
Propagation of Roundoff Errors in Finite
Precision Computations: a Semantics Approach1

Matthieu Martel

CEA - Recherche Technologique
LIST-DTSI-SLA

CEA F91191 Gif-Sur-Yvette Cedex, France

e-mail : mmartel@cea.fr

Abstract. We introduce a concrete semantics for floating-point oper-
ations which describes the propagation of roundoff errors throughout a
computation. This semantics is used to assert the correctness of an ab-
stract interpretation which can be straightforwardly derived from it.
In our model, every elementary operation introduces a new first order er-
ror term, which is later combined with other error terms, yielding higher
order error terms. The semantics is parameterized by the maximal order
of error to be examined and verifies whether higher order errors actu-
ally are negligible. We consider also coarser semantics computing the
contribution, to the final error, of the errors due to some intermediate
computations.
Keywords: Numerical Precision, Abstract Interpretation, Floating-point
Arithmetic, IEEE Standard 754.

1 Introduction

Often, the results of numerical programs are accepted with suspicion because of
the approximate numbers used during the computations. In addition, it is often
hard for a programmer to understand how precise a result is, or to understand
the nature of the imprecision [6, 13]. In this article, we present the theoretical
basis of an abstract interpreter which estimates the accuracy of a numerical
result and which detects the elementary operations that introduce the most
imprecision. The implementation of this tool is described in [9]. Compared with
other approaches, we do not attempt to compute a better estimation of what a
particular execution of a numerical program would return if the computer were
using real number. Instead, we statically point out the places in the code which
possibly introduce significant errors for a large set of executions.

From our knowledge, the propagation of roundoff errors and the introduction
of new errors at each stage of a computation is a phenomenon which has almost
never been studied in a semantics framework. Some dynamic stochastic methods
have been proposed but they cannot guarantee the correctness of the estimation

1 This work was supported by the RTD project IST-1999-20527 ”DAEDALUS” of the
European FP5 programme.

in all cases [1, 2, 11, 16, 17]. Recently, Eric Goubault has proposed a static anal-
ysis based on abstract interpretation [3] which can compute the contribution of
each first order error, due to the inaccuracy of one floating-point operation, to
the final error associated with a result [7]. This new approach differs from the
existing ones in that it not only attempts to estimate the accuracy of a result,
but also provides indications on the source of the imprecision. It also differs
from much other work in that it models the propagation of errors on initial data
(sensitivity analysis) as well as the propagation of roundoff errors due to the
intermediate floating-point computations (this can dominate the global error in
some cases).

We develop a general concrete semantics SL∗ for floating-point operations
which explains the propagation of roundoff errors during a computation. Ele-
mentary operations introduce new first order error terms which, once combined,
yield higher order error terms. SL∗ models the roundoff error propagation in
finite precision computations for error terms of any order and is based on IEEE
Standard 754 for floating-point numbers [12]. By modelling the propagation of
errors in the general case, SL∗ contributes to the general understanding of this
problem and provide a theoretical basis for many static analyses. In particular,
SL∗ can be straightforwardly adapted to define abstract interpretations gener-
alizing the one of [7].

Next we propose some approximations of SL∗ . We show that for any integer
n, SL∗ can be approximated by another semantics SLn which only computes the
contribution to the global error of the error terms of order at most n, as well
as the residual error, i.e. the global error due to the error terms of order higher
than n. Approximations are proven correct by means of Galois connections. For
example, SL1

computes the contribution to the global error of the first order
errors. In addition, in contrast to [7], SL1

does verifie that the contribution to
the global error of the error terms of order greater than one is negligible. Finally,
we introduce coarser semantics which compute the contribution, to the global
error in the result of a computation, of the errors introduced by some pieces of
code in the program. These semantics provide less information than the most
general ones but use non-standard values of smaller size. In practice, this allows
the user to first detect which functions of a program introduce most errors and,
next, to examine in more detail which part of an imprecise function increases the
error [9]. We introduce a partial order relation ⊆̇ on the set of the partitions of
the program points and we show that, for two partitions J1 ⊆̇ J2, the semantics
based on J1 approximates the semantics based on J2.

Section 2 gives an overview of the techniques developed in this article and
Section 3 briefly describes some aspects of IEEE Standard 754. In Section 4 and
Section 5, we introduce the semantics detailing the contribution, to the global
error, of the error terms of any order and of order at most n, respectively. In
Section 6, we introduce a coarser semantics which computes the contribution of
the error introduced in pieces of code partitioning the program. We show that
the semantics based on certain partitions are comparable. Section 7 concludes.

