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Abstract. Floating-point arithmetic is an important source of errors in
programs because of the loss of precision arising during a computation.
Unfortunately, this arithmetic is not intuitive (e.g. many elementary op-
erations are not associative, inversible, etc.) making the debugging phase
very difficult and empiric.

This article introduces a new kind of program transformation in order
to automatically improve the accuracy of floating-point computations.
We use P. Cousot and R. Cousot’s framework for semantics program
transformation and we propose an offline transformation. This technique
was implemented, and the first experimental results are presented.

1 Introduction

In this article, we introduce a new kind of program transformation in order to im-
prove the precision of the evaluation of expressions in floating-point arithmetic.
We consider that an expression implements a formula obeying the usual laws of
mathematics. This means that, in particular, the evaluation of the formula in
infinite precision yields an exact result and that algebraic rules like associativity,
commutativity or distributivity do not modify the meaning of a formula. How-
ever, floating-point arithmetic differs strongly from real number arithmetic: the
values have a finite number of digits and the algebraic laws mentioned earlier
no longer hold. Consequently, the evaluation by a computer of mathematically
equivalent formulas (for example x× (1 + x) and x + x2) possibly leads to very
different results.

Our work is motivated by the fact that, in programs, errors due to floating-
point arithmetic are very difficult to understand and to rectify. Recently, valida-
tion techniques based on abstract interpretation have been developed to assert
the numerical accuracy of these calculations [13, 8] but, while these tools enable
one to detect the imprecisions and, possibly, to understand their origin, they do
not help the programmer to correct the programs. Unfortunately, floating-point
arithmetic is not intuitive, making the debugging phase very difficult and em-
piric: there exists no methodology to improve the accuracy of a computation
and we have at most a set of tricks like “sort numbers increasingly before adding
them” or “use Horner’s method to evaluate a polynomial.” Performing these



transformations by hand is tedious because the computer arithmetic is subtle.
Therefore, their automatization is of great practical interest. Even if static anal-
ysis techniques have already given rise to industrially usable tools to assert the
numerical precision of critical codes [8, 9], there is an important gap between
validation and automatic correction. To our knowledge, this article is the first
attempt in that new direction.

We introduce a new kind of program transformation, in order to automati-
cally improve the “quality” of an arithmetic expression with respect to some
evaluation criterion: the precision of floating-point computations. We use P.
Cousot and R. Cousot’s framework for semantics program transformation [6]
by abstract interpretation [5] and we propose an offline transformation. The
methodology of [6] enables us to define a semantics transformation that would
be far more difficult to obtain at the syntactic level, since there is no strong
syntactic relation between the source and transformed expressions.

For the sake of simplicity, we restrict ourselves to arithmetic expressions,
neglecting, in this first work, the statements of a full programming language.
However, our techniques are not specific to expressions and can be extended to
complete programming languages.

The main steps of our method are the following. First, we introduce a non-
deterministic small-step operational semantics for the evaluation of real expres-
sions. Basically, algebraic laws like associativity, commutativity or distributiv-
ity make it possible to evaluate the same expression in many different ways
(all confluent to the same final result.) Next, the same semantics is applied
to floating-point arithmetic. In this case, different evaluations of an expression
yield different results because the algebraic laws of the reals do not work any
longer. Then we compute the quality of each execution path of the floating-point
arithmetic based semantics by means of a non-standard domain (e.g. the global
error arithmetic developed for validation of floating-point computation [13, 12]).
However, because there are too many paths in the previous semantics, we de-
fine a new abstract semantics in which sets of traces are merged into abstract
traces. Basically, we merge traces in which sub-expressions have been evaluated
approximatively in the same way, using abstract expressions of limited height.
The semantics transformation then consists of computing (approximatively) the
execution path which optimizes the quality of the evaluation. The correctness of
the transformation stems from the fact that, at the observational level (i.e. in
the reals), all the execution paths that we consider lead to the same final result.
Other classical abstractions of sets of numbers by intervals is used, in order to
deal with sets of values and to find the best expression for a range of inputs. A
prototype has been implemented and we also present some experimental results.

The rest of this article is organized as follows: Section 2 gives an overview
of our transformation and of the semantics we use. Section 3 and Section 4
introduce the concrete and abstract semantics. The transformation is presented
in Section 5 and experimental results are given in Section 6. Sections 7 and 8
are dedicated to perspectives and concluding remarks.



2 Overview

As mentioned in the introduction, we aim at transforming mathematic expres-
sions in order to improve the precision of their evaluation in floating-point arith-
metic. For example, let us consider the simple formula which computes the area
of a rectangular parallelepiped of dimension a× b× c:

A = 2×
(
(a× b) + (b× c) + (c× a)

)
(1)

Let us consider a thin parallelepiped of dimensions a = 1 b = c = 1
9 . With

these values, the examination of Equation (1) reveals that ab� ac and ab� bc.
It is well-known that in floating-point arithmetic, adding numbers of different
magnitude may lead to important precision loss: if x� y then, possibly, x+Fy =
y (this is called an absorption). In our example, absorptions arise in the direct
evaluation of A. The transformation introduced in this article enables one to
automatically rewrite the original expression (where d = 2):

d*(((a*b)+(b*c))+(c*a))
into the new expression:

(((c*a)*d)+(d*(b*c)))+(d*(a*b))
In this new formula, the smallest terms are summed first. Furthermore, the

product is distributed and this avoids a multiplication of roundoff errors of the
additions by a large value. This transformation relies on several semantics which
are summarized below.

