
An Overview of Semantics
for the Validation of Numerical Programs

Matthieu Martel

CEA - Recherche Technologique
LIST-DTSI-SOL

CEA F91191 Gif-Sur-Yvette Cedex, France

e-mail : mmartel@cea.fr

Abstract. In this article, we introduce a simple formal semantics for
floating-point numbers with errors which is expressive enough to be for-
mally compared to the other methods. Next, we define formal semantics
for interval, stochastic, automatic differentiation and error series meth-
ods. This enables us to formally compare the properties calculated in
each semantics to our reference, simple semantics. Most of these meth-
ods having been developed to verify numerical intensive codes, we also
discuss their adequacy to the formal validation of softwares and to static
analysis. Finally, this study is completed by experimental results.

1 Introduction

Interval computations, stochastic arithmetics, automatic differentiation, etc.:
much work is currently done to estimate and to improve the numerical accu-
racy of programs. Beside the verification of numerical intensive codes, which is
the historical applicative domain of these methods, a new problematic is growing
that concerns the formal validation of the accuracy of numerical calculations in
critical embedded systems.

Despite the large amount of work in this area, few comparative studies have
been carried out. This is partly due to the fact that the numerical properties
calculated by different methods are difficult to relate. For example, how to com-
pare results coming from interval arithmetics to the ones obtained by automatic
differentiation?

This article attempts to clarify the links between the most commonly used
methods among the above-mentioned ones. First, we introduce a simple formal
semantics for floating-point numbers with errors which is expressive enough to be
formally compared to the other methods. This semantics is a special instance of a
familly of semantics introduced recently [22]. Next, we define formal semantics for
interval, stochastic, automatic differentiation and error series methods which are
usually expressed in other, less semantical, settings. This enables us to compare
the properties calculated by each semantics to our reference semantics and to
oversee how different methods could be coupled to obtain more accurate results.

Most of these methods having been developed to verify numerical intensive
codes, we discuss their adequacy to the formal validation of critical systems.



From our point of view, a method is well suited for the validation of embedded
applications if it enables the user to detect errors in an application that uses
standard, non-instrumented, floating-point numbers, once embedded. In addi-
tion, we discuss the adequacy of the different semantics to static analysis. We
complete our study by conducting some experiments. The methods described in
this article are applied to simple examples, to show their ability and limits to
detect numerical errors in C codes.

We limit our study to the semantics dealing with numerical precision. This
excludes other interesting related works that also contribute to the validation of
the numerical accuracy of softwares, like formal proof techniques of numerical
properties over the floating-point numbers (e.g. [5, 10, 19]), or constraints solvers
over the floating-point numbers which are used for structural test case generation
[24]. It also excludes alternative arithmetics enabling to improve the accuracy
of the float operations like multiple precision arithmetics [18, 29] or exact arith-
metics [28]. These alternative arithmetics are more accurate than the standard
floating-point numbers but they do not provide information on the precision of
the results.

This article is organized as follows. Section 2 briefly presents some aspects of
the IEEE 754 Standard. In Section 3, we introduce a simple semantics attaching
to each floating-point number an error term measuring the distance to the exact
real number which has been approximated. Next, this semantics is compared to
other semantics, based on interval arithmetics (Section 4), stochastic arithmetics
(Section 5), automatic differentiation (Section 6) and error series (Section 7). In
Section 8, we discuss the adequacy of each method to static analysis and finally,
in Section 9, we present experimental results illustrating how the techniques
described in this article work on simple examples. Section 10 concludes.

2 Floating-point numbers

The IEEE 754 Standard specifies the representation of floating-point numbers as
well as the behavior of the elementary operations [2, 11]. It is now implemented in
almost all modern processors and, consequently, it provides a precise semantics,
used as a basis in this article, for the basic operations occurring in high-level
programming languages. First of all, a floating-point number x in base β is
defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits
0 ≤ di < β1, 0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤
emax. The IEEE Standard 754 specifies a few values for p, emin and emax. For
example, simple precision numbers are defined by β = 2, p = 23, emin = −126
and emax = +127. the standard also defines special values like NAN (not a
number) or ±∞. In this article, the notation F indifferently refers to the set

1 d0 6= 0 but for denormalized numbers.

