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Abstract

Digital computers permeate our physical world. This
phenomenon creates a pressing need for tools that help us
understand a priori how digital computers can affect their
physical environment. In principle, simulation can be a
powerful tool for animating models of the world. Today,
however, there is not a single simulation environment that
comes with a guarantee that the results of the simulation
are determined purely by a real-valued model and not by
artifacts of the digitized implementation. As such, simula-
tion with guaranteed fidelity does not yet exist.

Towards addressing this problem, we offer an expository
account of what is known about exact real arithmetic. We
argue that this technology, which has roots that are over
200 years old, bears significant promise as offering exactly
the right technology to build simulation environments with
guaranteed fidelity. And while it has only been sparsely
studied in this large span of time, there are reasons to be-
lieve that the time is right to accelerate research in this di-
rection.

∗This research was sponsored by the NSF under Award 0439017,
0720857, and 0747431. Views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of NSF, or the U.S. gov-
ernment.

1. Introduction

In the embedded systems community it is widely rec-
ognized that digital computers are permeating our physical
world. Recently, there has been a growing consensus that
this phenomenon of cyber-physical systems may require not
only new tools but also new foundations to enable an effec-
tive understanding of such systems. In particular, there is a
pressing need for methods that can provide us with useful,
a priori accounts of how digital computers would affect a
physical environment in which they are embedded.

In principle, simulation can serve as a powerful stride
towards this goal. Unfortunately, no mainstream simulation
environment available today comes with a clear, rigorous
guarantee that would assure us that the results of the sim-
ulation are determined purely by a real-valued model and
not by artifacts of the digitized implementation. Simulation
tools with guaranteed fidelity do not yet exist.

The absence of such fidelity is a concern both in engi-
neering and in science. When building safety critical sys-
tems, one would like to know that a behavior that appears
possible in a simulation is indeed physically possible and
not a result of numerical anomalies. In science, fidelity
is absolutely essential for scientists to quickly determine
whether an artifact in a physical simulation is a true phe-
nomenon in the model or merely an artifact of the underly-
ing implementation. Fidelity is also essential for the repro-
ducibility of results.

For a simulation tool to provide fidelity guarantees it
must be grounded in the mathematical study of real num-



bers, namely real analysis. This is, in essence, implied by
the definition of what we want: To specify the correctness
of an implementation, we need to use ideas from real anal-
ysis about approximations of increasing precision. Then,
once we get into the details of the computation, and as we
will get to see in some of the examples in this paper, we
find that some fundamental truths about real-numbers (such
as the undecidability of equality) cannot be avoided when
we talk about high fidelity guarantees.

Exact real computation can be approached in several
ways. A direct approach would be to compute explicitly
with intervals representing precisely what we know about a
certain real value. Such intervals can be represented, for ex-
ample, by a pair of rationals. Then we can imagine all other
operations being defined as working on intervals and pro-
ducing answers that represent all possible answers for any
given exact reals. We can call this method interval arith-
metic [18, 20, 21, 1, 7].

While this approach can be effective for a wide range of
applications, we believe that it can suffer from a particu-
lar type of computational inefficiency. Imagine a situation
where we run a large computation and we get a result of
unsatisfactory precision. What input do we need to pro-
vide in greater accuracy for the precision of the output to be
improved? We expect that, in general, as we compose com-
putation, the variance of needed precisions among inputs
is likely to grow more dramatically, and as a result, only a
very small number of inputs will really need to be provided
in high-precision. This means that it becomes increasingly
more wasteful to assume that all computation needs to be
done in higher precision.

As such, we postulate that the most likely approaches
to succeed in providing efficient real arithmetic computa-
tion will be based on lazy, explicit, and co-inductive (“in-
finite”) representations of real numbers. Because this ap-
proach only computes to the precision needed, it avoids the
problem with the direct approach.

Interestingly, it appears that the lazy approach has a long
history going back at least to the work of Leslie and Cauchy
in the 1800s [8]. At the same time, while exact real arith-
metic may have seemed too expensive and too impractical
in the past, a confluence of developments makes this an ap-
propriate time to reconsider this judgment:

• Parallel computing resources: Multi-core, grid, and
cloud computing systems all offer resources that can
be employed effectively by highly parallelizable com-
putations. Exact real arithmetic computations have the
same purely functional properties as many other com-
putations that are derived directly from mathematical
computations. Furthermore, the granularity of individ-
ual operations in such a setting can be sufficiently large
to take up non-trivial computing units.

