication and the next two schemes illustrate the trans-
formation over minus, for an addition and a product respectively.

multiplication and minus), we add as few nodes as possible to the pre-existing
APEG. Each transformation only adds a polynomial number of node.

4.2 Expansion Functions

The expansion functions insert abstraction boxes with as many operands as pos-
sible. Currently, we have defined three expansion functions. From an algorithmic
point of view, each expansion function is applied through all the nodes of the
APEG, recursively. As the size of an APEG is polynomial in the number of its
leaves, the expansion functions can be performed in polynomial-time.

Horizontal Expansion: The horizontal expansion introduces abstraction boxes
which are built on some fully or partially homogeneous some sub-trees of an ho-
mogeneous part. If we split an homogeneous part in two, both parts are also ho-
mogeneous. Then we can either build an abstraction box containing the leaves
of the left part of the homogeneous tree, or the leaves of the right part. For
example let us consider the expression described in the top of Figure 7 where
we perform and addition between the left sub-tree grouping the leaves l1, . . . , lk
and the right sub-tree grouping the leaves l′1, . . . , l

′
k′ . We can either create a box

B1 = ( +, (l1, . . . , lk) ) or a box B2 = ( +, (l′1, . . . , l
′
k′) ). In one case we col-

lapse all the parsings of
∑k
i=1 li and keep a certain parsing of

∑k′

j=1 l
′
j (in an

englobing expression). In the other case we keep a certain parsing of
∑k
i=1 li plus
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any parsing of
∑k′

j=1 l
′
j . This transformation is illustrated in Figure 7. We intro-

duce only O(2n) boxes, among the exponential number of possible combinations.

Vertical Expansion: The vertical expansion introduces abstraction boxes in
an homogeneous structure by splitting it into two parts. Here, the splitting is
performed by considering in one hand the leaves contained in a sub-expression
and in the other hand the leaves contained in the englobing expression. Let us
consider an homogeneous structure defined by a set P = {p1, . . . , pn} of operands
and the binary operator ∗. Each occurrence of ∗ defines a sub-expression with a
set {p′1, . . . , p′k} ⊆ P of leaves. The vertical expansion introduces for each occur-
rence of ∗, an abstraction box defined by ∗ and the set P \{p′1, . . . , p′k} of leaves.
Also the vertical expansion introduces for each leaf an abstraction box contain-
ing all the others. This transformation is illustrated in Figure 7. It introduces
O(2n) boxes into an homogeneous part of size n.

Box expansion: The box expansion is designed to add new abstraction boxes
over the existing ones. As we allow abstraction boxes to be recursive, then for
any abstraction box B′ = ( ∗′, P ′ ) which is contained in B = ( ∗, P ), if ∗ = ∗′

then we can merge P and P ′ into a new abstraction box B′′ = ( ∗, P ∪ P ′ ).
It is obvious that B-equal expressions represented by B′′ strictly includes the
B-equal expressions represented by B.

5 Correctness

5.1 Collecting Semantics

For the sake of clarity, we define a collecting semantics enabling only the trans-
formation of expressions and we omit to include the reduction rules corre-



sponding to the usual evaluation of expressions. Let (|e|)B be the set of par-
tial traces for the transformation of e into B-equal expressions. To define this
collecting semantics, we need to introduce some transformation rules of arith-
metic expressions into other equivalent expressions. We define R = ∪ni=1Bi with
∀i, 1 ≤ i ≤ n, Bi ⊆ Expr × Expr. We do not require the Bi relations to
be transitive since B may be applied many times along a trace. For exam-
ple, we can set B1 = {((a + b) + c, a + (b + c)) ∈ Expr2 : a, b, c ∈ Expr},
B2 = {((a+ b)× c, a× c+ b× c) ∈ Expr2 : a, b, c ∈ Expr} and B3 and B4 the
symmetric relations of B1 and B2. We define the transformation relation B by
means of the rules below, where ∗ stands for +, − or ×:

eBi e
′, Bi ∈ R
eB e′

e1 B e′1
e1 ∗ e2 B e′1 ∗ e2

e2 B e′2
e1 ∗ e2 B e1 ∗ e′2

(1)

Next we define (|e|)B as the set B∗ of B-chains, i.e. the set of all the sequences
eB e1 B . . .B en such that ∀i, 1 ≤ i < n, ei ∈ Expr and ei B ei+1 and eB e1.