2



of simple or double precision numbers, since our assumptions conform to both
types. R denotes the set of real numbers.

The standard defines four rounding modes for elementary operations between
floating-point numbers. These modes are towards −∞, towards +∞, towards
zero and to the nearest. We write them ◦−∞, ◦+∞, ◦0 and ◦∼ respectively. Let
↑◦ : R → F be the function which returns the roundoff of a real number following
the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼}. ↑◦ is fully specified by the norm. The
standard specifies the behavior of the elementary operations 3 ∈ {+, −, ×, ÷}
between floating-point numbers by

f1 3F,◦ f2 = ↑◦ (f1 3R f2) (2)

In this article, we also use the function ↓◦: R → R which returns the roundoff
error. We have ↓◦ (r) = r− ↑◦ (r).

Many reasons may lead to an important loss of accuracy in a float compu-
tation. For example, a catastrophic cancellation arises when subtracting close
approximate numbers x and y [11]. An absorption arises when adding two num-
ber of different magnitude x � y; in this case x +F y = y with x 6= 0.

The error due to the roundoff of an initial datum or resulting from the round-
off of the result of an operation is called a first order error. When errors are mul-
tiplied together, we obtain higher order errors. For example (x+ εx)× (y + εy) =
xy + xεy + yεx + εxεy. Here, xεy + yεx is the new first order error and εxεy is a
second order error.

The errors arising during a float computation can be estimated in different
ways. Let gR : R → R be a function of the reals and gF : F → F its
implementation in the floating-point numbers. The forward error estimates, for
a given input x the distance d(gR(x), gF(x)). The backward error B(x) determines
whether the approximated solution gF(x) is the exact solution to a problem close
to the original one [8]: B(x) = inf

{
d(x, y) : y = g−1

R (gF(x)
}

Most of the existing automatic methods (and all the methods used in this
article) compute forward errors.

3 Global error

In this section, we introduce the semantics [[.]]E which is used as a reference in
the rest of this article. [[.]]E computes the floating-point number resulting from a
calculation on a IEEE 754 compliant computer as well as the error arising during
the execution. In other words, this semantics calculates the forward error, as
defined in Section 2, between the exact result of a problem in the reals and the
approximated solution returned by a program. To calculate the exact errors, [[.]]E
uses real numbers and, consequently, it remains a theoretical tool. This semantics
corresponds to the semantics SL′

introduced in [22].
Formally, in [[.]]E, a value v is denoted by a two-dimensional vector v =

fεf + eεe. f ∈ F denotes the float used by the machine and e ∈ R denotes
the exact error attached to f . εf and εe are formal variables used to identify
the float and error components of v. For example, in simple precision, using the

3



x1 = f1εf + e1εe and x2 = f2εf + e2εe (3)

x1 + x2 =↑◦ (f1 + f2)εf + [e1 + e2+ ↓◦ (f1 + f2)] εe (4)

x1 − x2 =↑◦ (f1 − f2)εf + [e1 − e2+ ↓◦ (f1 − f2)] εe (5)

x1 × x2 =↑◦ (f1 × f2)εf + [e1f2 + e2f1 + e1e2+ ↓◦ (f1 × f2)] εe (6)

1

x1
=↑◦

„
1

f

«
εf +

24↓◦ „ 1

f

«
+
X
n≥1

(−1)n en

fn+1

35 εe (7)

Fig. 1. The semantics [[.]]E.

functions ↑◦ and ↓◦ introduced in Section 2, the real number 1
3 is represented

by the value v =↑◦ ( 1
3 )εf+ ↓◦ ( 1

3 )εe = 0.333333εf + ( 1
3 − 0.333333)εe. The

semantics interprets a constant d as follows:

[[d]]E =↑◦ (d)εf+ ↓◦ (d)εe (8)

The semantics of elementary operations is defined in Figure 1, the operands
x1 and x2 being given in Equation (3). Equations (4−6) are immediate. For
Equation (7), recall that 1

1+x =
∑

n≥0(−1)nxn for all x such that −1 ≤ x ≤ 1.
We have:

1
f + e

=
1
f
× 1

1 + e
f

=
1
f
×

∑
n≥0

(−1)n en

fn

The power series development is valid for −1 ≤ e
f ≤ 1 or, equivalently, while

|e| ≤ |f |, i.e. as long as the error is less than the float in absolute value. The
semantics of the square root function is obtained like for division but the other
elementary functions (e.g. the trigonometric ones) are more difficult to han-
dle, due to the fact that the IEEE 754 Standard does not specify how they
are rounded. [[.]]E calculates the floating-point numbers returned by a program
and the exact difference between the float and real results, as outlined by the
following proposition.