• Feasibility of specialized hardware: FPGA, ASICS,

and a wide range of technologies make it possible, to-
day, to experiment with new architectural designs. At
the same time, there is a growing consensus that it may
be time to reconsider some very basic architectural as-
pects of microprocessor design. A better understand-
ing of the needs of exact real arithmetic can provide
critical guidance in this process.

• More than ever, a pressing need for accuracy: Today,
even though some numerical libraries may have rea-
sonable properties in terms of accuracy, it is rare that a
library comes with any formal guarantees about accu-
racy. Even if that is the case, there are not methods for
ensuring any properties when such libraries are com-
posed (or even iterated!) For example, it is well known
that the precision of transcendental functions can be
very poor and vary greatly from system to system. Not
only does this make it hard to have any basis for trust-
ing the results of such computations, it makes it vir-
tually impossible to use such computations to evaluate
analytical models.

The question, then, is what are the right principle for de-
signing lazy representation of exact real numbers?

1.1 Contributions

Towards addressing this problem, we offer an expository
account of what is known about exact real arithmetic.

• We explain why the standard Base-2 representation for
real numbers is not satisfactory, even for addition op-
eration. We offer an intuitive explanation for why ad-
dition is not computable in this representation (Section
2).
• We explain two methods for solving this problem. The

first method is to change the meaning of zero and one
(Section 3). The second method is to add extra digits
(Section 4).
• We show for the two representations how can +,× and
> be defined. We formalize theorems which state the
soundness and effectiveness of the definitions.

Proofs of propositions and theorems can be found in an ex-
tended version of this paper [27].

2. Base-2 Representation Doesn’t Work

A real number 1 in [0, 1] has its integer part be 0 and
every digit after the binary point be either 0 or 1. The tra-
ditional interpretation takes the n-th digit d after the binary

1We will focus on the fractional part of a real number and ignore its
integer part. Real numbers and their operations with both integer part and
fractional part can be treated by simple manipulation such as shifting.
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point to mean d · 2−n. The value of a such number then is
to add up the value of each digit. For example:

0.101(0)ω means 2−1 + 2−3

0.01(1)ω means
−∞∑

i=−2

2i = 2−1

0.01(0)ω means 2−2

0.01 or 0.01 . . . means [2−2, 2−1]

Here, (d1 . . . dn)ω (n ≥ 1) denotes an infinite repetition
of d1 . . . dn, and an infinite sequence of unknown digits is
denoted as . . . or ε (empty sequence). Different from float-
ing point numbers, infinite sequence of digits does not have
a least significant digit, and any operation must be imple-
mented from left to right on the input sequences. How-
ever, this means even simple operations such as addition
and subtraction are not computable. For example, suppose
we wish to compute the result of adding two real numbers
which start as follows:

0.0000000 . . . and 0.0111111 . . .

It is not clear whether the first digit of the result here should
be a one or zero, since it depends on whether a carry will be
generated later from the input sequences.

In the rest of this section, we will show why basic op-
erations like addition cannot be defined with Base-2 repre-
sentation, and define the formal semantics of this represen-
tation.

2.1. Expressible Intervals

In the traditional interpretation, for a finite sequence of
digits A, the infinite sequence 0.A ranges from 0.A(0)ω to
0.A(1)ω . For example, the sequence 0.0 means [0, 1

2 ], the
sequence 0.1 means [ 12 , 1], and the sequence 0.00 means
[0, 1

4 ] (Figure 1). When adding two numbers where only the
first few digits of the inputs are known, we add the intervals
corresponding to both inputs. The sum of the interval is
guaranteed to include any possible results of the addition
of input numbers. For example, we have 0.000 + 0.011 ∈
[ 38 ,

5
8 ], 0.0000 + 0.0111 ∈ [ 7

16 ,
9
16 ]. The left most digits of

the result can be inferred by finding a sequence of digits,
where the interval it corresponded to must contain the sum
of the intervals from the input.