2 Overview

In this section, we illustrate how the propagation of roundoff errors is treated
in our model using as an example a simple computation involving two values
aF = 621.3 and bF = 1.287. For the sake of simplicity, we assume that aF and bF
belong to a simplified set of floating-point numbers composed of a mantissa of
four digits written in base 10. We assume that initial errors are attached to aF
and bF, and we write a = 621.3+0.05ε1 and b = 1.287+0.0005ε2 to indicate that
the value of the initial error on aF (resp. bF) is 0.05 (resp. 0.0005). ε1 and ε2 are
formal variables related to static program points. a and b are called floating-point
numbers with errors. Let us focus on the product aF × bF whose exact result is
aF × bF = 799.6131. This computation carried out with floating-point numbers
with errors yields a × b = 799.6131 + 0.06435ε1 + 0.31065ε2 + 0.000025ε1 × ε2

The difference between αF × bF and 621.35 × 1.2875 is 0.375025 and this error
stems from the fact that the initial error on a (resp. b) was multiplied by b (resp.
a) and that a second order error corresponding to the multiplication of both
errors was introduced. So, at the end of the computation, the contribution to
the global error of the initial error on a (resp. b) is 0.06435 (resp. 0.31065) and
corresponds to the coefficient attached to the formal variable ε1 (resp. ε2). The
contribution of the second order error due to the initial errors on both a and b
is given by the term 0.000025ε1 × ε2 which we will write as 0.000025ε12 in the
following. Finally, the number 799.6131 has too many digits to be representable
in our floating-point number system. Since IEEE Standard 754 ensures that
elementary operations are correctly rounded, we may claim that the floating-
point number computed by our machine is 799.6 and that a new error term
0.0131ε× is introduced by the multiplication. To sum up, we have

a× b = 799.6 + 0.06435ε1 + 0.31065ε2 + 0.000025ε12 + 0.0131ε×

At first sight, one could believe that the precision of the computation mainly
depends on the initial error on a since it is 100 times larger than the one on b.
However the above result indicates that the final error is mainly due to the initial
error on b. Hence, to improve the precision of the final result, one should first
try to increase the precision on b (whenever possible). Note that, as illustrated
by the above example and in contrast to most of existing methods [14, 16], we
do not attempt to compute a better approximation of the real number that the
program would output if the computer were using real numbers. Since we are
interested in detecting the errors possibly introduced by floating-point numbers,
we always work with the floating-point numbers used by the machine and we
compute the errors attached to them.

3 Preliminary Definitions

3.1 IEEE Standard 754

IEEE Standard 754 was introduced in 1985 to harmonize the representation of
floating-point numbers as well as the behavior of the elementary floating-point

operations [6, 12]. This standard is now implemented in almost all modern pro-
cessors and, consequently, it provides a precise semantics, used as a basis in this
article, for the basic operations occurring in high-level programming languages.
First of all, a floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits 0 ≤
di < β, 0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.
A floating-point number x is normalized whenever d0 6= 0. Normalization avoids
multiple representations of the same number. IEEE Standard 754 specifies a
few values for p, emin and emax. Simple precision numbers are defined by β = 2,
p = 23, emin = −126 and emax = +127; Double precision numbers are defined by
β = 2, p = 52, emin = −1022 and emax = +1023. β = 2 is the only allowed basis
but slight variants also are defined by IEEE Standard 854 which, for instances,
allows β = 2 or β = 10. IEEE Standard 754, also introduces denormalized
numbers which are floating-point numbers with d0 = d1 = . . . = dk = 0, k < p−1
and e = emin. Denormalized numbers make underflow gradual [6]. Finally, the
following special values also are defined:

– NaN (Not a Number) resulting from an illegal operation,
– the values ±∞ corresponding to overflows,
– the values +0 and −0 (signed zeros2).

We do not consider the extended simple and extended double formats, also
defined by IEEE Standard 754, whose implementations are machine-dependent.
In the rest of this paper, the notation F indifferently refers to the set of simple
or double precision numbers, since our assumptions conform to both types. R
denotes the set of real numbers.

IEEE 754 Standard defines four rounding modes for elementary operations
between floating-point numbers. These modes are towards −∞, towards +∞,
towards zero and to the nearest. We write them ◦−∞, ◦+∞, ◦0 and ◦∼ re-
spectively. Let R denote the set of real numbers and let ↑◦ : R → F be the
function which returns the roundoff of a real number following the rounding
mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼}. IEEE standard 754 specifies the behavior of the
elementary operations 3 ∈ {+, −, ×, ÷} between floating-point numbers by

f1 3F,◦ f2 = ↑◦ (f1 3R f2) (1)

IEEE Standard 754 also specifies how the square root function must be
rounded in a similar way to Equation (1) but does not specify, for theoretical
reasons [15], the roundoff of transcendental functions like sin, log, etc.

In this article, we also use the function ↓◦: R→ R which returns the error ω
due to using ↑◦ (r) instead of f . We have ↓◦ (r) = r− ↑◦ (r).

Let us remark that the elementary operations are total functions on F, i.e.
that the result of operations involving special values are specified. For instance,
2 Remark that 0 is neither a normalized nor denormalized number.

1 ÷ +∞ = 0, +∞× 0 = NaN, etc. [6, 10]. However, for the sake of simplicity,
we do not consider these special values, assuming that any operation has correct
operands and does not return an overflow or a NaN.