Obviously, the collecting semantics (|e|)B is often intractable on a computer.
For example the number of B-equal expressions is exponential if B contains the
usual laws of the real field (associativity, distributivity, etc.) Our abstraction of
the collecting semantics by APEGs is an under-approximation. We compute our
APEG abstract value by iterating a function Φ : ΠB → ΠB until a fixed point
is reached: [[e]]] = Fix Φ(⊥). The function Φ corresponds to the transformations
introduced in Section 4. The correctness stems from the fact that we require
that a) Φ is extensive, ie. ∀t] ∈ ΠB, t

] v Φ(t]), b) Φ is Scott-continuous (ie.
x v y ⇒ Φ(x) v Φ(y) and for any increasing chain X, tx∈XΦ(x) = Φ(tX))
and c) for any set of abstract traces t], γ(t]) ⊆ (|e|)B ⇒ γ(Φ(t])) ⊆ (|e|)B.
These conditions holds for the transformations of Section 4 which only add
B-equal elements in APEGs and never discard existing elements. By condition
a), the chain C made of the iterates ⊥, Φ(⊥), Φ(2)(⊥), . . . is increasing. Then
C has an upper bound since ΠB is a CPO (see Section 5.3). The function Φ
being continuous, tc∈CΦ(c) = Φ(tC) and, finally, by condition c) γ([[e]]]) =
γ(Fix Φ(⊥)) = γ(tc∈CΦ(c)) = γ(Φ(tC)) v (|e|)B.

Intuitively, computing an under-approximation of the collecting semantics
ensures that we do not introduce into the APEG some expressions that would
not be mathematically equivalent to e using the relations in B. This is needed
to ensure the correctness of the transformed expression. Using our conditions,
any abstract trace of the resulting APEG is mathematically correct wrt. the
transformation rules of B and can be chosen to generate a new expression.

5.2 Abstraction and Concretization Functions

For an initial expression e, the set (|e|)B contains transformations of the expres-
sion e into B-equal expressions as defined in Equation (1). The elements of (|e|)B
are of the form e B e′ B . . . B en, where e, e′, . . . , en are B-equal and we may
aggregate them into a global APEG since this structure has been introduced
to represent multiple B-equal expressions. So we define the abstraction function



α, as the function that aggregates each expression contained in the traces in a
single APEG. In order to define the concretization function γ we introduce the
following functions:

– the function C(p, π) which returns the set of sub-APEGs of π which are in
the same equivalence class than p, In other words, C(p, π) = {p1, . . . pn} if
there exists an equivalence class 〈p1, . . . pn〉 in π such as p ∈ 〈p1, . . . pn〉,

– the composition ◦∗ of two traces by some operator ∗. Intuitively, given eval-
uation traces t1 and t2 for two expressions e1 and e2, we aim at building the
evaluation trace of e1 ∗ e2. Following the rules of Equation (1), ◦∗(t1, t2) is
the trace in which, at each step, one of the sub-expressions e1 or e2 of e1 ∗ e2
is transformed as they were transformed in t1 or t2.

The concretization γ of an APEG π ∈ ΠB is defined by induction by:

(i) if π = a where a is a leaf (i.e. a constant or a variable) then γ(π) = {a},
(ii) if π = ∗(lop, rop) where ∗ is a binary operator, and lop and rop are the

operands of ∗, if the traces of γ(C(lop, π)) are of the form t = t0 B . . .B tn,
and the traces of γ(C(rop, π)) are of the form s = s0 B . . .Bsm, then we have

γ(∗(lop, rop)) =
⋃

t ∈ γ(C(lop, π)), |t| = n
s ∈ γ(C(rop, π)), |s| = m

t0 ∗ s0 B t1 ∗ s1 B . . .B tn+m ∗ sn+m

(2)
where at each step either ti B ti+1 and si = si+1, or ti = ti+1 and si B si+1,
and where |t| is the length of the trace t.

(iii) if π = 〈p1, . . . , pn〉, let us take pi and pj , two distinct nodes in π. Let t ∈ γ(pi)
and t′ ∈ γ(pj) such as t = t0 B . . .B tn and t′ = t′0 B . . .B t′m. We defined Jij
the set of all pairs (k, l) with 0 ≤ k ≤ n and 0 ≤ l ≤ m such as tk B t′l is a
valid transformation. Then we defined γ(π) as all the B-compatible junction
of pieces of traces of γ(pi) and γ(pj) for all pi and pj . Formally

γ(π) =
⋃

pi, pj ∈ π
(k, l) ∈ Jij

t0 B . . .B tk B t′l B . . .B tm (3)

This definition works for one function point between two traces, but it could
be generalized to multiple junction points.