– →F is the concrete semantics based on the floating-point arithmetic. This
semantics corresponds to the evaluation of an expression e by a computer.
→F is defined in Section 3.1.

– →R is the concrete semantics based on real number arithmetic. In R, alge-
braic rules hold, like associativity, distributivity, etc.→R is defined in Section
3.2.

– →E is the non-standard semantics based on the arithmetic of floating-point
numbers with global errors. This semantics calculates the exact global error
between a real computation and a floating-point computation [12].→E is
defined in Section 3.3.

– −→ is the non-standard semantics used to define our abstract interpretation.
−→ is defined in Section 4.1.

– A−→k is the abstract semantics. k is a parameter which defines the precision
of the semantics. A−→k is defined in Section 4.2.

3 Concrete Semantics of Expressions

In this section, we introduce some concrete semantics of expressions, for floating-
point arithmetic, for real arithmetic and for floating-point numbers with global
errors (the semantics →F, →R and →E mentioned in Section 2). →F is the se-
mantics used by a computer which complies with the IEEE754 Standard [1],→R



v = v1 +F v2

v1 + v2 →F v

e1 →F e′1
e1 + e2 →F e′1 + e2

e2 →F e′2
v1 + e2 →F v1 + e′2

v = v1 ×F v2

v1 × v2 →F v

e1 →F e′1
e1 × e2 →F e′1 × e2

e2 →F e′2
v1 × e2 →F v1 × e′2

Fig. 1. The reduction rules for floating point arithmetic.

is used in the correctness proofs where it plays the role of observer [6], and →E
is used to define non-standard and abstract semantics of programs.

For the sake of simplicity, we only consider elementary arithmetic expressions
generated by the grammar:

e ::= v | x | e1 + e2 | e1 × e2. (2)

In Equation (2), v denotes a value and x ∈ Id is a constant whose value is
given by a global environment. These global variables are implemented in our
prototype, and they introduce no theoretical difficulty. We omit them in all the
formal semantics.

3.1 Floating-Point Arithmetic Based Semantics

The semantics →F just defines how an expression is evaluated by a computer,
following the IEEE754 Standard for floating-point arithmetic.

Let ↑◦ : R→ F be the function which returns the roundoff of a real number
following the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼} [1]. ↑◦ is fully specified by
the IEE754 Standard which also requires, for any elementary operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (3)

Equation (3) states that the result of an operation between floating-point num-
bers is the roundoff of the exact result of this operation. In this article, we
also use the function ↓◦: R → R which returns the roundoff error. We have
↓◦ (r) = r− ↑◦ (r).

The floating-point arithmetic based semantics of expressions is defined by
the rules of Figure 1. This semantics is obvious but we will need it to prove the
correctness of the transformation in Section 4.3.

3.2 Real Arithmetic Based Semantics

The exact evaluation of the expressions in Equation (2) is given by the real
arithmetic. So, we define the reduction rules →R by assuming that any value v
belongs to R and by using the reduction rules of Figure 2 in which ⊕ and ⊗
stand for +R and ×R (the addition and product between real numbers).

The rules of equations (4) to (7) are straightforward. The rule of Equation
(8) relies on the syntactic relation ≡ defined as being the smallest equivalence



v = v1 ⊕ v2

v1 + v2 → v
(4)

v = v1 ⊗ v2

v1 × v2 → v
(5)

e1 → e′1
e1 + e2 → e′1 + e2

(6)

e1 → e′1
e1 × e2 → e′1 × e2

(7)

e ≡ e1 e1 → e′1 e′1 ≡ e′

e → e′
(8)

(i) (e1 + e2) + e3 ≡ e1 + (e2 + e3)
(ii) e1 + e2 ≡ e2 + e1

(iii) e ≡ e + 0
(iv) (e1 × e2)× e3 ≡ e1 × (e2 × e3)
(v) e1 × e2 ≡ e2 × e1

(vi) e ≡ e× 1
(vii) e1×(e2 +e3) ≡ e1×e2 +e1×e3

Fig. 2. The reduction rules for arithmetic expressions.

relation containing relations (i) to (vii) of Figure 2. The equivalence ≡ iden-
tifies arithmetic expressions which are equal in the reals, using associativity,
distributivity and the neutral elements of R. Equation (8) makes our transition
system non-deterministic: there exist many reduction paths to evaluate the same
expression. However, in R, this transition system is (weakly) confluent and all
the evaluations yield the same final result. This is summed up by the following
property in which →∗

R denotes the transitive closure of →R.

Property 1 Let e be an arithmetic expression. If e →R e1 and e →R e2 then
there exists e′ such that e1 →∗

R e′ and e2 →∗
R e′.

3.3 Global Error Semantics

To define the global error semantics→E, we first introduce the domain E = F×R.
Intuitively, in a value (x, µ) ∈ E, µ measures the distance between the floating-
point result of a computation x and the exact result. The elements of E are
ordered by (x1, µ1) ≺ (x2, µ2) ⇐⇒ µ1 ≤ µ2.