3.2 Standard Semantics

To study the propagation of errors along a sequence of computations, we consider
arithmetic expressions annotated by static labels `, `1, `2, etc. and generated by
the grammar of Equation (2).

a` ::= r` | a`00 +` a`11 | a
`0
0 −` a

`1
1 | a

`0
0 ×` a

`1
1 | a

`0
0 ÷` a

`1
1 | F `(a

`0
0) (2)

r denotes a value in the domain of floating-point numbers with errors and F
denotes a transcendental function √ , sin, etc. For any term generated by the
above grammar, a unique label is attached to each sub-expression. These labels,
which correspond to the nodes of the syntactic tree, are used to identify the
errors introduced during a computation by an initial datum or a given operator.
For instance, in the expression r`00 +` r`11 the initial errors corresponding to r0 and
r1 are attached to the formal variables ε`0 and ε`1 and the new error introduced
by the addition during the computation is attached to ε`.

In the remainder of this article, the set of all the labels occurring in a pro-
gram is denoted L. We use the small step operational semantics defined by the
reduction rules below, where 3 ∈ {+, −, ×, ÷}. These rules correspond to a
left to right evaluation strategy of the expressions.

a`00 → a`22

a`00 3` a`11 → a`22 3` a`11

a`11 → a`22

r`00 3` a`11 → r`00 3` a`22

r = r0 3` r1

r`00 3` r`11 → r`
a`00 → a`11

F `(a`00)→ F `(a`11)
r = F `(r0)
F `(r`00)→ r`

In the following, we introduce various domains for the values r and we specify
various implementations of the operators 3. We only deal with arithmetic ex-
pressions because the semantics of the rest of the language (which is detailed in
[8]) presents little interest. The only particularity concerns loops and condition-
als, when the result of a comparison between floating-point numbers differs from
the same comparison in R. In this case, the semantics in F and R lead to the
execution of different pieces of code. Our semantics mimics what the computer
does and follows the execution path resulting from the evaluation of the test in
F. However, the errors cannot be computed any longer.

Labels are only attached to the arithmetic expressions because no roundoff
error is introduced elsewhere. A label ` is related to the syntactic occurrence
of an operator. If an arithmetic operation 3` is executed many times then the
coefficient attached to ε` denotes the sum of the roundoff errors introduced by
each instance of 3. For instance if the assignment x = r`11 3`r`22 is carried out
inside a loop then, in the floating-point number with error denoting the value

of x after n iterations, the coefficient attached to ε` is the sum of the roundoff
errors introduced by 3` during the n first iterations.

4 Floating-point numbers with errors

In this section, we define the general semantics SL∗ of floating-point numbers
with errors. SL∗ computes the errors of any order made during a computation.
Intuitively, a number r` occurring at point ` and corresponding to an initial
datum r is represented by the floating-point number with errors r`L

∗
= (fε +

ω`ε`) ∈ RL
∗

where f =↑◦ r is the floating-point number approximating r and
ω` =↓◦ r. The functions ↑◦ and ↓◦ are defined in Section 3.1. f and ω` are written
as coefficients of a formal series and ε and ε` are formal variables related to the
value f known by the computer and the error between r and f .

A number r occurring at point `0 and corresponding to the result of the
evaluation of an expression a`00 is represented by the series

r`0L
∗

= fε+
∑
u∈L+

ωuεu (3)

where L is a set containing all the labels occurring in a`00 and L+ is a subset
of the words on the alphabet L. L+ is formally defined further in this Section.
In Equation (3), f is the floating-point number approximating r and is always
attached to the formal variable ε. Let ` be a word made of one character. In the
formal series

∑
u∈L+ ω

uεu, ω`ε` denotes the contribution to the global error of
the first order error introduced by the computation of the operation labelled `
during the evaluation of a`00 . ω` ∈ R is the scalar value of this error term and ε` is
a formal variable. For a given word u = `1`2 . . . `n such that n ≥ 2, εu denotes the
contribution to the global error of the nth order error due to the combination of
the errors made at points `1 . . . `n. For instance, let us consider the multiplication
at point `3 of two initial data r`11 = (f1ε+ ω`11 ε`1) and r`22 = (f2ε+ ω`22 ε`2).

r`11 ×`3 r
`2
2 =↑◦ (f1f2)ε+ f2ω

`1
1 ε`1 + f1ω

`2
2 ε`2 + ω`11 ω

`2
2 ε`1`2+ ↓◦ (f1f2)ε`3 (4)

As shown in Equation (4), the floating-point number computed by this mul-
tiplication is ↑◦ (f1f2). The initial first order errors ω`11 ε`1 and ω`22 ε`2 are mul-
tiplied by f2 and f1 respectively. In addition, the multiplication introduces a
new first order error ↓◦ (f1f2)ε`3 , due to the approximation made by using the
floating-point number ↑◦ (f1f2) instead of the real number f1f2. Finally, this
operation also introduces an error whose weight is ω`11 ω

`2
2 and which is a second

order error. We attach this coefficient to the formal variable ε`1`2 denoting the
contribution to the global error of the second order error in `1 and `2.

From a formal point of view, let L∗ denote the set of words of finite length
on the alphabet L. ε denotes the empty word, |u| denotes the size of the word
u and u.v denotes the concatenation of the words u and v. We introduce the
equivalence relation ∼ which identifies the words made of the same letters. ∼
makes concatenation commutative.

Definition 1 ∼ ⊆ L∗×L∗ is the greatest equivalence relation R such that u R v
implies u = `.u′, v = v′.`.v′′ and u′ R v′.v′′.

