
SLA++P 2008

Static Analysis of Simulink Programs

Alexandre Chapoutot1

CEA, LIST - Laboratoire MeASI
Bôıte courrier 94 F91191 Gif-sur-Yvette Cedex, France

Matthieu Martel2

Laboratoire ELIAUS-DALI
Univeristé de Perpignan Via Domitia

52, avenue Paul Alduy F66860 Perpignan Cedex, France

Design tools are needed to cope with the growth of complexity of embedded
systems. SimulinkTMor Lustre/SCADETM[3] are the main industrial tools achiev-
ing this goal. But despite of the numerous features proposed by both tools, like
simulation, test or code generation, Simulink is most of the time chosen because of
its important system design expressiveness. It can model and simulate continuous
time systems, discrete time systems or a mix of both. So in the case of embedded
systems, it offers a convenient way to design an embedded software and its physical
environment. The application of formal methods on such programs seems to be a
good way to validate the high level specification of embedded systems.

We are working on defining a static analysis by abstract interpretation[2] of
Simulink programs named Abstract Simulation (A.S.). In general, Simulink pro-
gram executions are used to assess ”good” program behaviors (called simulation
phase in Simulink). The aim of A.S. is to provide a correctness criterion on the
Simulink phase and then replace test activity by validation method. In order to
handle continuous time parts and discrete time parts of Simulink programs, we
have to design a static analysis manipulating different numerical domains: the do-
main of Taylor series for the continuous time one (inspired from [5]) and the domain
of floating-points with errors [4] for the discrete time one. Moreover, in order to
deal with dynamical systems, that is systems which evolve during time, we also use
a close Kahn’s sequence semantics [1] to represent the temporal evolution.

The property validated with our approach is depicted in Figure 1. We evalu-
ate the time sampling approximation related to the error introduced by numerical
integration algorithms (Simulink solver). These numerical algorithms are used in

1 Email: alexandre.chapoutot@cea.fr
2 Email: matthieu.martel@univ-perp

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:alexandre.chapoutot@cea.fr
mailto:matthieu.martel@univ-perp.fr


Continuous
time inputs

Taylor series
method

Simulink
method

Time sampling
approximation

Quantification
approximation

Correction
criterion of
simulation

F

F

R

Continuous time Discrete time

Fig. 1. Static analysis property of Simulink programs

the continuous time part of a Simulink program. This is done by comparing values
given by the solver and values issued from a Taylor series method. Furthermore, the
quantification approximation measures rounding errors introduced by floating point
computations compared to real ones for the discrete time part. We use abstract
interpretation in order to validate classes of Simulink programs and, consequently,
a set of behaviors. We are currently implementing a prototype and experimental
results should be available soon.

We represent in Figure 2 an example of Simulink program that we would like to
analyze. The main program (Figure 2(a)) is a composition of one continuous time
program representing a mechanical system: a mass-spring-damper (Figure 2(b))
and one discrete time program which computes the sign of the difference of two
consecutive inputs (Figure 2(c)).

1

Out

F Out

Discrete

In F

Continuous

1

In

(a) Main program

1

F

1/s

1/s

Integrator

100

250

0.5

Gain

1

In

(b) A mechanical system

1

Out

z

1

Unit Delay

Subtract Sign

1

F

(c) Controller

Fig. 2. A Simulink program.

References

[1] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In International Federation
of Information Processing (IFIP’74), 1974.

[2] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Principles of Programming Languages
(POPL’77), ACM, pages 238–252. ACM Press, 1977.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a Declarative Language for Real-Time
Programming. In Principles of Programming Languages (POPL’87), pages 178–188, New York, NY,
USA, 1987. ACM Press.

[4] M. Martel. Semantics of Roundoff Error Propagation in Finite Precision Computations. Journal of
Higher Order and Symbolic Computation, 19(1):7–30, 2004.

[5] A. Chapoutot and M. Martel. Différentiation automatique et formes de Taylor en analyse statique
de programmes numériques (in French). In AFADL’07, Approches Formelles dans l’Assitance au
Développement de Logiciels, 2007.


	References