Formally, a value v is denoted by a pair (x, µ) where x ∈ F denotes the
floating-point number used by the computer and µ ∈ R denotes the exact error
attached to x. For example, in simple precision, the real number 1

3 is represented
by the value x = (↑◦ ( 1

3 ), ↓◦ ( 1
3 )) = (0.333333, ( 1

3 − 0.333333)). The semantics
interprets a constant c by (↑◦ (c), ↓◦ (c)) and, for v1 = (x1, µ1) and v2 = (x2, µ2),
the operations are defined by:

v1 +E v2 = (↑◦ (x1 +R x2), [µ1 + µ2+ ↓◦ (x1 +R x2)]) , (9)



v = v1 +E v2 ` 6∈ Dom(ρ)

〈ρ, σ, v`0
0 + v`1

1 〉 −→ 〈ρ[` 7→ ρ(`1) + ρ(`2)], σ[ρ(`1) + ρ(`2) 7→ v], v`〉
(11)

v = v1 ×E v2 ` 6∈ Dom(ρ)

〈ρ, σ, v`0
0 × v`1

1 〉 −→ 〈ρ[` 7→ ρ(v`1
1 )× ρ(v`2

2 )], σ[ρ(`1)× ρ(`2) 7→ v], v`〉
(12)

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e2〉
〈ρ, σ, e0 + e1〉 −→ 〈ρ′, σ′, e2 + e1〉

(13)

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e2〉
〈ρ, σ, e0 × e1〉 −→ 〈ρ′, σ′, e2 × e1〉

(14)

e ≡ e1 〈ρ, σ, e1〉 −→ 〈ρ′, σ′, e2〉 e2 ≡ e3

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e3〉
(15)

Fig. 3. The non-standard semantics.

v1 ×E v2 = (↑◦ (x1 ×R x2), [µ1x2 +R µ2x1 +R µ1µ2+R ↓◦ (x1 ×R x2)]) . (10)

The global semantics →E is defined by the reduction rules of equations (4)
to (8) of Figure 2 and by the domain E for the values. The operators ⊕ and ⊗
are the addition +E and the product ×E.

Similarly to the semantics →R of Section 3.2, →E is non-deterministic since
it also uses the rule of Equation (8) based on the syntactic relation ≡. However,
in E, the operations are neither associative nor distributive and the reduction
paths no longer are confluent.

Remark 2 In general, for an arithmetic expression e, there exist reduction steps
e→E e1 and e→E e2 such that there exists no expression e′ such that e1 →∗

E e′

and e2 →∗
E e′.

Nonetheless, the arithmetic E provides a way to compare the different exe-
cution paths of →E using the error measure µ attached to each value. We may
consider a path e→∗

E v1 is better than another path e→∗
E v2 if v1 ≺ v2. The code

transformation introduced in the following sections consists of building a new
arithmetic expression from the minimal trace corresponding to the evaluation of
an expression e. But because there are possibly an exponential number of traces
corresponding to the evaluation of e, we first merge some of them into abstract
traces. The transformation is then based on the minimal abstract trace.

4 Abstract Semantics

The abstract semantics A−→k, introduced in Section 4.2, relies on the non-standard
semantics −→ of Section 4.1. In Section 4.3, we prove the correctness of the ab-
straction.

4.1 Non-Standard Semantics

Basically, the non-standard semantics records, during a computation, how each
intermediary result (sub-expression reduced to a value) was obtained. A label



` ∈ L is attached to each value occurring in the expressions and we use two
environments: The function ρ : L →Expr maps any label ` to the expression
e whose evaluation has lead to v`. The environment σ : Expr → E maps
expressions to the result of their evaluation in the domain E. We let Envρ and
Envσ denote the sets of such environments. This information is useful in the
abstract semantics of Section 4.2.

Initially, a unique label is attached to each value occurring in an expression
and a fresh label is associated to the result of each operation. For example,
assuming that initially ρ(`1) = 1`1 , ρ(`2) = 2`2 and ρ(`3) = 3`3 , the expression
(1`1 + (2`2 + 3`3)) is evaluated as follows in the non-standard semantics:

〈ρ, σ, (1`1 + (2`2 + 3`3))〉 → 〈ρ′, σ′, 1`1 + 5`4〉 → 〈ρ′′, σ′′, 6`5〉

where ρ′ = ρ[`4 7→ 2`2 +3`3 ], σ′ = σ[2`2 +3`3 7→ 5], ρ′′ = ρ′[`5 7→ 1`1 +(2`2 +3`3)]
and s′′ = σ′[1`1 + (2`2 + 3`3) 7→ 6]. In this example, for the sake of simplicity,
values are integers instead of values of E.

The non-standard semantics is given in Figure 3. We assume that, initially,
ρ(`) = v` for any value v` occurring in the expression. Equations (11) and (12)
respectively perform an addition and a product in E. A new label ` is assigned
to the result v of the operation and the environment ρ is extended in order to
relate ` to the expression which has been evaluated. Similarly, σ is extended in
order to record the result of the evaluation of the expression. The other rules
only differ from the rules of the concrete semantics in that they propagate the
environments ρ and σ.

4.2 Abstract Semantics

In order to decrease the size of the non-standard semantics, the abstract seman-
tics merges traces in which sub-expressions have been evaluated approximatively
in the same way. More precisely, instead of the environments ρ and σ, we use ab-
stract environments ρ] mapping labels to abstract expressions of limited height
and abstract environments σ] mapping expressions of limited height to unions of
values. Next, we merge the paths in which sub-expressions have been evaluated
almost in the same way, i.e. by the same abstract expressions.