Let L∗ be the quotient set L∗/ ∼. An equivalence class in L∗ is denoted by
the smallest element u of the class w.r.t. the lexicographical order. L+ denotes
the set L∗ \ {ε}. For any word u ∈ L+, the formal variable εu is related to a nth

order error whenever n = |u|. εε = ε is related to the floating-point number f
known by the computer instead of the real value. In this article, the symbols f
and ωε are used indifferently to denote the coefficient of the variable εε.

Let F(D,L∗) = {
∑
u∈L∗ ω

uεu : ∀u, ωu ∈ D} be the domain of the for-
mal series (ordered componentwise) whose formal variables are annotated by
elements of L∗ and which coefficients ωu belong to D. The semantics SL∗ uses
the domain RL

∗
= F(R,L∗) for floating-point numbers with errors. The elemen-

tary operations on RL
∗

are defined in Figure 1. W denotes a set of words on an
alphabet containing L and W+ denotes W \ {ε}. For now, W = L∗ but some
alternatives are treated later in this article.

r1 +`i r2
def
= ↑◦ (f1 + f2)ε+

∑
u∈W+

(ωu1 + ωu2)εu+ ↓◦ (f1 + f2)ε`i (5)

r1 −`i r2
def
= ↑◦ (f1 − f2)ε+

∑
u∈W+

(ωu1 − ωu2)εu+ ↓◦ (f1 − f2)ε`i (6)

r1 ×`i r2
def
= ↑◦ (f1f2)ε+

∑
u ∈ W
v ∈ W
|u.v| > 0

ωu1ω
v
2εu.v+ ↓◦ (f1f2)ε`i (7)

(r1)−1`i def
= ↑◦ (f−1

1)ε+
1

f1

∑
n≥1

(−1)n

 ∑
u∈W+

ωu

f1
εu

n

+ ↓◦ (f−1
1)ε`i (8)

r1 ÷`i r2
def
= r1 ×`i (r2)−1`i (9)

Fig. 1. Elementary operations for the semantics SL
∗
.

In Figure 1, the formal series
∑
u∈L∗ ω

uεu related to the result of an operation
3`i contains the combination of the errors on the operands as well as a new error
term ↓◦ (f13Rf2)ε`i corresponding to the error introduced by the operation 3F
occurring at point `i. The rules for addition and subtraction are natural. The
elementary errors are added or subtracted componentwise in the formal series
and the new error due to point `i corresponds to the roundoff of the result.
Multiplication requires more care because it introduces higher-order errors due
to the multiplication of the elementary errors. Higher-order errors appear when
multiplying error terms. For instance, for `1, `2 ∈ L, and for first order errors
ω`11 ε`1 and ω`22 ε`2 , the operation ω`11 ε`1 ×ω

`2
2 ε`2 introduces a second-order error

term written (ω`11 ×ω
`2
2)ε`1`2 . The formal series resulting from the computation

of r−1`i
1 is obtained by means of a power series development. Note that, since a

power series is only defined as long as it is convergent, the above technique cannot
be used for any value of r1. In the case of the inverse function, the convergence
disc of the series

∑
n≥0(−1)nxn = (1 + x)−1 has radius ρ = 1. So, in Equation

(8), we require −1 <
∑
u∈W+

ωu

f1
< 1. This constraint means that Equation (8)

is correct as long as the absolute value of the sum of the elementary errors is
less than the related floating-point number.

For an expression a`00 such that Lab(a`00) ⊆ L, the semantics SL∗ is defined
by the domain RL

∗
for values and by the reduction rules→L obtained by substi-

tuting the operators on RL
∗

to the operators 3 in the reduction rules of Section
3.

Concerning the correctness of the operations defined by equations (5) to
(9), it is a trivial matter to verify that both sides of these equations denote
the same quantity, i.e. for any operator 3 and any numbers r1 =

∑
u∈W ωu1 εu,

r2 =
∑
u∈W ωu2 εu and r = r13

`ir2 =
∑
u∈W ωuεu, we have∑

u∈W
ωu =

(∑
u∈W

ωu1

)
3

(∑
u∈W

ωu2

)
(10)

However, this is too weak a correctness criterion since it does not examine
whether a given error term is correctly propagated during a computation. For
example, Equation (11) incorrectly models the propagation of errors since it
inverts the errors attached to ε`1 and ε`2 .

(f1ε+ω`1ε`1)+`i (f2ε+ω`2ε`2)bad!= ↑◦ (f1+f2)ε+ω`1ε`2 +ω`2ε`1+ ↓◦ (f1+f2)ε`i
(11)

Defining addition by a generalization of Equation (11) leads to an undesirable
formula satisfying the correctness criterion of Equation (10). We aim at showing
that no such confusion was made in our definitions of the elementary operations,
mainly for multiplication and division. So we compare the variations of the
terms occurring in both sides of the equations (5) to (9) as a finite number of
the coefficients ωu1 and ωu2 are slightly modified. The variations of r1 and r2

are given by ∂n

∂ω
u1
k1
...ωunkn

for a finite subset ωu1
k1
, . . . ωunkn of the coefficients, with

ki = 1 or 2, ui ∈ W+, 1 ≤ i ≤ n. We first introduce Lemma 2 which deals with
first order partial derivatives.