Figure 1. Base-2 Real Numbers

Recall the problem of computing the result of adding two
real numbers which start as:

0.0000000 . . . and 0.0111111 . . .

If 0 keeps appearing in the first input and 1 keeps appearing
in the second input, then after n pairs of 0 and 1, we would
have the sum be lying in [ 12 −

1
2n+1 ,

1
2 + 1

2n+1 ]. Now with
the first digit be 0 ranges from 0 to 1

2 and 1 ranges from
1
2 to 1, the sum cannot have either 0 or 1 be its first digit.
This makes the addition not computable. And the reason is
because the intervals represented by 0 and 1 have only over-
lapped at one point. If there is a small overlap between the
intervals represented by 0 and 1, a sufficient small interval
should always be able to be included in one of the intervals.

2.2. Semantics

To better understand the Base-2 real representation and
its operations, we give a formal definition for this represen-
tation and its interpretation. We also formally define the
traditional addition operation and show that the operation is
guaranteed to be correct but in many cases incomplete.

Definition 2.1 (Base-2 Real Numbers).
Let N denote the set of naturals, and Q denote the set of

rationals. Let B = {0, 1}. Then a Base-2 real number in
[0, 1] can be represented as an infinite stream of type N →
B.

Definition 2.2 (Semantics of Base-2 Real Numbers).
The semantics of any finite prefix of a real number is a

function [[ ]] : (∃n ∈ N. Bn)→ Q×Q defined as follows:

[[ε]] = [0, 1]
[[A0]] = let [x, y] = [[A]] in [x, x+ 1

2 (y − x)]
[[A1]] = let [x, y] = [[A]] in [x+ 1

2 (y − x), y]

We will use the following interval operations and rela-
tions throughout the paper:

Definition 2.3 (Basics for interval operations and relations).

[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2]
[x1, y1]− [x2, y2] = [x1 − y2, y1 − x2]

[x, y]/z = [x/z, y/z]
[x1, y1] ⊆ [x2, y2] ⇔ x1 ≥ x2 and y1 ≤ y2
[x1, y1] < [x2, y2] ⇔ y1 < x2∣∣[x, y]

∣∣ ≤ z ⇔ max(|x|, |y|) ≤ z
where |x| is the absolute value of x.

We can show that this interpretation converges to a real
number as we look at a longer prefix:

Proposition 2.1. For any A ∈ Bn:

• [[A]] ⊆ [0, 1]
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•
∣∣[[A]]

∣∣ = ( 1
2 )|A|

where |A| is the length of prefix A.

We now define the addition operation ⊕. Since we are
considering real numbers in [0, 1], we define ⊕ such that
[[A ⊕ B]] ' [[A]]+[[B]]

2 , where A,B ∈ (∃n ∈ N. Bn). The
conventional addition is defined by left shifting the results.

Definition 2.4 (Addition of Base-2 Real Numbers.).
For any digit d ∈ B and finite prefix A,B ∈ (∃n ∈

N. Bn):
A ⊕ ε = ε
ε ⊕ B = ε
dA ⊕ dB = d(A⊕B)
dA ⊕ (1− d)B = add one(A⊕B)

add one(ε) = ε
add one(1A) = 10A
add one(0A) = 01A

Theorem 2.1 (Correctness of Addition).
If A⊕B is defined, then [[A]]+[[B]]

2 ⊆ [[A⊕B]]

Theorem 2.1 says that any digits produced from the ad-
dition operation is guaranteed to be correct. In other words,
when more digits are available in the input sequences, there
is no need to change the digits produced before.

Theorem 2.2. Let A = A1dA2 and B = B1dB2, |A1| =
|B1| = l. Then |A⊕B| ≥ l + 1.

Theorem 2.2 says that addition on Base-2 real numbers
can generate results of certain length if for some natural
number n, the n-th digits in both input sequences are the
same. Otherwise, the length of the result has no lower
limit. The problem of deciding first digit in the result of
0.0000000 . . .+ 0.01111111 . . . is one such example.