From a formal point of view, the set Expr]
k of abstract expressions of height

at most k is recursively defined by:

η0 ::= v]` | >η

ηk ::= ηk−1 | ηk−1 + ηk−1 | ηk−1 × ηk−1.
(16)

The values occurring in the abstract expressions belong to the abstract domain
E]. Let ℘(X) denote the powerset of X. Abstract and concrete floating-point
numbers with errors are related by the Galois connection

〈℘(E),⊆〉 −−−→←−−−α

γ
〈E],v]

E〉.

This connection abstracts sets of values of E by intervals in a componentwise
way. The partial order v]

E is the componentwise inclusion order on intervals.



v] =
S

η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

σ](η1) +]
E σ](η2) E =

S
η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

pη1 + η2qk σ]′ = σ] J
η1 ∈ ρ](`1), η2 ∈ ρ](`2)

η = pη1 + η2qk

ν = σ](η1) + σ](η2)

[η 7→ σ](η) ∪ ν]

〈ρ], σ], v`0
0 + v`1

1 〉 `=`1+`2−−−−−→ k
〈ρ][` 7→ ρ](`) ∪ E], σ]′, v`〉

(17)

v] =
S

η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

σ](η1)×]
E σ](η2) E =

S
η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

pη1 × η2qk σ]′ = σ] J
η1 ∈ ρ](`1), η2 ∈ ρ](`2)

η = pη1 × η2qk

ν = σ](η1)× σ](η2)

[η 7→ σ](η) ∪ ν]

〈ρ], σ], v`0
0 × v`1

1 〉 `=`1×`2−−−−−→ k
〈ρ][` 7→ ρ](`) ∪ E], σ]′, v`〉

(18)

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e2〉

〈ρ], σ], e0 + e1〉
A−→k 〈ρ]′, σ]′, e2 + e1〉

(19)

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e2〉

〈ρ], σ], e0 × e1〉
A−→k 〈ρ]′, σ]′, e2 × e1〉

(20)

e ≡k e1 〈ρ], σ], e1〉
A−→k 〈ρ]′, σ]′, e2〉 e2 ≡k e3

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e3〉

(21)

Fig. 4. The abstract semantics.

An expression e of arbitrary height can be abstracted by η ∈Expr]
k by means

of the operator peqk recursively defined as follows:

pv`qk = v` k ≥ 0
p>ηqk = >η k ≥ 0

pe1 + e2q0 = >η

pe1 × e2q0 = >η

pe1 + e2qk = pe1qk−1 + pe2qk−1 k ≥ 1
pe1 × e2qk = pe1qk−1 × pe2qk−1 k ≥ 1

Intuitively, peqk replaces in e all the nodes of height k which are not values by
>η. The function p.qk is indifferently applied to expressions e ∈Expr or abstract
expressions η ∈Expr]

k′ for any integer k′.
The abstract semantics, given in Figure 4, uses reduction rules of the form

〈ρ], σ], e〉 A−→k 〈ρ]′, σ]′, e′〉. The symbol k is a parameter of the semantics and A
is an action indicating which operation is actually performed by the transition.
Actions are used to build a new arithmetic expression from a trace and are
detailed in Section 5. The environment ρ] : L → ℘(Expr]

k) maps labels to
sets of abstract expressions. The environment σ] : Expr]

k → E] maps abstract
expressions to abstract values. The symbols Env]

ρ and Env]
σ denote the sets of

such environments. Intuitively, η ∈ Expr]
k abstracts a set S of expressions and



σ] relates η to an abstract value containing all the possible values resulting from
the evaluation of e ∈ S.

The expression σ][η 7→ v]] denotes the environment σ] extended by σ](η) =
v] and

σ]
⊙

η∈S, v]=f(η)

[η 7→ v]]

is a shortcut for σ][η1 7→ f(η1)][η2 7→ f(η2)] . . . [ηn 7→ f(ηn)], for all ηi, 1 ≤ i ≤ n,
such that ηi ∈ S.

In Figure 4, Equation (17) and Equation (18) are used for the addition and
for the product of two values, respectively. Let us assume that v`0

0 + v`1
1 is the

current expression. The values v1 and v2 result from the evaluation of some
expressions η1 ∈ ρ](`1) and η2 ∈ ρ](`2) (assuming that, initially, ρ](`) = v]` for
any value v]` occurring in the expression.) So, v] = σ](η1)+σ](η2). In Equation
(17), the result v] of the addition is obtained by joining the sums of all the
possible operands in σ](η1) and in σ](η2), for all possible abstract expressions
η1 ∈ ρ](`1) and η2 ∈ ρ](`2). Next, a fresh label ` is attached to v] and ρ] is
modified by assigning to ` the set E of abstract expressions which have possibly
been used to compute v]. Finally, σ] is updated: it is extended by assignments
[η 7→ σ](η)∪ν] where η is one of the possible expressions used to compute v and
ν is the corresponding abstract value.

Equation (18) is similar to Equation (17) and equations (19) and (20) present
no difficulty. Equation (21) is similar to equations (8) and (15): it introduces non-
determinism in the semantics by means of a syntactic equivalence relation but
now we use a new relation ≡k instead of the previous relation ≡.