Proposition 1 Let a be an arithmetic expression. Then if [[a]]E = fεf + eεe

then [[a]]F = f and [[a]]R = f + e.

By relating [[.]]E to the semantics [[.]]R of real numbers and to the semantics [[.]]F
of floating-point numbers, Proposition 1 provides a correctness criterion for [[.]]E.

[[.]]E is well suited for the formal validation of critical systems because it ex-
actly gives the floating-point numbers f used by the non-instrumented embedded
code running on a IEEE 754 compliant computer as well as the error e arising
when f is used instead of the exact value f +e. However, this semantics remains
a theoretical tool since it uses real numbers and the function ↓◦ which cannot
be exactly calculated by a computer in general. In the next sections, we use it as
a reference in the study of other, approximate, semantics. We will compare the
other methods in their ability to estimates the quantities f and e that define the

4



values fεf +eεe of [[.]]E. The link between [[.]]E and the other methods is summed
up by propositions 2, 3, 4 and 5.

4 Intervals

The classical semantics of intervals [[.]]I aims at bounding the real result of a
calculation by a lower and an upper float value [27]. Obviously, the semantics of
a constant d is

[[d]]I = [↑−∞ (d), ↑+∞ (d)] (9)

Similarly, let x1 = [x1, x1] and x2 = [x2, x2] be two float intervals, let 3 be an
elementary operation, and let i = [i, i] be the interval with real bounds defined
by i = x13x2. [[x13x2]]I is defined by:

[[x13x2]]I = [↑−∞ (i), ↑+∞ (i)] (10)

Basically, an interval computation bounds a real number by two floating-point
numbers, the maximal float smaller or equal to the real and the minimal float
greater or equal the real. In other terms, using the formalism of Section 3, an
interval computation approximates from below and from above the sum f + e
corresponding to the float f and to the exact error e calculated by [[.]]E. This is
summed up in the following proposition.

Proposition 2 Let a be an arithmetic expression such that [[a]]E = fεf + eεe

and [[a]]I = [x, x]. Then we have [[f + e]]I ⊆ [x, x].

Note that if the interval bounds are expressed with the same precision as in the
original program, as in the semantics defined by equations (9) and (10), then
the result [x, x] output by the interval method bounds both the float result f
and the real result f + e. Otherwise, if the interval bounds are expressed with
a greater precision than in the non-instrumented code then the interval method
bounds the real result f + e but not necessary the float result f . In this latter
case, the method does not enable one to predict how a program behaves when
using standard floating-point numbers.

Because [[.]]I always adds the error terms to the floating-point numbers, an
interval computation does not distinguish two different kinds of errors:

1. Sensivity errors, due to the fact that a small variation of the inputs may
yield a large variation of the outputs, even with real numbers.

2. Numerical errors, due to the fact that a float calculation may diverge from
a real calculation.

For example, numerical errors arise in the following program which uses simple
precision floating-point numbers:

float x=1.0;

float y=1.0e-8;

for(int i=0;i<1e8;i++) {

x=x-y;

}

5



The value 10−8 being subtracted 108 times to 1, the exact result in the
reals is xR = 0. But 10−8 is less than the least significant digit of the float 1.0
and, consequently, an absorption occurs: 1.0 − 10−8 = 1.0 in the floating-point
numbers. So, at the end of the iteration xF = 1.0. The interval semantics defined
by equations (9) and (10) returns an interval xI ⊇ [0, 1], indicating that the
exact result is between 0 and 1. In [[.]]E, xE = 1.0εf − 1.0εe which means that
the float value of x is 1 and that the exact forward error on x is −1.