(iv) if π = ∗, (p1, . . . , p2) then, by definition of an abstraction box, γ(π) =⋃
p∈P γ(p), where P is the set of all the parsing of p1, . . . , pn using the binary

operator ∗(lop, rop) whose concretization is defined in Point (ii).

5.3 The Abstract Domain of APEGs

In this section, we show that the set of APEGs is a complete partial order. Then
we show the existence of a Galois connection between sets of traces and APEGs.



First, we define v�, the partial order on the set of abstraction boxes. Let
B1 = ∗, (p1, . . . , pn) and let B2 = ∗′, (p′1, . . . , p′m) , we say that B2 v� B1 if
and only if the following conditions are fulfilled:

(i) ∗ = ∗′,
(ii) ∀p′i ∈ {p′1, . . . , p′m}, if p′i is not an abstraction box, ∃pj ∈ {p1, . . . , pn} such

that pj = p′i,
(iii) ∀p′i ∈ {p′1, . . . , p′m}, if p′i is an abstract box B3 = ∗′′, (p′′1 , . . . , p′′k) we have:

(a) if ∗′′ = ∗ then ∀p′′j ∈ {p′′1 , . . . , p′′k} if p′′j is not an abstraction box then
p′′j ∈ {p1, . . . , pn}, else if p′′j is an abstract box then ∃pi ∈ {p1, . . . , pn}
such that pi is an abstract box and p′′j v� pi,

(b) if ∗′′ 6= ∗ then ∃pj ∈ {p1, . . . , pn} such that pj is an abstraction box and
p′i v� pj .

In order to define the join t� of two boxes B1 = ∗, (p1, . . . , pn) and B2 =

∗′, (p′1, . . . , p′m) , we introduce B3 = ∗, (p1, . . . , pn, p
′
1, . . . , p

′
m) . By definition,

B1 t� B2 = B3 if ∗ = ∗′, otherwise, if ∗ 6= ∗′ then B1 t� B2 = >. Next we
extend the operators v� and t� to whole APEGs. We obtain new operators v
and t defined as follows. For v, given two APEGs π1, π2 ∈ ΠB we have π1 v π2

if and only if one of the following conditions hold:

(i) π1 = a, π2 = a′ and a = a′, where a is a constant or an identifier,
(ii) if π1 and π2 fulfill all of the following conditions: π1 = ∗(lop, rop), π2 =
∗′(lop′, rop′), ∗ = ∗′, lop v lop′ and rop v rop′,

(iii) if π1 = 〈p1, . . . , pn〉, π2 = 〈p′1, . . . , p′m〉 and ∀i, 1 ≤ i ≤ n, ∃j, 1 ≤ j ≤ m such
that pi v p′j ,

(iv) if π1 is a fully homogeneous APEG defined by ∗ and the nodes {p1, . . . , pn},
and π2 contains an abstraction box B′ such that ∗, (pi, ..., pn) v� B′,

(v) if π1 = 〈p1, . . . , pn〉, π2 = ∗(lop, rop), lop ∈ 〈pl1, . . . , plkl
〉, rop ∈ 〈pr1, . . . , prkr

〉
and ∀pi ∈ π1,∃plj ∈ C(lop, π) and ∃prk ∈ C(rop, π) such that pi v ∗(plj , prk).

In order to define π1 t π2, with π1, π2 ∈ ΠB, we observe first that π1 and π2

only contain B-equal expressions. The join of two APEGs π1 and π2 is defined
as the union of the corresponding trees. Boxes are joined using t� and the join
of two nodes of the syntactic tree p1 and p2 yields the equivalence class 〈p1, p2〉.
Finally we define ⊥ as the empty APEG, and > as the APEG built with all the
possible expression transformations of B.
We have the following Galois connection between the collecting semantics and
the APEGs where ℘(X) denotes the powerset of X:

〈℘((|e|)B),⊆〉 −−−→←−−−α
γ
〈ΠB,v〉 (4)

6 Profitability Analysis

In this section we give an overview of how our profitability analysis works. First,
we recall how the roundoff errors are computed, and next we briefly describe the
search algorithm employed to explore APEGs.