Definition 3 Let ∼k⊆Expr×Expr be the equivalence relation defined by:

e ∼k e′ ⇐⇒ peqk = pe′qk.

Then ≡k⊆Expr×Expr is the quotient relation ≡ / ∼k.

Let us remark that ≡k is coarser than ≡ (which means that ≡⊆≡k) and
that, while the ≡-class Cl≡(e) of an expression e contains all the expressions
generated by the rules (i) to (vii) of Figure 2, the ≡k-class Cl≡k

(e) contains
only one element of each ∼k class among the ≡-equivalent elements.

At each step, our concrete and abstract semantics generate one new path per
element of the equivalence class of the current expression. As ≡k is coarser than
≡, the number of paths of the semantics based on ≡k is smaller than the number
of paths of the semantics based on ≡.

Property 4 Let e be an expression of size n.

(i) In the worst case, the ≡-class of e contains O(exp(n)) elements.
(ii) In the worst case, the ≡k-class of e contains O(nk) elements.

This property states that the number of expressions ≡k-equivalent to a given
expression e is a polynomial of degree k, in the size of e. A worst case consists



of taking a sequence of sums x1 + x2 + . . . + xn which, by associativity, can be
evaluated in n! ways using ≡ and in nk ways using ≡k, where k is a user-defined
parameter of the semantics.

4.3 Correctness of the Abstract Semantics

In this section, we show that the abstract semantics of Section 4.2 is a correct
abstraction of the non-standard semantics of Section 4.1. First, we relate the
environments used in the non-standard semantics and in the abstract semantics
by the Galois connections

〈℘(Envρ),⊆〉 −−−→←−−−
αρ

k

γρ
k 〈Env]

ρ,k,vρ〉 (22)

and
〈℘(Envσ),⊆〉 −−−→←−−−

ασ
k

γσ
k 〈Env]

σ,k,vσ〉. (23)

The partial order as well as abstraction and concretization functions for the first
kind of environments are defined by

ρ]
1 vρ ρ]

2 ⇐⇒ ∀` ∈ Dom(ρ]
1), ρ]

1(`) ⊆ ρ]
2(`), (24)

αρ
k(R) = ρ] : ∀` ∈ L, ρ](`) = ∪ρ∈Rpρ(`)qk, (25)

γρ
k(ρ]) = {ρ ∈ Envρ : ∀` ∈ L, pρ(`)qk ∈ ρ](`)}. (26)

The environment ρ]
1 is smaller than ρ]

2 if, for any label `, the set ρ]
1(`) is a subset

of ρ]
2(`). The abstraction αρ

k(R) of a set R = {ρ1, ρ2, . . . , ρn} of environments
is the abstract environment ρ] which maps any label ` to the set of abstract
expressions peqk such that ρi(`) = e for some 1 ≤ i ≤ n. Conversely, γρ

k is the
set of environments ρ which map ` to an expression e such that peqk = ρ](`).
Similarly, we have for the second kind of environments

σ]
1 vσ σ]

2 ⇐⇒ ∀η ∈ Dom(σ]
1), σ]

1(η) v]
E σ]

2(η), (27)

ασ
k (S) = σ] : ∀η ∈ Expr]

k, σ](η) = α({σ(η), σ ∈ S}), (28)

γσ
k (σ]) = {σ ∈ Envσ : ∀e ∈ Expr, σ(e) ∈ γ(σ](peqk))}. (29)

The environment σ]
1 is smaller than σ]

2 if σ]
1 maps any abstract expression η to

an abstract value smaller than σ]
2. The abstraction ασ

k and concretization γσ
k are

based on the Galois connection introduced in Section 4.2 to relate concrete and
abstract values.

Let 〈ρ, σ, e〉 −→n 〈ρ′, σ′, v〉 and 〈ρ], σ], e〉 A−→
n

k 〈ρ]′, σ]′, v]〉 denote sequences
of reduction steps of length n in the non-standard and abstract semantics, yield-
ing final values v and v], respectively. The following property holds.

Property 5 If 〈ρ, σ, e〉 −→n 〈ρ′, σ′, v〉 and if αρ
k(ρ) vρ ρ] and ασ

k (σ) vσ σ] then

〈ρ], σ], e〉 A−→
n

k 〈ρ]′, σ]′, v]〉 such that v ∈ γ(v]), αρ
k(ρ′) vρ ρ]′ and ασ

k (σ′) vσ σ]′.



Property 5 states that for any path of length n, in the non-standard semantics
which leads to a value v, there exists a path of the abstract semantics of length
n which leads to a value v] such that v ∈ γ(v]).
Proof
The proof is by induction on the length n of the reduction sequence. If n = 1
then e = v`1

1 + v`2
2 or e = v`1

1 × v`2
2 . Let us assume that e = v`1

1 + v`2
2 (the case

e = v`1
1 ×v`2

2 is similar). Let v = v1 +v2. In the non-standard semantics we have:

〈ρ, σ, e〉 −→ 〈ρ[` 7→ ρ(`1) + ρ(`2)], σ[ρ(`1) + ρ(`2) 7→ v], v`〉

In the abstract semantics we have 〈ρ], σ], e〉 A−→
n

k 〈ρ]′, σ]′, v]〉 with:

v] =
⋃

η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

σ](η1) + σ](η2)

As ρ(`1) = v`1
1 , ρ(`2) = v`2

2 , since by hypothesis, αρ
k(ρ) vρ ρ] and ασ

k (σ) vσ σ],
and also because in a Galois connection, γ ◦ α is extensive (R ⊆ γρ

k(αρ
k(R))

and S ⊆ γσ
k (ασ

k (S))), we thus have v1 ∈ γ(σ](ρ](`1))) and v2 ∈ γ(σ](ρ](`2))).
Consequently, v ∈ γ(v]).
The proof for n = 1 is completed without difficulty by showing that αρ

k(ρ′) vρ ρ]′

and ασ
k (σ′) vσ σ]′ with ρ′ = ρ[` 7→ ρ(`1) + ρ(`2)] and σ′ = σ[ρ(`1) + ρ(`2) 7→ v].