As illustrated by our example, [[.]]I provides less information than the seman-
tics of global errors because no distinction is made between the float and er-
ror terms. Nevertheless, when the interval resulting from a calculation is small,
we may conclude that the error term also is small. In this case, an interval
method can validate a calculation. In addition, intervals can be used to im-
plement the theoretical semantics [[.]]E, yielding a new semantics [[.]]EI. A value
v = fεf + [x, x]εe of [[.]]EI is made of a float f and an interval of error [x, x].
The elementary operations are defined by the rules of Figure 1, in which the
computations on error terms are carried out in [[.]]I.

Examples of interval arithmetic libraries are Boost [6] and MPFI [30], the
latter being based on the multiple precision library MPFR [18]. Implementations
of multiple precision interval libraries are compared in [17].

5 Stochastic arithmetics

Stochastic arithmetics consists of running a few times the same program, the
roundoff errors being, at each run, randomly propagated. The common digits
of the results of all the executions are assumed exact [9, 31]. The stochastic
arithmetic semantics [[.]]S, introduces the random roundoff function ↑? : F → F
defined by:

↑? (d) =
{

either ↑−∞ (d)
or ↑+∞ (d) with probability

1
2

(11)

In stochastic arithmetics, the n executions of a program are usually carried out
synchronously, to cope with control flow problems, like ensuring that all the
executions take the same branches. So, a stochastic value is a n-tuple containing
the n values assigned to a number. A constant d is interpreted by:

[[d]]S = (↑? (d), . . . , ↑? (d)) (12)

and, for any elementary operation 3, we have:

[[x 3 x′]]S = (↑? (x13x′1), . . . , ↑? (xn3x′n)) (13)

[[.]]S uses the fact that roundoff errors usually cancel each other. This enables the
user to obtain less pessimistic results than, e.g., with interval arithmetics. More
precisely, the mean x of the result x = (x1, . . . , xn) of the n runs approximates
the real result xR of the calculation. Let C(x, xR) denote the number of digits
common to x and xR. Using Student’s test, the method makes it possible to
compute C(x, xR) with probability P [9].

6



Proposition 3 Let a be an expression such that [[a]]S = (x1, . . . , xn) and [[a]]E =
fεf +eεe. Then, with probability P , x and f +e have C(x, f +e) common digits,

where: C(x, f + e) = log10

(√
n|x|

στP

)
σ2 = 1

n−1

∑n
i=1 (xi − x)2

For n = 3 and P = 0.95, τP = 4, 303. However, Proposition 3 is based on
the hypothesis that the roundoff errors are uniform and independent, the latter
meaning that the errors arising at each step of a calculation are not correlated
with each other. This is not always the case, mainly for loops. For example, in
the program of Section 4, the same roundoff error is made at each iteration.
In addition, Proposition 3 assumes that higher order errors are negligible with
respect to the first order errors. In Section 6, we introduce an example for which
this assumption does not hold.

Because [[.]]S approximates, with probability P , the exact result of a program
p in the reals, it does not enable the user to ensure that no precision loss arises in
the non-instrumented execution of p which uses standard floating-point numbers.
However, even if this method is mainly taylored to detect stability problems in
the algorithms used in a program, it can assert the validity of a floating-point
calculation when (1) C(x, xR) is high and (2) x is close to the float result f .

An issue to improve a stochastic arithmetics for validation would be to define
a new semantics [[.]]ES based on [[.]]E. In this new semantics, the exact error terms
of [[.]]E would be computed in [[.]]S. A value v = fεf + eεe of [[.]]ES would be made
of a float f and an error e which would be a stochastic number of [[.]]S. However,
the hypotheses and the correctness proofs of [[.]]S must be revisited. The CADNA
library implements stochastic arithmetics [7].