3. Proportional Relaxation

We now formalize binary numbers with proportional re-
laxation (Brouwer 1920, Turing 1937). The formalization
has base 0 and 1. Digit 0 means zero and digit 1 means
1
3 ( 2

3 )n−1 when it appears as the n-th digit after the bi-
nary point. The value of the real number is to add values
of all the digits. Again, for a finite sequence of digits A,
the infinite sequence 0.A ranges from 0.A(0)ω to 0.A(1)ω .
For example, the sequence 0.0 means [0, 2

3 ], the sequence
0.1 means [ 13 , 1], and the sequence 0.00 means [0, 4

9 ] (Fig-
ure 2). When adding two numbers where only their finite
prefixes are known, we add the intervals corresponding to
both inputs. The sum of the interval is guaranteed to in-
clude any possible results of the addition of input num-
bers. For example, we have 0.00 + 0.01 ∈ [0, 4

9 ] + [29 ,
6
9 ],

Figure 2. Binary Numbers with Proportional
Relaxation

0.000 + 0.011 ∈ [0, 8
27 ] + [ 1027 ,

18
27 ]. The latter one is con-

tained in [ 13 , 1], so the result of 0.000+0.011 must start with
0.1.

We formally define the representation described above as
follows:

Definition 3.1 (Semantics of Binary Numbers with Propor-
tional Relaxation).

The semantics of any finite prefix of a real number is a
function [[ ]] : (∃n ∈ N. Bn)→ Q×Q defined as follows:

[[ε]] = [0, 1]
[[A0]] = let [x, y] = [[A]] in [x, x+ 2

3 (y − x)]
[[A1]] = let [x, y] = [[A]] in [x+ 1

3 (y − x), y]

Again, this interpretation converges to a real number as
we look at a longer prefix:

Proposition 3.1. For any A ∈ Bn:

• [[A]] ⊆ [0, 1]

•
∣∣[[A]]

∣∣ = ( 2
3 )|A|

In the definition of addition of Base-2 real numbers, even
the first digit of the result may not be decidable regardless
of how many digits we known in the inputs. This is because
some intervals cannot be expressed. If the interval stride
over ranges represented by 0 and 1, no matter how short the
interval is, no sequence of digits can represent the results.

In binary numbers with proportional relaxation, the in-
tervals represented by 0 and 1 are overlapped with each
other. The following lemma states the relationship between
the size of an interval and the number of digits that can be
decided for the interval. The relationship is guaranteed by
the overlap in the semantics of digits 0 and 1.

Lemma 1. For any rational interval I = [x, y] ⊆ [0, 1], we
can find a finite sequence A such that

• I ⊆ [[A]]

• 1
3 |[[A]]| < |I|

• |A| = max{0, blog 2
3

3|I|c+ 1}
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Intuitively, Lemma 1 guarantees the computability of ad-
dition. Because when more digits are known from the in-
puts, the sum interval will have smaller size, which ensures
that more digits are produced in the result. This is stated as
the following theorem.

Theorem 3.1 (Computability of Addition).
Let A and B be finite prefixes of two real numbers, and

|A|, |B| ≥ n+ 4. We can find a finite sequence C such that

• [[A]] + [[B]] ⊆ [[C]]

• |C| ≥ n

We now give a recursive definition of addition. The com-
putation is conducted from left to right on the inputs. The
carry is also generated from the most significant digit to the
right. We define ⊕ such that [[A⊕B]] ' ( 2

3 )2([[A]] + [[B]]),
where A,B ∈ (∃n ∈ N. Bn). The actual summation of the
inputs is derived by left shifting the results.

Definition 3.2 (Addition of Binary Numbers with Propor-
tional Relaxation.).

For any finite prefixes a1a2A and b1b2B ∈ (∃n ∈
N. Bn+2), we have

a1a2A⊕ b1b2B =
let s = 1

3 [( 2
3 )2(a1 + b1) + ( 2

3 )3(a2 + b2)]
in addc (A,B, s)

addc (aA, bB, r) =
let s = 3

2r + 1
3 ( 2

3 )3(a+ b)
in round (s) :: addc (A,B, s− 1

2 round (s))
addc (A, ε, r) = ε
addc (ε, B, r) = ε

round (s) =

{
0 0 ≤ s < 1

2

1 1
2 ≤ s ≤ 1

where d :: A means the concatenation of digit d and se-
quence A, ε means the empty sequence.