We use a non-standard arithmetic where error terms are attached to the
floating-point numbers [1, 9, 11]. They indicate a range for the roundoff error
due to the rounding of the exact value in the current rounding mode. The exact
error term being possibly not representable in finite precision, we compute an
over-approximation and return an interval with bounds made of multiple preci-
sion floating-point numbers. Indeed, the error interval may be computed in an
arbitrarily large precision since it aims at binding a real number and, in practice,
we use the GMP multi-precision library [18]. Note that the errors can be either
positive or negative. This depends on the direction of the rounding operation
which can create either an upper or a lower approximation.

Error terms are propagated among computations. The error on the result of
some operation x ∗ y is the propagation of the errors on x and y through the
operator ∗ plus the new error due to the rounding of the result of the operation
itself. Let x and y be to values represented in our arithmetic by the pairs (fx, ex)
and (fy, ey) where fx and fy are the floating-point or fixed-point numbers ap-
proximating x and y and ex and ey the error terms on both operands. Let ◦(v)
be the rounding of the value v in the current rounding mode and let ε(v) be
the roundoff error, i.e. the error arising when rounding v into ◦(v). We have by
definition ε(v) = v−◦(v) and, in practice, when v is an interval, we approximate
◦(v) by [− 1

2ulp(m), 1
2ulp(m)] in floating-point arithmetic, or by [0, ulp(m)] in

fixed-point arithmetic, where m is the maximal bound of v, in absolute value,
and ulp is the function which computes the unit in the last place of m [14]. The
elementary operations are defined in equations (5) to (7).

x + y =
(
◦ (fx + fy), ex + ey + ε(fx + fy)

)
(5)

x− y =
(
◦ (fx − fy), ex − ey + ε(fx − fy)

)
(6)

x× y =
(
◦ (fx × fy), fy × ex + fx × ey + ex × ey + ε(fx × fy)

)
(7)

For an addition, the errors on the operands are added to the error due to
the roundoff of the result. For a subtraction, the errors on the operands are
subtracted. The semantics of the multiplication comes from the development of
(fx + ex)× (fy + ey). For other operators, like division and square root, we use
power series developments to compute the propagation of errors [9].

We use the former semantics to evaluate which expression in an APEG yields
the smallest error. The main difficulty is that it is possible to extract an expo-
nential number of expressions from an APEG. For example, let us consider an
operator ∗(p1, p2) where p1 and p2 are equivalence classes p1 = 〈p′1, . . . p′n〉 and
p2 = 〈p′′1 , . . . p′′m〉. Then we have to consider all the expressions ∗(p′i, p′′j ) for
1 ≤ i ≤ n and 1 ≤ j ≤ m. In general, the sub-APEGs contained in p1 and p2

may be operations whose operands are again equivalence classes. To cope with
this combinatorial explosion, we use a limited depth search strategy. We select
the way an expression is evaluated by considering only the best way to evaluate
its sub-expressions. This corresponds to a local choice. In our example, synthe-
sizing an expression for ∗(p1, p2) consists of searching the expression p′i∗p′′j whose
error is minimal with respect to any p′i ∈ p1 and any p′′j ∈ p2.



Table 1. Statistical improvement of accuracy for summation and polynomials.

10 terms expression 20 terms expression
expression form interval width large small large small

100%+

Configuration 1 35.3% 33.4% 16.2% 16.5%
Configuration 2 35.2% 34.3% 15.8% 34.3%
Configuration 3 54.2% 59% 46.5% 51.9%
Configuration 4 46.2% 52.9% 41.4% 46.3%

45%+, 10%×, 45%−

Configuration 1 12.9% 14.5% 13.1% 15%
Configuration 2 11.8% 12.9% 11.8% 12%
Configuration 3 15.1% 14.9% 13.9% 14.5%
Configuration 4 10.0% 11.3% 11% 11.4%

50%+, 25%×, 25%−

Configuration 1 15% 16.4% 15.2% 16.4%
Configuration 2 12.9% 13.6% 12.2% 13.1%
Configuration 3 18.4% 17.7% 16.4% 16.9%
Configuration 4 12.7% 13.5% 12.2% 12.3%

For a box B = ∗, (p1, . . . , pn) we use an heuristic which synthesizes an ac-
curate expression (yet not always optimal). This heuristic is defined as a greedy
algorithm which searches at each step the pair pi and pj such that the error term
carried out by the expression pi ∗ pj is minimal. Then pi and pj are removed
from the box and a new term pij is added whose accuracy is equal to the error
term of pi ∗ pj defined by Equations (5) to (7). This process is repeated until
there is only one node left in the box. This last node corresponds to the root
of the expression synthesized for the abstraction box. Remark that other algo-
rithms could be used including algorithms performing additional computations
to compensate the errors [19, 16].