6 Automatic differentiation

In this section we introduce a simple semantics performing an automatic differ-
entiation of programs. More elaborated techniques are described in the references
mentioned later on. In automatic differentiation [3, 16], one considers that a pro-
gram p calculates a function g of the data for which we are going to evaluate, at
the same time as g, the numerical values of the derivatives. If d1, . . . , dn denote
the data used in p, then the program calculates the final values v1, . . . , vm such
that: 0B@ v1

...
vm

1CA =

0B@ g1(d1, . . . , dn)
...

gm(d1, . . . , dn)

1CA (14)

v1, . . . , vm are the final results of the program, at the end of the execution.
For each 1 ≤ i ≤ m, vi is a function gi of the data d1, . . . , dn. Automatic
differentiation aims at numerically calculating, in addition to the terms vi, the
partial derivatives ∂gi

∂dj
(d1, . . . , dn) for all 1 ≤ j ≤ n. By determining whether

a slight modification of the initial value dj implies a large modification of the
result vi, the partial derivative ∂gi

∂dj
(d1, . . . , dn) indicates the sensitivity of vi to

the variations of dj . If ∂gi

∂dj
(d1, . . . , dn) ≈ 0, vi is not much sensitive to a variation

7



v1 = (f1, δ1, . . . , δn) and v2 = (f2, η1, . . . , ηn) (17)

[[v1 + v2]]D = (f1 + f2, δ1 + η1, δ2 + η2, . . . , δn + ηn) (18)

[[v1 − v2]]D = (f1 − f2, δ1 − η1, δ2 − η2, . . . , δn − ηn) (19)

[[v1 × v2]]D = (f1 × f2, f1η1 + f2δ1, f1η2 + f2δ2, . . . , f1ηn + f2δn) (20)

[[
v1

v2
]]D =

„
f1

f2
,
f2δ1 − f1η1

f2
2

,
f2δ2 − f1η2

f2
2

, . . . ,
f2δn − f1ηn

f2
2

«
(21)

Fig. 2. The semantics [[.]]D for automatic differentiation.

of dj . If ∂gi

∂dj
(d1, . . . , dn) > 1 then the error on dj is magnified in vi by a factor

approximately equal to ∂gi

∂dj
(d1, . . . , dn).

The most intuitive way to calculate the derivatives is to achieve a linear
approximation of order one by means of the well-known formula:

g′(x) ≈ g(x + ∆x)− g(x)
∆x

(15)

However this method yields imprecise results, due to the fact that ∆x is usu-
ally small. Instead, automatic derivation techniques calculate the derivatives by
composing elementary functions, according to the chain rule:

(f ◦ g)′(x) =
[
f(g(x))

]′ = g′(x)× f ′(g(x)) (16)

Each function gi is viewed as a chain of elementary functions such as additions,
products, trigonometric functions, etc. The derivatives ∂gi

∂dj
(d0, . . . , dn) are cal-

culated by the rule of Equation (16).
The semantics [[.]]D of Figure 2 achieves a sensitivity analysis to the data of

a program p, by automatic differentiation. For a constant di, we have

[[di]]D =
(
di, δ1 = 0, . . . , δi = 1, . . . , δn = 0

)
(22)

A numerical value v of [[.]]D is a (n + 1)-tuple (f, δ1, . . . , δn). Intuitively, at some
stage of the execution of p, v is the result of an intermediate calculation. In other
terms, for a certain function g, the program p has calculated h1(d1, . . . , dn) such
that g((d1, . . . , dn)) = h2 ◦ h1(d1, . . . , dn) for some function h2 and the current
value v of [[.]]D represents

v = (f, δ1, . . . , δn) =

„
h1(d1, . . . , dn),

∂h1

∂d1
(d1, . . . , dn), . . . ,

∂h1

∂dn
(d1, . . . , dn)

«
(23)

Automatic differentiation can be viewed as a way to approximately calculate
the error term eεe of the semantics [[.]]E. Given a program that implements a
function g, [[.]]E calculates:

[[g(d1, . . . , dn)]]E = xr = frεf + erεe (24)

8



In the simplest case m = n = 1, i.e. for a program p calculating a function g
of a single datum d1, we can estimate the error term er of Equation (24) from
the numerical values g(d1) and ∂g

∂d1
(d1) returned by [[g(d1)]]D. Let ed1 denote the

initial error on the argument d1 of g. By linear approximation, we have

xr ≈ g(d1)εf +
(

ed1 ×
∂g

∂d1
(d1)

)
εe (25)

In Equation (25), the exact error term er is approximated by ed1 ×
∂g
∂d1

(d1).
In the general case, i.e. if m ≥ 1 and n ≥ 1, we have the following property.