Theorem 3.2 (Correctness of Addition). For any A,B ∈
(∃n ∈ N. Bn), if min(|A|, |B|) = n+ 2, n ≥ 0 and A⊕B
is defined, then:

• |A⊕B| = n

• ( 2
3 )2([[A]] + [[B]]) ⊆ [[A⊕B]]

Theorem 3.3 (Computability of Multiplication).
LetA,B ∈ (∃n ∈ N. Bn), and |A| = |B| = n+4. Then

we can find a finite sequence C such that

• [[A]]× [[B]] ⊆ [[C]]

• |C| ≥ n

Definition 3.3 (Multiplication of Binary Numbers with Pro-
portional Relaxation.). For any finite prefixes a1a2a3A and
b1b2b3B, we have

a1a2a3A× b1b2b3B =
let x = 1

3 [a1 + 2
3a2 + ( 2

3 )2a3] and
y = 1

3 [b1 + 2
3b2 + ( 2

3 )2b3] and
s = x ∗ y

in mult (A,B, x, y, 4, s)
mult (aA, bB, x, y, n, r) =

let s = 3
2r + 1

3 ( 2
3 )3(b ∗ x+ a ∗ y + ( 2

3 )n ab
3 )

in round (s) :: mult (A,B, x+ ( 2
3 )n a

3 ,
y + ( 2

3 )n b
3 , n+ 1, s− 1

2 round (s))
mult (A, ε, c) = ε
mult (ε, B, c) = ε

round (s) =

{
0 0 ≤ s < 1

2

1 1
2 ≤ s ≤ 1

Theorem 3.4 (Correctness of Multiplication). For any
A,B ∈ (∃n ∈ N. Bn), if min(|A|, |B|) = n + 4, n ≥ 0
and A×B is defined, then:

• |A×B| = n

• [[A]]× [[B]] ⊆ [[A×B]]

Besides basic operations such as addition and multipli-
cation, comparisons of two real numbers also has great im-
portance in exact real arithmetic. For example, when con-
ducting division, the first thing to do is to test whether the
divisor is equal to 0. Comparison for real numbers is in-
herently semi-decidable, regardless of the way how it is de-
fined. We give a definition for comparison of binary num-
bers with proportional relaxation. A direct implementation
of this definition would either return a correct answer, or re-
turn an uncertainty of the comparison with an indication on
how close the inputs are.

Definition 3.4 (Comparison). For any finite prefixes A and
B, we have

A > B ⇔ gt (A,B, 0) where
gt (aA, bB, r) = let s = 3

2r + 1
2 (a− b) in

true if s > 1
false if s < −1
gt (A,B, r) otherwise

gt (A, ε, r) = unknown
gt (ε, B, s) = unknown

Theorem 3.5.

A > B is true ⇒ [[A]] > [[B]]
A > B is false ⇒ [[B]] > [[A]]
A > B is unknown ⇒

∣∣[[A]]− [[B]]
∣∣ ≤ ( 2

3 )min{|A|,|B|}

Other comparison operations like<,≥,≤ can be defined
similarly.

5



4. Binary Numbers with Negative Digits

The design of binary numbers with proportional relax-
ation is inspired by the need of being able to express all in-
tervals, which is achieved by providing redundancy on the
semantics of different digits. Another way to introduce re-
dundancy is to use an extra digit 1̄ besides zero and one
(Leslie 1817, Cauchy 1840). The semantics of digit 1̄ is
−1. Digit 0 means zero. Digit 1 and 1̄ means 2−n and
−2−n respectively, when being placed as the n-th digit after
the binary point. For a finite sequence of digits A, the in-
finite sequence 0.A would range from 0.A(1̄)ω to 0.A(1)ω .
So the sequence 0.1̄ means [−1, 0], the sequence 0.0 means
[− 1

2 ,
1
2 ], and the sequence 0.1 means [0, 1] (Figure 3).

Figure 3. Binary Numbers with Negative Dig-
its

We formally define this representation as follows:

Definition 4.1 (Binary Numbers with Negative Digits).
Let T = {1̄, 0, 1}, then a real number in [−1, 1] can be

represented as an infinite stream of type N→ T.