Lemma 2 Let 3 ∈ {+,−,×,÷} be a usual operator on formal series and let
3`i ∈ {+`i ,−`i ,×`i ,÷`i} be the operators defined in Equations (5) to (9). For
any r1 =

∑
u∈W ωu1 εu, r2 =

∑
u∈W ωu2 εu and for any u0 ∈ W+ \ {`i} we have

∂(r13r2)
∂ωu0

1

=
∂(r13

`ir2)
∂ωu0

1

and
∂(r13r2)
∂ωu0

2

=
∂(r13

`ir2)
∂ωu0

2

(12)

Lemma 2 ensures that the variation of a single error term in the input series
is correctly managed in our model. Proofs are detailed in [8]. Proposition 3 below
generalizes Lemma 2 to the variation of a finite number of coefficients.

Proposition 3 Let 3 ∈ {+,−,×,÷} denote an usual operator on formal series
and let 3`i ∈ {+`i ,−`i ,×`i , ÷`i} denote the operators defined in Equations (5)
to (9). For any r1 =

∑
u∈W ωu1 εu, r2 =

∑
u∈W ωu2 εu and for any ωu1

k1
, . . . ωunkn ,

ki = 1 or 2, ui ∈ W+ \ {`i}, 1 ≤ i ≤ n, we have:

∂n(r13r2)
∂ωu1

k1
. . . ωunkn

=
∂n(r13

`ir2)
∂ωu1

k1
. . . ωunkn

(13)

As a conclusion, let us remark that the incorrect definition of addition given
in Equation (11) satisfies neither Lemma 2, nor Proposition 3.

For transcendental functions, given a number rL
n

=
∑
u∈Ln ω

uεu and a
function F , we aim at determining how a given error term ωu related to rL

n

is modified in F (rL
n

). This is done by means of power series developments,
as for the inverse function of Equation (8). However, let us remark that the
functions ↑◦ (F (x)) and ↓◦ (F (x)) must be used carefully, since IEEE Standard
754 only specifies how to roundoff the elementary operations +, −, × and ÷
and the square root function. For another function F ∈ {sin, exp, . . .} machine-
dependent criteria must be considered to determine ↑◦ (F (x)) [8].

5 Restriction to errors of the nth order

The semantics SL∗ , introduced in Section 4, computes the errors of any order
made during a computation. This is a general model for error propagation but
it is commonly admitted that, in practice, errors of order greater than one or
(rarely) two are negligible [5]. However, even if, from a practical point of view,
we are only interested in detailing the contribution of the first n order errors to
the global error, for n = 1 or n = 2, a safe semantics must check that higher
order errors actually are negligible.

We introduce a family (SLn)n∈N of semantics such that the semantics SLn

details the contribution to the global error of the errors of order at most n.
In addition, SLn collapses into the coefficient of a single formal variable of the
series the whole contribution of the errors of order higher than n. A value r is
represented by

r = fε+
∑

u∈L+, |u|≤n

ωuεu + ωςες (14)

The term ωςες of the series aggregates the elementary errors of order higher
than n. Starting with n = 1, one can examine the contribution of the first order
errors to the global error in a computation. If the ως coefficient is negligible in the
result, then the semantics SL1

provides enough information to understand the
nature of the error. Otherwise, SL1

states that there is a higher order error which
is not negligible but does not indicate which operation mainly makes this error
grow. This information can be obtained by the semantics SLn for an adequate
value of n.

Let Ln be the set of words of length at most n on the alphabet L and let
Ln = (Ln/ ∼) ∪ {ς}. ς 6∈ L∗ is a special word representing all the words of size
greater than n. We define the new concatenation operator

u ·n v =
{
u.v if |u.v| ≤ n and u, v 6= ς
ς otherwise (15)

For the sake of simplicity, we write u.v instead of u ·n v whenever it is clear
that u and v belong to Ln. The domain of floating-point numbers with errors
of order at most n is RL

n

= F(R,Ln). The elementary operations on RL
n

are
defined by the equations (5) to (9) of Section 4 in which W = Ln.

Let SLn denote the semantics defined by the domain RL
n

for values and by
the reduction rules of Section 2. The semantics SLn indicates the contribution
to the global error of the elementary errors of order at most n.

The correctness of the semantics (SLn)n∈N stems from the fact that, for any
n, SLn is a conservative approximation of SL∗ . Furthermore, for any 1 ≤ m ≤ n,
SLm is a conservative approximation of SLn . So, the semantics of order m can
always be considered as being a safe approximation of the semantics of order n,
for any n > m. To prove the previous claims we introduce the following Galois
connections [3, 4] in which m ≤ n.