Proposition 4 Let e1, . . . , en be the initial errors attached to data d1, . . . , dn

and let v1, . . . , vm be the results of a computation as defined in Equation (14).
If in the semantics [[.]]E, for all 1 ≤ i ≤ m, vi = [[gi(d1, . . . , dn)]]E = xiεf + eri

εe

then, in [[.]]D, vi = [[gi(d1, . . . , dn)]]D = (yi, δi,1, . . . , δi,n) such that xi = yi and
such that the error term eri

on the final result vi is linearly approximated by:

eri ≈
∑

1≤j≤n

ej × δi,j (26)

The main drawback of automatic differentiation stems from the linear ap-
proximation made in Equation (25), which may under-estimate the errors (or
over-estimate them, though it is usually less critical for validation). For exam-
ple, let us consider the function:

float g(float x,int n) {

y=x;

for (int i=0;i<n;i++) { y=y*x; };

return y;

}

In this function, if the parameter x = fεf +eεe is such that f < 1 and f +e > 1
then, in the floating-point numbers, g(x) → 0 as n → ∞, while in the reals,
g(x) = g(f + e) → ∞ as n → ∞. In [[.]]D, the value returned by g(x, n) is
(fn+1, nfn), where the component nfn gives the sensitivity of g to the parameter
x. If f < 1 then nfn → 0 as n → ∞ and the approximation of Equation
(26) may become irrelevant. For instance, if x = 0.95εf + 0.1εe then on one
hand we have [[g(x, n)]]E → 0εf + ∞εe as n → ∞ while, on the other hand
[[g(x, n)]]D → (0, 0) as n → ∞ In this example, Equation (26) leads to the
erroneous conclusion that for x = 0.95εf + 0.1εe, ex ≈ 0.

In addition, automatic differentiation only takes care of the errors on the
initial data, neglecting the errors introduced by the operations, during the cal-
culation. For example, from Equation (4), the semantics [[.]]E of an addition is:

x1 + x2 =↑◦ (f1 + f2)εf + [e1 + e2+ ↓◦ (f1 + f2)] εe

[[.]]D makes it possible to estimate the terms e1 and e2 but neglects the error
introduced by the addition itself, namely ↓◦ (f1 + f2). Finally, the higher-order

9



error terms also are neglected. For example, the term e1e2 occuring in the result
of the product of Equation (6) is ignored.

Bischof et al. have recently published an overview of the implementations of
automatic differentiation libraries [3]. In certain cases, automatic differentiation
can also be used to improve the precision of a calculation, by adding correcting
terms to the floating-point numbers computed by the machine [20, 21]. In this
case, roundoff errors introduced by the elementary operations are not neglected
and one can guarantee the precision of the final result.

7 Error series

In this section, we introduce the semantics [[.]]W of error series [13, 22]. The
semantics [[.]]E of Section 3 globally computes the difference between the float
and the real result of a calculation. However, when this error term is large, no
hint is given to the programmer concerning its source. [[.]]W is a generalization of
[[.]]E in which the roundoff errors arising at any stage of a calculation are traced,
in order to detect which of them mainly contribute to the global error.

[[.]]W assumes that the control points of the program are annotated by unique
labels ` ∈ L. A value of [[.]]W is a series

r = fε +
∑
`∈L

ω`ε` (27)

Error series generalize the values of [[.]]E. In Equation (27), f is the float ap-
proximating the value of r. f is always attached to the formal variable ε whose
index is the empty word. A term ω`ε` denotes the contribution to the global
error of the first-order error introduced by the operation labeled ` during the
evaluation of r. ω` ∈ R is the scalar value of this error term and ε` is a formal
variable. A special label hi which corresponds to no particular control point is
used to identify the higher order errors. This comes from previous work [22]
which introduces more general semantics for error series. Error terms of order n
correspond to words of length n and the empty word ν is related to the term for
the floating-point number. The multiplication of terms of order m and n yields
a new term of order m + n denoted by a word of length m + n. In this article,
hi identifies all the words of length greater that one and the product of formal
variables is defined by Equation (28).