Definition 4.2 (Semantics of Binary Numbers with Nega-
tive Digits). The semantics of any finite prefix of a real num-
ber is a function [[ ]] : (∃n ∈ N. Tn) → Q × Q defined as
follows:

[[ε]] = [−1, 1]
[[A1̄]] = let [x, y] = [[A]] in [x, x+ 1

2 (y − x)]
[[A0]] = let [x, y] = [[A]] in [x+ 1

4 (y − x), x+ 3
4 (y − x)]

[[A1]] = let [x, y] = [[A]] in [x+ 1
2 (y − x), y]

For any real number, this interpretation converges to a
real number as we look at a longer prefix:

Proposition 4.1.
• [[A]] ⊆ [−1, 1]

•
∣∣[[A]]

∣∣ = 2( 1
2 )|A|

Computability of addition can be formalized in the same
way as for binary numbers with proportional relaxation.
We next define ⊕ such that [[A ⊕ B]] ' [[A]]+[[B]]

2 , where
A,B ∈ (∃n ∈ N. Bn). The actual summation of the inputs
is derived by left shifting the results.

Definition 4.3 (Addition of Binary Numbers with Negative
Digits). For any real numbers with prefixes aA and bB,
A,B ∈ (∃n ∈ N. Bn), we have

aA⊕ bB = addc (A,B,
1
2
(a+ b))

addc (aA, bB, r) =
let s = 2r + 1

2 (a+ b)
in round (s) :: addc (A,B, s− 2 round (s))

addc (A, ε, r) = ε
addc (ε, B, r) = ε

round (s) =


1̄ −3 ≤ s < −1
0 −1 ≤ s ≤ 1
1 1 < s ≤ 3

Theorem 4.1. For any finite prefix A and B, if
min(|A|, |B|) = n+ 1, n ≥ 1 and A⊕B is defined, then:
• |A⊕B| = n

• [[A]]+[[B]]
2 ⊆ [[A⊕B]]

We next define multiplication of binary numbers with
negative digits in the following two definitions.
Definition 4.4 (Multiplication of a real number by a digit).

1 · dA = d(1 ·A)
0 · dA = 0(0 ·A)
1̄ · dA = (0− d)(1̄ ·A)

Definition 4.5 (Multiplication of two real numbers). Multi-
plication of two finite prefixes can be recursively defined as
follows [23]:

a1a2A× b1b2B = ((a1 · b1 :: (b2 ·A⊕ a2 ·B))
⊕(a1 · b1 :: a2 · b1 :: a2 · b2 :: A×B))

Theorem 4.2. For finite prefixes A and B, if
min(|A|, |B|) = n+ 2, n ≥ 0 and A×B is defined, then:

• |A×B| = n

• ([[A]]× [[B]]) ⊆ [[A×B]]

We have similar definition of comparison for binary
numbers with negative digits as for binary numbers with
proportional relaxation.

Definition 4.6 (Comparison). For any real numbers with
finite prefix A and B, we have
A > B ⇔ gt (A,B, 0) where
gt (aA, bB, r) = let s = 2r + (a− b) in

true if s > 1
false if s < −1
gt (A,B, s) otherwise

gt (A, ε, r) = unknown

gt (ε, B, s) = unknown
The definition above satisfies:

Theorem 4.3.
A > B is true ⇒ [[A]] > [[B]]
A > B is false ⇒ [[B]] > [[A]]
A > B is unknown ⇒

∣∣[[A]]− [[B]]
∣∣ ≤ 2 · ( 1

2 )min{|A|,|B|}
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4.1 Related Work

Most existing computer systems approximate exact real
numbers by floating point numbers [13]. The standard most
commonly used is IEEE-754, which includes 32-bit single
precision and 64-bit double precision representations [2].
Unfortunately, floating point arithmetic is inherently inac-
curate. Only a very limited subset of real numbers may
be represented exactly, and rounding errors occur in almost
every floating point operation. Error analysis have been
studied to overcome the problem, for example based on
automatic differentiation [17], or using stochastic numbers
to represent real numbers by tuples of randomly rounded
floating-point numbers [25]. Some comparison between
different methods based on a formal semantics for floating
point numbers with errors can be found in [19].