〈℘(F(R,Ln)),⊆〉
γm,n

�
αn,m

〈F(R,Lm),v〉 (16)

℘(X) denotes the power set of X and v denotes the componentwise ordering on
formal series. αn,m and γm,n are defined by

αn,m

⋃
i∈I

∑
u∈Ln

ωui εu

 def=
∑

u∈Lm\{ς}

(∨
i∈I

ωui

)
εu +

∨
i∈I

 ∑
u∈(Ln\Lm)∪{ς}

ωu

 ες
γm,n

 ∑
u∈Lm

νuεu

 def=

∑
u∈Ln

ωuεu :
∣∣∣∣ωu ≤ νu if u ∈ Lm \ {ς}∑

u∈(Ln\Lm)∪{ς} ω
u ≤ νς

The abstraction of the coefficients attached to εu, for any u ∈ Lm \ {ς}, is

natural. αn,m also adds the coefficients of the terms of order higher than m and
appends the result to ες . Next the supremum is taken between the terms νςi ες ,
i ∈ I. γm,n maps a series

∑
u∈Lm ν

uεu ∈ F(R,Lm) to the set of series of the
form

∑
u∈Ln ω

uεu ∈ F(R,Ln) whose coefficients ωu are less than νu for any
u ∈ Lm \ {ς} and such that νς is greater than the sum of the remaining terms.
The correctness of the elementary operations in F(R,Lm), w.r.t. the correctness
of the same operations in F(R,Ln) stems from Lemma 4.

Lemma 4 Let `i be a program point, let RL
n

, SL
n ∈ ℘(F(R,Ln)) be sets of

floating-point numbers with errors and let rL
m

= αn,m(RL
n

), sL
m

= αn,m(SL
n

),
1 ≤ m ≤ n. For any operator 3 ∈ {+,−,×,÷} we have

RL
n

3`iSL
n

⊆ γm,n(rL
m

3`isL
m

)

Proofs are given in [8]. To extend Lemma 4 to sequences of reduction steps,
we introduce the mapping R defined by Equation (17). Lab(a`00) is the set of
labels occurring in a`00 .

R(a`00) :

∣∣∣∣∣∣
Lab(a`00)→ F(R,Ln)

` 7→
{
r if a` = r`

⊥ otherwise
(17)

R(a`00)(`) returns a value if the sub-expression a` in a`00 is a value and ⊥
otherwise.

Proposition 5 Let a`0L
m

0 and a`0L
n

0 be syntactically equivalent expressions such
that for any ` ∈ L, R(a`0L

n

0)(`) ∈ γm,n(R(a`0L
m

0)(`)). If a`0L
m

0 → a`1L
m

1 then
a`0L

n

0 → a`1L
n

1 such that a`1L
m

1 and a`1L
n

1 are syntactically equivalent expressions
and for all ` ∈ L, R(a`1L

n

1)(`) ∈ γm,n(R(a`1L
n

1)(`)).

Given an arithmetic expression a`00 , Proposition 5 shows how to link SLn(a`00)
to SLn+1

(a`00) for any integer n ≥ 0. The semantics SLn is based on the domain
R
Ln = F(R,Ln). The semantics SL∗ can be viewed as a simple instance of

this model, since the operations on RL
∗
, as defined in Section 4, correspond to

the ones of equations (5) to (9) with W = L∗. Conversely, the semantics SL0

uses floating-point numbers with errors of the form ωεεε + ωςες and computes
the global error done during a computation. In short, there is a chain of Galois
connections between the semantics of any order:

SL
∗
(a`00) � . . . SL

n

(a`00) � SL
n−1

(a`00) . . . � SL
0
(a`00)

SL∗(a`00) is the most informative result since it indicates the contribution of
the elementary errors of any order. SL0

(a`00) is the least informative result which
only indicates the global error made during the computation.

6 Coarse grain errors

In this section, we introduce a new semantics that generalizes the ones of Section
4 and Section 5. Intuitively, we no longer consider elementary errors correspond-
ing to the errors due to individual operations and we instead compute errors due
to pieces of code partitioning the program. For instance, one may be interested
in the contribution to the global error of the whole error due to an intermediate
formula or due to a given line in the program code.

In practice, these new semantics are important to reduce the memory size
used to store the values. From a theoretical point of view, it is necessary to prove
that they are correct with respect to the general semantics SL∗ of Section 4.

We show that the different partitions of the program points can be partially
ordered in such a way that we can compare the semantics based on comparable
partitions. Let J = {J1, J2, . . . , Jp} ∈ P(L) be a partition of the program points.
We consider now the words on the alphabet J . J n denotes the words of maximal

length n and J n = (J n/ ∼)∪{ς}. The concatenation operator ·n related to J n
is defined in Equation (15).

For a maximal order of error n ∈ N, we consider the family of domains
(F(R,J n))J∈P(L), equivalently denoted (RJ

n

)J∈P(L). Basically, a unique label
identifies all the operations of the same partition. A value rJ

n ∈ RJn is written

rJ
n

= fε+
∑

u ∈ J n+

u = J1 . . . Jk

(∑
v = `1 . . . `k ∈ Ln
∀i, 1 ≤ i ≤ k, `i ∈ Ji

ωv
)
εu = fε+

∑
u∈Jn+

ωuεu

If |u| = 1, the word u = J is related to the first order error due to the
operations whose label belongs to J . The elementary operations on RJ

n

are
defined by the equations (5) to (9) of Section 4 in which W = J n.