Now, we assume that the property holds for any m ≤ n and we consider a
sequence of length n + 1. We distinguish two cases:

– Rules of Equation (13) and Equation (14): if 〈ρ,σ,e0〉−→〈ρ′,σ′,e2〉
〈ρ,σ,e0+e1〉−→〈ρ′,σ′,e2+e1〉 then

〈ρ],σ],e0〉
A−→k〈ρ]′,σ]′,e2〉

〈ρ],σ],e0+e1〉
A−→k〈ρ]′,σ]′,e2+e1〉

. By our induction hypothesis, αρ
k(ρ′) vρ ρ]′ and

ασ
k (σ′) vσ σ]′. Now, 〈ρ′, σ′, e′〉 −→n 〈ρ′′, σ′′, v〉 and we may apply again our

induction hypothesis.
– Rule of Equation (15): let us assume that e≡e1 〈ρ,σ,e1〉−→〈ρ′,σ′,e2〉 e2≡e3

〈ρ,σ,e0〉−→〈ρ′,σ′,e3〉 .
Then, since, by definition of ≡k, ≡⊆≡k, e ≡ e1 ⇒ e ≡k e1 and e2 ≡ e3 ⇒
e2 ≡k e3. So, in the abstract semantics we have:

e ≡k e1 〈ρ], σ], e1〉
A−→k 〈ρ]′, σ]′, e2〉 e2 ≡k e3

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e3〉

Then we can complete the proof, by induction, in the same way as in the
previous case.

�

5 Semantics Transformation

The concrete semantics of an arithmetic expression is the floating-point seman-
tics→F defined in Section 3.1. Indeed, this is the only semantics which indicates
how an expression is actually evaluated by a computer. Given an expression e



and its (unique) execution trace t = e →∗
F v, the semantics transformation has

to generate a new trace t′ = e′ →∗
F v′ such that t and t′ are equal at some

observational level. This is performed in Section 5.1 by using the information
provided by the abstract semantics A−→k. In Section 5.2, we prove that e→∗

R v′′

and e′ →∗
R v′′ for the same value v′′, where →R is the semantics introduced in

Section 3.2.

5.1 Semantics Transformation

Because the abstract semantics A−→k of an expression e, as defined in Section
4.2, is non-deterministic, the abstract interpretation of e consists of a set of
traces. The semantics transformation τk is based on the trace e

A−→
∗
k v] which

optimizes the quality of the evaluation: recall, from Section 3.3, that, in the
global error based semantics, any value is a pair (x, µ) ∈ E where x is a com-
puter representable value and µ a measure of the quality of x. Recall also that
(x1, µ1) ≺ (x2, µ2) ⇐⇒ µ1 ≤ µ2. Let µ]

1 = [µ1, µ1] and µ]
2 = [µ2, µ2]. The

corresponding order in E] is:

(x]
1, µ

]
1) ≺] (x]

2, µ
]
2) ⇐⇒ max(|µ1|, |µ1|) ≤ max(|µ2|, |µ2|) (30)

In ≺], v]
1 is more precise than v]

2 if, in absolute value, the maximal error on v]
1

is less than the maximal error on v]
2.

The transformation τk is based on the minimal abstract trace e
A−→

∗
k v], i.e.

the trace which yields the minimal value v], in the sense of ≺]. Remark that,
since A−→k uses abstract values of E], the transformation τk minimizes the worst
error µ which may occurs during an evaluation. Therefore, τk minimizes the
precision lost which may arise during an evaluation in the worst case, that is for
the most pessimistic combination of data.

Because the semantics A−→k allows more steps than the semantics →F (in
→F an expression may not be transformed by ≡k), we cannot directly transform
a trace of A−→k into a trace of →F: we first have to rebuild the totally parsed
expression which has actually been evaluated by A−→k. This is achieved by using
the actions A appearing in the transitions of the abstract semantics and which
collect the operations actually performed along a trace.

Actions are expressions of the form ` = `1 + `2 or ` = `1 × `2, where `, `1
and `2 are labels belonging to L. An action ` = `1 + `2 indicates that the value
of label ` is the addition of the expressions of labels `1 and `2.

The expression generation function P is defined in Figure 5. P takes a trace,
an environment ι : L →Expr and computes a new environment ι′. For a trace
t] = 〈ρ], s], e〉 A−→

∗
k 〈ρ]′, σ]′, v]〉, initially assuming that ι(`) = v for any value v`

occurring in the source expression e, P(t], ι) = ι′(`), where ι′(`) is the expression
actually evaluated by t].