εu × εv =
{

εuv if length(uv) ≤ 1
εhi otherwise (28)

The elementary operations are defined in Figure 3 for r1 = f1ε1+
∑

`∈L+ ω`
1ε`

and r2 = f2ε2 +
∑

`∈L+ ω`
2ε`. L+ denotes the set L without the empty word. In

addition, the symbols f and ω are used interchangeably to denote the coefficient
of the variable ε. The formal series

∑
`∈L ω`ε` related to the result of an op-

eration 3`i contains the combination of the errors on the operands plus a new
error term ↓◦ (f13f2)ε`i corresponding to the error introduced by the operation

10



r1 +`i r2
def
= ↑◦ (f1 + f2)ε +

X
`∈L+

(ω`
1 + ω`

2)ε`+ ↓◦ (f1 + f2)ε`i (29)

r1 −`i r2
def
= ↑◦ (f1 − f2)ε +

X
`∈L+

(ω`
1 − ω`

2)ε`+ ↓◦ (f1 − f2)ε`i (30)

r1 ×`i r2
def
= ↑◦ (f1f2)ε +

X
`1 ∈ L, `∈ ∈ L

`1 · `2 6= ν

ω`1
1 ω`2

2 ε`1·`2+ ↓◦ (f1f2)ε`i (31)

(r1)
−1`i def

= ↑◦ (f−1
1 )ε− 1

f1

X
`∈L

ω`

f1
ε` +

1

f1

X
n≥2

(−1)n

 X
`∈L

ω`

f1

!n

εhi+ ↓◦ (f−1
1 )ε`i (32)

r1 ÷`i r2
def
= r1 ×`i (r2)

−1`i
(33)

Fig. 3. Elementary operations for floating-point numbers with errors.

3 occurring at point `i. The rules for addition and subtraction are natural. The
elementary errors are added or subtracted componentwise in the formal series
and the new error due to point `i corresponds to the roundoff of the result.

Multiplication requires more care because it introduces higher-order errors
due to the multiplication of the first-order errors. For instance, let us consider
the multiplication at point `3 of two initial data r`1

1 = (f1ε + ω`1
1 ε`1) and r`2

2 =
(f2ε + ω`2

2 ε`2):

r`1
1 ×`3 r`2

2 =↑◦ (f1f2)ε + f2ω
`1
1 ε`1 + f1ω

`2
2 ε`2 + ω`1

1 ω`2
2 εhi+ ↓◦ (f1f2)ε`3 (34)

As shown in Equation (34), the floating-point number computed by this multipli-
cation is ↑◦ (f1f2). The initial first-order errors ω`1

1 ε`1 and ω`2
2 ε`2 are multiplied

by f2 and f1 respectively. ν denotes the empty word. In addition, the multiplica-
tion introduces a new first-order error ↓◦ (f1f2) which is attached to the formal
variable ε`3 in order to indicate that this error is due to the product occurring
at the control point `3. Finally, this operation also introduces a second-order
error that we attach to the formal variable εhi. In Figure 3, Equation (31) is a
generalization of Equation (34). The term for division is obtained by means of
a power series development.

This semantics details the contribution to the global error of the first-order
error terms and globally computes the higher-order error arising during the cal-
culation. In practice, higher-order errors are often negligible. So, this semantics
allows us to determine the sources of imprecision due to first order errors while
checking that the higher-order errors are actually globally negligible. With re-
spect to the semantics [[.]]E, we have the following result.

Proposition 5 Let a be an arithmetic expression such that [[a]]E = fεf + eεe

and [[a]]W = ωε +
∑

`∈L ω`ε`. Then ω = f and
∑

`∈L ω` = e.

Like [[.]]E, [[.]]W is not directly implementable since it uses real numbers and
the function ↓◦ : R → R. However, [[.]]W can also be approximated in the same

11



way than [[.]]E. The error terms can be calculated for instance with intervals or
stochastic numbers, yielding new semantics [[.]]WI and [[.]]WS.