7 Experimental results

In this section, we present experimental results obtained using our tool, Sardana.
We present statistical results on randomly generated expressions. Then we show
exhaustive tests on summations and polynomial functions.

7.1 Statistical Results

In this section, we present statistical results concerning the reduction of the
roundoff errors on randomly generated expressions. First, we consider summa-
tions whose operands belong to intervals. Summations are fundamental in our
domain since they correspond to the core of many numerical algorithms (scalar
products, matrix products, means, integrators, etc). Despite their apparent sim-
plicity, summations may introduce many accuracy errors and many algorithms
have been proposed (this is still an active research field e.g. [19]). Hence, a main
challenge for our analysis is to improve the accuracy of sums.



We use 4 configurations taken from [8] and which illustrate several pitfalls of the
summation algorithms in floating-point arithmetic. We call large value a floating-
point interval around 1016, medium value an interval around 1, and small value
an interval around 10−16. We consider the following configurations:

1) Only positive sign, 20% of large values among small values. Accurate sums
should first add the smallest terms,

3) Only positive sign, 20% of large values among small and medium values.
Accurate sums should add terms in increasing order,

3) Both signs, 20% of large values that cancel, among small values. Accurate
sums should add terms in decreasing order of absolute values,

4) Both signs, 20% small values and same number of large and medium values.
Accurate sums should add terms in decreasing order of absolute values.

For all these configurations, we present in the first row of Table 1 the average
improvement on the error bound, i.e. the percentage of reduction of the error
bound. We test each configuration on two expression sizes: With 10 or 20 terms,
and with two widths of intervals: Small width (interval width about 10−12 times
the values) or large width (interval width about 10% of the values). Each result
is an average of the error reduction on 103 randomly generated expressions. Each
source expression has been analyzed in the IEEE-754 binary 64 format by our
tool in matter of milliseconds on a laptop computer. We can see that our tool
is able to reduce the roundoff error on the result by 30% to 50% for a 10 terms,
and between 16% and 45% for 20 terms. This means that our tool synthesize
new expressions whose evaluation yields smaller roundoff errors than the original
ones in the worst case, for any concrete configuration taken into the intervals for
which the transformation has been performed.

Table 1 presents also the average improvement for more complex expressions.
We used the same configurations as before but on two new sets of randomly
generated expressions: The former with 45% of sums, 10% of products and 45%
of subtractions, and the latter with 50% of additions, 25% of products and 25%
subtractions. We obtained an accuracy improvement by 10% to 18% in average.
We believe that the accuracy improvement is less significant because the data
are not specifically ill-conditioned for these kind of expressions.

7.2 Benchmarks

Transformation of Summations First we present some exhaustive tests con-
cerning the summations. Our goal is to determine the performance of our tool
for all the possible initial parsings of a sum. Let us remark that a sum of n terms
has (2n−1)!! evaluation schemes [13, §6.3] which can all have various accuracies.
For example, a 9 term sum yields 2 millions evaluation schemes, and a 10 term
sum yields almost 40 millions schemes. We performed our benchmarks on all the
initial parsings of sums going from 5 to 9 terms. For each parsing we have tested
the same four configurations and the two interval widths of value described in
Section 7.1. We present the results obtained using the IEEE-754 binary 64 format
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Fig. 8. First line: Results for the sum of 9 terms, Configuration 1. Second line: Results
with Configuration 2. Left and right part illustrate the initial and optimized accuracy.

to perform 9 terms summations with large interval width (other interval widths
yield similar observations and this configuration presents the most significant
results of our benchmarks).

Our results are depict by histograms organized as follows: The x-axis indi-
cates the roundoff error on the result of the evaluation of one summation (i.e.
for a specific parsing) using the configuration mentioned in the caption and the
y-axis indicates how many parsings among all the initial parsings have intro-
duced the corresponding roundoff error (note that many parsings yield the same
error, for instance about 3, 5 · 106 yield an absolute error of magnitude 64 in the
first histogram of figure 8). We have first performed an analysis to determine
the maximal error bound on each source sum. This corresponds to the leftmost
histograms of Figures 8 and 9. Then we have applied our tool to each source
sum with the same data in order to obtain the error bounds on the optimized
sums. The right-hand side of Figure 8 gives the number of sums corresponding
to each accuracy after program transformation. Intuitively, the more the bars
are shifted to the left, the better it is. In all the figures presented in this section,
both the leftmost and rightmost histograms of each line have the same scale.