Remark that this semantics generalizes the semantics of Section 5 which
is based on a particular partition J = {{`} : ` ∈ L}. Another interesting
partition consists of using singletons for the initial data and collapsing all the
other program points. This enables us to determine the contribution, to the
global error, of initial errors on the program inputs (sensitivity analysis).

In the rest of this section, we compare the semantics based on different par-
titions of the labels. Intuitively, a partition J1 is coarser than a partition J2 if
J1 collapses some of the elements of J2. For a maximal order of error n and
using this ordering, the partition J = {{`} : ` ∈ L} corresponds to SLn and
is the finest partition. We show that any semantics based on a partition J2,
coarser than a partition J1, is an approximation of the semantics based on J1.
Consequently, any semantics based on a partition of the program points is an
approximation of the general semantics SLn and SL∗ defined in Section 4 and
5. The partial ordering on the set of partitions is defined below.

Definition 6 Let J1 and J2 be two partitions of the set L. J1 is a coarser
partition of L than J2 and we write J1⊆̇J2 iff ∀J2 ∈ J2, ∃J1 ∈ J1 : J2 ⊆ J1.

If J1⊆̇J2 then some components of the partition J2 are collapsed in J1. ⊆̇ is
used in the following to order the partitions of the set L of labels. The translation
function τJn2 ,Jn1 maps words on the alphabet J n2 to words on J n1 as follows.

τJn2 ,Jn1 (J2.u) = J1.τJn2 ,Jn1 (u) where J1 ∈ J1, J2 ⊆ J1

The correctness of any semantics based on a partition J1 of L stems from
the fact that, for any J2 ∈ P(L) such that J1⊆̇J2, there is a Galois connection

〈℘(F(R,J n2)),⊆〉
γJ

n
1 ,J

n
2

�
αJ

n
2 ,J

n
1

〈F(R,J n1),v〉

defined by

αJ
n
2 ,J

n
1

⋃
i∈I

∑
u∈Jn2

ωui εu

 def=
∑
u∈Jn2

(∨
i∈I

ωui

)
ετJn2 ,Jn1 (u)

γJ
n
1 ,J

n
2

∑
v∈Jn1

νuεv

 def=

 ∑
u∈Jn2

ωuεu :
∑

τJn2 ,J
n
1

(u)=v

ωu ≤ νv

Let J be an element of the coarser partition J1. For any first order error
term ωuεu attached to a floating-point number with errors rJ

n
2 =

∑
u∈Jn2

ωuεu,

the abstraction αJ
n
2 ,J

n
1 ({rJn2 }) defines the coefficient νJ attached to εJ as being

the sum of the coefficients ωJ′ such that J ′ ∈ J2 and J ′ ⊆ J . The abstraction
of sets of numbers is next defined in the usual way, by taking the supremum
of the coefficients for each component. The function γJ

n
1 ,J

n
2 returns the set of

floating-point numbers with errors for which
∑
τJn2 ,J

n
1

(u)=v ω
u ≤ νv. Lemma 7

assesses the correctness of the operations defined by Equations (5) to (9) for the
domains introduced in this section.

Lemma 7 Let `i be a program point, let J1 and J2 be partitions of L such
that J1⊆̇J2 and let RJ

n
2 , SJ

n
2 ∈ ℘(F(R,J n2)). If rJ

n
1 = αJ

n
2 ,J

n
1 (RJ

n
2), sJ

n
1 =

αJ
n
2 ,J

n
1 (SJ

n
2) then for any operator 3 ∈ {+,−,×,÷} we have

RJ
n
2 3`iSJ

n
2 ∈ γJ

n
1 ,J

n
2 (rJ

n
1 3`isJ

n
1)

The proof is given in [8]. The semantics defined by the domain RJ
n

for values
and by the reduction rules of Section 3 is denoted SJn . Proposition 8 establishes
the link between the semantics SJn1 and SJn2 for comparable partitions J1⊆̇J2

of the set L of labels.

Proposition 8 Let J1 and J2 be partitions of L such that J1⊆̇J2 and let
a
`0Jn1
0 and a

`0Jn2
0 be syntactically equivalent expressions such that for all ` ∈ L,

R(a`0J
n
2

0)(`) ∈ γJ
n
1 ,J

n
2 (R(a`0J

n
1

0)(`)). If a`0J
n
1

0 → a
`1Jn1
1 then a

`0Jn2
0 → a

`1Jn2
1

such that a`1J
n
1

1 and a
`1Jn2
1 are syntactically equivalent expressions and for all

` ∈ L, R(a`1J
n
2

1)(`) ∈ γJn1 ,Jn2 (R(a`1J
n
2

1)(`)).

As a consequence, for a given order of error n and for a given chain C of
partitions, there is a chain of Galois connections between the semantics based
on the partitions of C. Let us assume that

C = J0 = {L} ⊆̇ . . . ⊆̇ . . . ⊆̇ Jk ⊆̇ . . . ⊆̇ {{`} : ` ∈ L}

By combining Proposition 5 and Proposition 8, we can also link the semantics
SJnk and SJ

n+1
k for any Jk ∈ C and any n ∈ N. This is summed up in Figure

2. For any integer n and partition Jk, SJnk describes a particular semantics;
SL∗ is the most informative semantics and, conversely, the semantics SL0

that
computes one global error term is the least informative semantics; for all k > 0
SJ 0

k = SL0
(for n = 0, any partition yields the same semantics); SJ 2

0 computes
the global first order and second order errors made during a computation; finally,
for any Jk, SJ 1

k computes the contribution to the global error of the first order
errors made in the different pieces of code identified by Jk.