Let e be an arithmetic expression and let T ]
k (e) denote the set of evalua-

tion traces in the abstract semantics A−→k of e, i.e. T ]
k (e) = {〈ρ], σ], e〉 A−→

∗
k



P
“
〈ρ], σ], e〉 `=`1+`2−−−−−→ k

〈ρ]′, σ]′, e′〉, ι
”

= ι[` 7→ ι(`1) + ι(`2)] (31)

P
“
〈ρ], σ], e〉 `=`1×`2−−−−−→ k

〈ρ]′, σ]′, e′〉, ι
”

= ι[` 7→ `1 × `2] (32)

P
“
〈ρ], σ], v]`〉, ι

”
= ι(`) (33)

P
“
s1

A−→k s2
A−→k . . . sn, ι

”
= P

“
s2

A−→k . . . sn,P(s1
A−→k s2)

”
(34)

Fig. 5. Generation of the new expression.

〈ρ]′, σ]′, v]〉}. The minimal trace of T ]
k (e) is

min≺]T ]
k (e) = 〈ρ], σ], e〉 A−→

∗
k 〈ρ]′, σ]′, v]〉,

where v] ≺] v]′ whenever 〈ρ], σ], e〉 A−→
∗
k 〈ρ]′, σ]′, v]′〉 ∈ T ]

k (e).
The transformation is defined as follows:

Definition 6 Let e be an arithmetic expression. The semantics transformation
τk of e→F v is defined by

τk

(
e→F v, T ]

k (e)
)

= P
(
min≺]T ]

k (e)
)
→F v′. (35)

By Definition 6, the transformed trace is the evaluation trace in the floating-point
arithmetic based semantics of the expression P(e) generated from the minimal

trace e
A−→

∗
k v] = min≺]T ]

k (e).

5.2 Correctness of the Transformation

In order to prove the correctness of the transformation, we show that, at an ob-
servational level [6], the semantics of the original expression e and the semantics
of the transformed expression et are equal. Our observation consists of showing
that e and et compute the same thing in the exact arithmetic of real numbers.

Let αO be an observational abstraction αO : E → R which transforms a
floating-point number with errors into a real number, i.e. αO(x, µ) = x + µ. We
first introduce a lemma concerning the non-standard semantics.

Lemma 7 Let e be an arithmetic expression and let 〈ρ, σ, e〉 −→∗ 〈ρ′, σ′, v1〉
and 〈ρ, σ, e〉 −→∗ 〈ρ′′, σ′′, v2〉 be two paths of the non-standard semantics. Then
αO(v1) = αO(v2).

Lemma 7 stems from the fact that, in E, the errors are exactly computed. So,
from the perspective of αO, the traces of →E are identical to the traces of →R.

Lemma 8 Let et = P
(
t], ι

)
for some trace 〈ρ], s], e〉 A−→

∗
k 〈ρ]′, σ]′, v]〉 ∈ T ]

k (e).
Then e ≡ et.



As a consequence, in the non-standard semantics e and et lead to observationally
equivalent values. By Lemma 7, if 〈ρ, σ, e〉 −→∗ 〈ρ′, σ′, v〉 then, by the rule of
Equation (15), 〈ρ, σ, et〉 −→∗ 〈ρ′′, σ′′, v〉. Using Lemma 7 and Lemma 8, we have:

Property 9 Let e be an arithmetic expression, let t = e →∗
F v be the concrete

evaluation trace of e, and let t] = 〈ρ], s], e〉 A−→
∗
k 〈ρ]′, σ]′, v]〉 ∈ T ]

k (e).We have:

e→∗
R vR ⇐⇒ P(t], ι)→∗

R vR (36)

In particular, this property holds for the minimal trace used in Equation (35),
in the definition of τk.

6 Experimental Results

A prototype based on the abstract semantics of Section 4.2 and on the transfor-
mation of Section 5 has been implemented and, in this section, we present some
experimental results.

As explained in Section 2, adding numbers of different magnitudes may lead
to important precision loss by absorption. For example, in the IEEE754 simple-
precision format, 1.0 + 5e−8 = 1.0 while 1.0 + (2× 5e−8) 6= 1.0. We consider the
expression:

e = a× ((b + c) + d)

and the global abstract environment θ] such that:

a = [56789, 98765] b = [0, 1] c = [0, 5e−8] d = [0, 5e−8] (37)

Our prototype computes for this example (with k = 2):
(a*((b+c)+d)) -> ((a*b)+(a*(c+d)))

The sums are parsed in order to first add the smallest terms: this limits the
absorption. Furthermore, the product is distributed and this avoids the multi-
plication of roundoff errors of the additions by a large value and, consequently,
this also reduces the final error.

Using the domain E], which computes an over-approximation of the error
attached to the result of a floating-point computation, our prototype also outputs
a bound on the maximal error arising during the evaluation of an expression (for
any concrete set of inputs in the intervals given in Equation (37)). The errors
for the source and transformed expressions are:

– Error bound on (a*((b+c)+d)): [-1.5679E-2,1.5680E-2]
– Error bound on ((a*b)+(a*(c+d))): [-7.8125E-3,7.8126E-3]

The error on the transformed expression is approximatively half the error on the
original expression.