First, let us remark that, initially, the distribution of the errors is similar
for each configuration (leftmost histograms of figures 8 and 9). The distribu-
tion looks like gaussian: There are few optimal parsings (leftmost bar) and few
parsings returning the worst accuracy (rightmost bar). Remark that on config-
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Fig. 9. Sum of 9 terms for configurations 3 and 4 (first and second line resp.)

urations 1, 3 and 4 our tool is able to shift the gaussian-like distribution of the
bars to the left, which corresponds to an average gain of 50% of accuracy.

For each sum in Configuration 2 our tool is able to produce a parsing of
optimal accuracy. This result is due to how we generate code when we reify an
abstraction box: We perform a greedy association of terms and, in the case of
positive values, it corresponds to sorting them by increasing order of magnitude
which is the optimal solution in this case.

Transformation of Polynomials We focus now on the transformation of
monovariate polynomials. Polynomials are pervasives in numerical codes yet it
is less famous that numerical errors arise during their evaluation close to a root
(and even more close to a multiple root [7]). We have tested exhaustively all the

polynomials defined by P n(x) =
Pn

k=0(−1)k ×
„

n
k

«
× xkwhich correspond to the

developed form of the function (x− 1)n. In our source expressions, xn is written
as the product

∏n
i=1 x. We let n range from 2 to 5. The variable x is set to

an interval around 1 ± 10−12 in the IEEE-754 binary 64 format. To grasp the
combinatorial explosion in the number of ways to evaluate the polynomial, note
that for n = 5 there are 2.3 million distinct schemes, and for n = 6 there are 1.3
billion schemes [13, §6.2.2]. Left part of Figure 10 shows the error distribution
of the initial schemes of P 5(x) and the right part shows the error distribution of
the optimized schemes. We can see that initially most of the schemes induces a
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Fig. 10. Leftmost histogram illustrates the initial accuracy of the polynomials P 5(x),
the rightmost histogram yields the accuracy of the optimized one.

rounding error which is between 8.0 ·10−15 and 1.2 ·10−14. Our tool produces op-
timized schemes of P 5(x) with an error bound between 4.0 ·10−15 and 9.0 ·10−15,
which represents a 25% to 50% improvement of the numerical accuracy.

8 Conclusion

In this article, we have introduced a new technique to represent a large set of
mathematically equal arithmetic expressions. Our goal is to improve the numer-
ical accuracy of an expression in floating-point arithmetic. We have define an
abstract intermediate representation called APEG which represents very large
set of arithmetic expressions that are equal to an original one. We construct
APEGs by using only deterministic and polynomial functions, which allow us
to represent an exponential number of equal expressions of very various shapes.
The correctness is based on a Galois connection between the collecting semantics
of transformations of arithmetic expressions and our abstract domain of APEG.
Our experimental results show that, statistically, the roundoff error on summa-
tions may be reduced by 40% to 50% and by 20% for polynomials. We intend
to present in more details the approach we use to explore APEGs and select
expressions, as well as the implementation of our tool.

We believe that our method can be improved and extended in many ways.
First, we want to introduce more expansion functions in order to increase the
variety of equal expressions in APEGs. We already think about defining some
expansion functions to achieve partial regroupings of identical terms in a sum.
Then we want to extend APEGs in order to handle the transformation of whole
pieces of programs and not only isolated arithmetic expressions. We intend to
handle control structure as well as recursive definitions of variables or iteration
structure. At short term, we aim at transforming small standalone programs
such as embedded controllers or small numerical algorithms.



9 Acknowledgments

We would like to thank Radhia and Patrick Cousot, Damien Massé and all the
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Arithmetic. Birkhäuser Boston, 2010.

16. T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal
on Scientific Computing (SISC), 26(6):1955–1988, 2005.

17. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A new approach
to optimization. In POPL, pages 264–276. ACM, 2009.

18. Torbjorn Granlund and the GMP development team. The GNU Multiple Precision
Arithmetic Library, 5.0.2 edition, 2011. http://gmplib.org.

19. Y.-K. Zhu and W. B. Hayes. Algorithm 908: Online exact summation of floating-
point streams. Transactions on Mathematical Software, 37(3):1–13, 2010.