Let us remark that the values in RJ
n
1 contain less terms than the ones in

R
Jn2 if J1⊆̇J2. Hence, using coarser partitions leads to significantly fewer com-

putations.

SJ
∗
0 (a`00) � . . .

γn,n+1

�
αn+1,n

SJ
n
0 (a`00)

γn−1,n

�
αn,n−1

. . . � SJ
0
0 (a`00)

xy xy αJ
n
1 ,J

n
0

xyγJn0 ,Jn1 xy xy
SJ
∗
1 (a`00) � . . . � SJ

n
1 (a`00) � . . . � SJ

0
1 (a`00)xy xy xy xy xy

. . . � . . . � . . . � . . . � . . .xy xy xy xy xy
SL
∗
(a`00) � . . . � SL

n

(a`00) � . . . � SL
0
(a`00)

Fig. 2. Links between the semantics SJ
n
k for a given order of error n and for a chain

of partitions J0 ⊆̇ J1 ⊆̇ . . . ⊆̇ Jk ⊆̇ . . . ⊆̇ {{`} : ` ∈ L}.

7 Conclusion

The semantics introduced in this article models the propagation of roundoff
errors and the introduction of new errors at each stage of a computation. We use
a unified framework, mainly based on the equations of Figure 1, to compute the
contribution, to the global error, of the errors due to pieces of code partitioning
the program and up to a maximal order of error. Lemma 2 and Proposition 3
are essential to ensure the correctness of the operators of Figure 1. They also
represent a stronger correctness criterion for the operators introduced in [7].
Another important point is that SLn not only details the propagation of the
errors of order ≤ n but also verifies that higher order error terms actually are
negligible.

A tool has been developed which implements an abstract interpretation based
on the semantics introduced in this article. The real coefficients of the error se-
ries are abstracted by intervals of multi-precision floating-point numbers. This
tool is described in [9]. Current work concerns the precision of the abstract inter-
pretation in loops and is proceeding in two directions. First, because narrowings
do not yield information to improve the precision of the error terms, we really
need finely-tuned widening operators for our domain. This should enable us to
restrict the number of cases where a loop is stable but is declared unstable by
the abstract interpreter because of the approximations made during the analysis.
The second way to improve the precision in loops consists of using a relational
analysis. A first solution was proposed in [7] that can be used when the errors
made at the iterations n and n + 1 are related by a linear transformation. We
are also working on the non-linear cases, using mathematical tools developed for
the study of dynamical systems.

Acknowledgements

I would like to thank Eric Goubault, Sylvie Putot and Nicky Williams for
their suggestions on earlier drafts of this paper.

References

1. F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations.
SIAM, 1996.

2. F. Chaitin-Chatelin and E. Traviesas. Precise, a toolbox for assessing the qual-
ity of numerical methods and software. In IMACS World Congress on Scientific
Computation, Modelling and Applied Mathematics, 2000.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles
of Programming Languages 4, pages 238–252, 1977.

4. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Symbolic Computation, 2(4):511–547, 1992.

5. M. Daumas and J. M. Muller, editors. Qualité des Calculs sur Ordinateur. Masson,
1997.

6. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1), 1991.

7. E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, number 2126 in LNCS. Springer-Verlag, 2001.

8. E. Goubault, M. Martel, and S. Putot. Concrete and abstract semantics of fp
operations. Technical Report DRT/LIST/DTSI/SLA/LSL/01-058, CEA, 2001.

9. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations: a simple abstract interpreter. In ESOP’02, 2002.

10. J. R. Hauser. Handling floating-point exceptions in numeric programs. ACM
Transactions on Programming Languages and Systems, 18(2), 1996.

11. W. Kahan. The improbability of probabilistic error analyses for numerical compu-
tations. Technical report, Berkeley University, 1991.

12. W. Kahan. Lecture notes on the status of IEEE standard 754 for binary floating-
point arithmetic. Technical report, Berkeley University, 1996.

13. D. Knuth. The Art of Computer Programming - Seminumerical Algorithms. Ad-
dison Wesley, 1973.

14. P. Langlois and F. Nativel. Improving automatic reduction of round-off errors. In
IMACS World Congress on Scientific Computation, Modelling and Applied Math-
ematics, volume 2, 1997.

15. V. Lefevre, J.M. Muller, and A. Tisserand. Toward correctly rounded transcen-
dentals. IEEE Transactions on Computers, 47(11), 1998.

16. M. Pichat and J. Vignes. The numerical study of unstable fixed points in a chaotic
dynamical system. In IMACS World Congress on Scientific Computation, Mod-
elling and Applied Mathematics,, volume 2, 1997.

17. J. Vignes. A survey of the CESTAC method. In Proceedings of Real Numbers and
Computer Conference, 1996.