Our second example concerns the sum s =
∑4

i=0 xi, with xi = [2i, 2i+1]. The
results, for different values of k are given in the table below, where a, b, c, d and
e stand for x0, x1, x2, x3 and x4, respectively:



Case Expression Error bound

Source expression (((e+d)+c)+b)+a [-7.6293E-6,7.6294E-6]
k = 1 (b+a)+(c+(e+d)) [-5.9604E-6,5.9605E-6]
k = 2 (c+(b+a))+(e+d) [-4.5299E-6,4.5300E-6]
k = 3 (d+(c+(a+b)))+e [-3.5762E-6,3.5763E-6]

As the parameter k increases, the terms are more and more sorted, increasing
the precision of the result. With k = 3, the error is guaranteed to be less than
half the error on the original expression.

Another class of examples concerns the evaluation of polynomials. Again,
anybody familiar with computer arithmetic knows that, in general, factorization
improves the quality of the evaluation of a polynomial. In the abstract environ-
ment θ] in which an initial error has been attached to x: for x = ([0, 2], [0, 0.0005]),
we obtain the following results:

Case Expression Error bound

Source expression x+(x*x) [-1.800074334E-3,1.001074437E-3]
k = 2 (1.0+x)*x [-9.000069921E-4,1.010078437E-4]

Source expression (x*(x*x))+(x*x) [-1.802887642E-3,3.191200091E-3]
k = 3 (x+1.0)*(x*x) [-1.818142851E-4,1.390014781E-3]
k = 4 ((1.0+x)*x)*x [-9.091078216E-5,1.100112212E-3]

Our last example concerns the expression (a + b)2. If b� a, then we obtain
a better precision by developing the remarkable identity. Using a = [5, 10] and
b = [0, 0.001], our prototype outputs the following results.

Case Expression Error bound

Source expression (a+b)*(a+b) [-1.335239380E-5,1.335239381E-5]
k = 2 ((b*(a+b))+(a*b))+(a*a) [-7.631734013E-6,7.631734014E-6]
k = 3 (((b*a)+(b*b))+(b*a))+(a*a) [-7.631722894E-6,7.631722895E-6]

With k = 3 the transformation consists of finding the remarkable identity.
However, with k = 2, another formula which significantly improve the precision
has already been found.

7 Perspectives

We believe that the new kind of program transformation introduced in this
article can be improved and extended in many ways.

First of all, we aim at extending our methodology to full programming lan-
guages, with variables, loops and conditionals, instead of simple arithmetic ex-
pressions. We believe it is possible to rewrite computations defined among many
lines of code. General code transformation techniques [10] could be used. For
example, loop unfolding techniques can be used to improve the numerical preci-
sion of iterative computations. In addition, some statements may also introduce
precision loss, like assignments when processor registers have more digits than
memory locations [11]. This last remark also makes us believe that our program
transformation could be used on assembler codes, possibly at compile-time. We
are confident in the feasibility of such transformations for large scale programs,
static analyses for numerical precision having already been defined for general



programming languages and being implemented in analyzers used in industrial
contexts [8].

Another research direction concerns the abstract semantics. In this article, we
have presented a simple abstract semantics which could be improved in many
ways. For arithmetic expressions, more subtle abstractions could be defined,
which more globally minimize the error on an evaluation path. The semantics
of error series [13] could be useful in this context, but we believe that other
approaches could also be successfully developed.

The relation ≡, introduced in Section 2, identifies expressions which are equal
in the reals. These laws enable us to rewrite expressions. However, the relation
≡ is not unique and could be extended by many other laws. For example, some
laws can be used to improve the precision of floating-point computations, like
Sterbenz’s theorem for subtraction [14]. Other laws can be found in [3, 4, 2].

Finally, other applications could be studied. For example, finite precision
arithmetic is widely used in embedded systems. In order to implement a chain of
operations, the programmer often works as follows: the size of the inputs (their
number of digits) is know, and the result r of each elementary operation is stored
in a new number large enough to represent exactly r. Obviously, the designer of
an embedded system aims at limiting the sizes of the numbers and this strongly
depends on how the formula is implemented. Yet other applications, like code
obfuscation for arithmetic expressions without loss of precision, could also be
developed, the framework of semantics program transformation having already
been used in this context [7].

8 Conclusion

In this article, we have introduced a semantics-based program transformation for
arithmetic expressions, in order to improve the quality of their implementation.
This work is a first step towards the automatic improvement of large scale codes
containing numerical computations. This research direction could find many ap-
plications, in the context of embedded softwares as well as for numerical codes.
In addition, this program transformation can be used either as a source to source
transformation or at compile-time, during the low-level code generation phase.

We believe that our method can be improved and extended in many direc-
tions and some issues have been discussed in Section 7. Meanwhile, the exper-
imental results of Section 6 show that the transformation of simple arithmetic
expressions, using a simple analysis, already yield interesting results.

We also believe that the framework of semantics program transformation [6]
was very helpful to define our method, which would have been more difficult to
design and prove at the syntactic level.

More generally, our approach relies on the assumption that, concerning nu-
merical precision, a program can be viewed either as a model or as an implemen-
tation. More precisely, a formula occurring in a source code may be considered
as the specification of what should be computed in the reals as well as a se-
quence of machine operations. We used the first point of view to generate a new



sequence of operations. We believe that this approach may lead to many further
developments in the domain of program transformation for numerical precision,
independently of the techniques used in this article which represent our first
attempt to automatically improve the accuracy of numerical programs.
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