A few academic tools exist with guaranteed fidelity in
some very specific cases, such as systems with validated nu-
merical solvers for Ordinary Differential Equations (ODE)
in initial value problems [22, 9, 6, 3]. They are able to
bound the distance between the computed and exact so-
lution to ODEs. For example, Nedialkov et al [22] use
interval-valued functions to approximate a solution to an
initial value problem of ODEs by finding fixed points of
some functions. Issues with interval arithmetic such as
wrapping effects are addressed in detail.

Affine arithmetic improves the precision of interval
arithmetic [10]. Compared to usual intervals, affine arith-
metic makes it possible to reduce the over-approximation
introduced by interval arithmetic by recording some rela-
tions between values. Recently, an abstract domain based
on affine arithmetic has been proposed in [16]. Modal arith-
metic is obtained by coupling an existential or universal
quantifier to the usual intervals [12]. Modal intervals have
been recently extended to generalized intervals which are
intervals whose bounds are not constrained to be ordered
[14]. Generalized intervals whose upper bound are less than
the lower one are quantified existentially.

Different design and representations of exact real num-
bers using lazy representation has also been researched for a
long time. Boehm, Cartwright, et al. [5] have implemented
exact real arithmetic by representing real numbers as poten-
tially infinite sequences of digits and evaluating on demand.
They have compared this lazy implementation with a func-
tional implementation and given some empirical compari-
son of the two techniques. Boehm and Cartwright provide
more insights on the comparisons of different approaches to
performing exact real arithmetic on a computer in [4].

Vuillemin [26] proposed a representation of computable
real numbers by continued fractions and presented various
incremental algorithms for basic arithmetic operations us-
ing the earlier work of Gosper [15], and for some transcen-
dental function. Potts, Edalat and Escardó proposed a lazy

representation of exact real numbers called Linear Frac-
tional Transformations in [24]. They incorporated a repre-
sentation of the non-negative extended real numbers based
on the composition of linear fractional transformations with
non-negative coefficients into the Programming Language
for Computable Functions (PCF) with products. Later on,
Edalat and Sunderhauf [11] use basic ingredients of an ef-
fective theory of continuous domains to spell out notions of
computability of the reals and for functions on the real line.

While all of these works representing exact real numbers
using lazy representation demonstrated impressive results,
we believe that a better understanding of the design space
of representations of exact real arithmetic may both yield a
way to unify these approaches and accelerate advancement
in this area.

5 Conclusions and Future Work

We began this paper by making a case for the impor-
tance and the timeliness of research on exact real compu-
tation, and followed this by an expository review of some
of the basic issues that arise in exact real computation. To
highlight some of the peculiarities of exact real computa-
tion, we discuss the difficulty in defining addition using the
standard binary digit representation of fractions. We explain
how this can be traced to the strictly hierarchical manner in
which this representation forces intervals to be structured.
This was followed by showing two different ways of solv-
ing this problem, namely, relaxing the meaning of digits and
adding negative digits. For both these representations, we
show how addition, multiplication, and comparison can be
defined.

While space does not allow us in this paper, we believe
that the issue of comparison deserves further discussion and
analysis. Whereas here we have focused on pointing out
these issues, our ultimate goal is to formalize these issues in
a manner that allows us to classify and investigate the wide
range of possible representations in a systematic and empir-
ically justified manner. Because of their prominent role in
scientific computing, in future work we hope to also iden-
tify the issues that arise in the introduction of the notions of
division, exponentiation, continuous functions, integration,
and differentiation.

Interval arithmetic suffers from the wrapping effect
which makes the intervals grow artificially because of un-
avoidable over-approximations. For example, let us con-
sider the function f which computes a rotation of angle θ:

f

(
x
y

)
=
(
xcosθ − ysinθ
xsinθ + ycosθ

)
Intuitively, a pair (x, y) of intervals defines a box in the

plane. The image f(x, y) of this box by a function f :
R2 → R2 is not necessarily a box. However, in interval
arithmetic, f(x, y) must be approximated by a new pair of
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intervals which must strictly encompass the exact image.
The dotted box on the right-hand-side of the figure below
shows the most precise interval image of f(x, y) with θ =
π/4.

f(x,y)
x

y f

Future work will explore ways of capturing and exploit-
ing such dependence between different values.

References

[1] O. Aberth. Introduction to Precise Numerical Meth-
ods, Second Edition. Academic Press, Inc., Orlando,
FL, USA, 2007.

[2] ANSI/IEEE. IEEE Standard for Binary Floating-point
Arithmetic, std 754-1985 edition, 1985.

[3] AWA. http://www.math.uni-wuppertal.de/∼xsc/xsc/
pxsc software.html#awa.

[4] H. J. Boehm and R. Cartwright. Exact Real Arithmetic
Formulating Real Numbers as Functions. Research
topics in functional programming, pages 43–64, 1990.

[5] H. J. Boehm, R. Cartwright, M. Riggle, and M. J.
OD́onnell. Exact Real Arithmetic: A Case Study in
Higher Order Programming. In LFP ’86: Proceedings
of the 1986 ACM conference on LISP and functional
programming, pages 162–173, New York, NY, USA,
1986. ACM.

[6] O. Bouissou and M. Martel. Grklib: a guaranteed
runge kutta library. In SCAN ’06: Proceedings of
the 12th GAMM - IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Vali-
dated Numerics, page 8, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] H. Bronnimann, G. Melquiond, and S. Pion. The De-
sign of the Boost Interval Arithmetic Library. Theo-
retical Computer Science, 351, 2006.

[8] A. Ciaffaglione and P. Di Gianantonio. A Certified,
Corecursive Implementation of Exact Real Numbers.
Theoretical Computer Science, 351(1):39–51, 2006.

[9] COSY. http://bt.pa.msu.edu/index cosy.htm.
[10] L. H. De Figueiredo and G. Stolfi. Affine arithmetic:

concepts and applications. Numerical Algorithms, 37,
2004.

[11] A. Edalat and P. Sunderhauf. A Domain-theoretic
Approach to Real Number Computation. Theoretical
Computer Science, 210:73–98, 1998.

[12] E. Gardenyes, H. Mielgo, and A. Trepat. Modal In-
tervals: Reason and Ground Semantics. In Inter-
val Mathematics, number 212 in LNCS, pages 27–35.
Springer-Verlag, 1985.

[13] D. Goldberg. What Every Computer Scientist Should
Know About Floating-Point Arithmetic. ACM Com-
puting Surveys, 23(1), 1991.

[14] A. Goldsztejn and L. Jaulin. Inner and Outer Approx-
imations of Existentially Quantified Equality Con-
straints. In Twelfth International Conference on
Principles and Practice of Constraint Programming,
LNCS. Springer-Verlag, 2006.

[15] W. Gosper. Continued fraction arithmetic, 1972.
HAKMEN Item 101B, MIT Aritficial Intelligence
Memo 239. MIT.

[16] E. Goubault and S. Putot. Under-approximations of
Computations in Real Numbers based on General-
ized Affine Arithmetic. In Static Analysis Symposium,
number 4634 in LNCS. Springer-Verlag, 2007.

[17] A. Griewank. Evaluating Derivatives, Principles and
Techniques of Algorithmic Differentiation. Frontiers
in Applied Mathematics. SIAM, 2000.

[18] M. Grimmer, K. Petras, and N. Revol. Multiple Pre-
cision Interval Packages: Comparing Different Ap-
proaches. In Dagstuhl Seminar on Numerical Soft-
ware with Result Verification, number 2991 in LNCS.
Springer-Verlag, 2003.

[19] M. Martel. An Overview of Semantics for the Vali-
dation of Numerical Programs. In Verification, Model
Checking and Abstract Interpretation, volume 3385 of
LNCS, pages 59–77. Springer-Verlag, 2005.

[20] R. E. Moore. Interval Analysis. Prentice-Hall, Engle-
wood Cliffs, 1963.

[21] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Intro-
duction to Interval Analysis. SIAM Press, 2009.

[22] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Val-
idated solutions of initial value problems for ordinary
differential equations. Applied Mathematics and Com-
putation, 105(1):21–68, 1999.

[23] D. Plume. A calculator for exact real number
computation, 1998. Available on line at http://
www.cs.bham.ac.uk/ mhe/research.html.

[24] P. J. Potts, A. Edalat, and H. M. Escardó. Semantics of
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