In addition, the first order error terms of [[.]]W can be related to the partial
derivatives computed by [[.]]D. Let di be a datum identified by the control point
` of a program p such that p computes a function g(d1, . . . , dn). Then the term
↓◦ (di)× ∂g

∂di
(d1, . . . , dn) linearly approximates the error term ω`ε` of [[.]]W. With

respect to the exact semantics [[.]]W, [[.]]D neglects the higher order error term
ωhiεhi as well as any error term ω`ε` such that ` is not related to an initial
datum, i.e. such that ` is related to an operation.

Higher order errors often are negligible and are, in practice, neglected by
most methods (but [[.]]W and [[.]]I). The program of Section 6 is a case in which,
for some inputs, first order errors are negligible while higher order errors are not:
If the parameter x = fε + ωεx is such that f < 1 and f + ω > 1 then, in the
floating-point numbers, g(x) → 0 as n → ∞, while in the reals, g(x + ω) → ∞
as n → ∞. The global error tends towards infinity but it can be shown that
all the first order error terms tend to 0. Since only the higher order errors are
significant, a method neglecting them should not detect any problem in this
computation.

8 Static analysis

Numerical computations are increasingly used in critical embedded systems like
planes or nuclear power plants. In this area, the designers used to use fixed-
point numbers for two reasons: first, the embedded processors did not have
floating-point units and, secondly, the calculations were rather simple. Nowadays,
floating-point numbers are more and more used in these systems, due to the
increasing complexity of the calculations and because FPU are integrated in
most processors.

Concerning numerical computations, the validation of a critical embedded
system requires at least to prove that the precision of a variable is always ac-
ceptable. Executions can be instrumented with an automatic differentiation or
a stochastic semantics. However, these methods do not enable one to have a
full covering of the possible configurations and representative data sets are spe-
cially difficult to define since very close inputs may give very different results in
terms of precision. In addition, for the same execution path, the precision may
greatly differ, for different data sets. Static analysis addresses these problems by
enabling to validate in a single time a code for a large class of inputs usually
defined by ranges for all the parameters. In this article, we focus on validation
of float calculations but most results are similar for fixed point calculations. Ba-
sically, in the latter case, the function ↓◦ must be redefined. In the following, we
detail how the methods of sections 3 to 7 can be used for static analysis.

Many static analyzers implement an interval analysis (e.g. [4]). The main
drawback of this approach was already outlined for the dynamic semantics: as
discussed in Section 4, when an interval is large, one cannot assert that the
precision of the results is acceptable. In addition, the intervals given to a static

12



analyzer usually are larger than these used to simulate a single run. As a con-
sequence, a static analyzer based on [[.]]I often is too pessimistic to assert the
accuracy of a floating-point computation.

To our knowledge, no static analysis based on stochastic arithmetics as been
defined nor experimented yet. However, as suggested in [13], we can expect
interesting results from static analyses combining [[.]]S and recent work on static
analysis of probabilistic semantics [25, 26].

Automatic differentiation seems a good candidate to static analysis even if the
classical semantics [[.]]D has some limitations: some error terms are neglected and,
for the others, there is a linear approximation. A semantics [[.]]WD was recently
proposed that performs automatic differentiation behind the semantics [[.]]W of
error series [23]. In [[.]]WD, no error term is neglected but the linear approximation
remains. For loops, a static stability test based on the calculation of abstract
Lyapunov exponents [1] can be used [23]. It allows one to iterate just enough to
prove that the iterates of a function related to the body of a loop are stable.

Finally, concerning error series, a static analyzer named Fluctuat and based
on [[.]]WI has been implemented [14]. For a value fε +

∑
`∈L ω`ε`, the float f is

abstracted by a float interval and the error terms ω` are abstracted by intervals
of multiple precision numbers. Fluctuat analyzes C programs and is currently
experimented in an industrial context, for the validation of large-size avionic
embedded softwares.

9 Experimental Results

In this section, we present some experimental results obtained using the methods
described earlier. The tools and libraries that we use for interval arithmetics,
stochastic arithmetics, automatic differentiation and error series respectively are
MPFI [30], CADNA [9], ADOL-C [15] and Fluctuat [14]. Each example, written
in C, was designed to illustrate how a certain method behaves in a particular
case (mostly to show their limitations even if they all behave well on many
other examples) but, in the following, we test all the methods for each case.
Depending on the cases, Fluctuat is asked to unroll the loops or to work as a
static analyzer. When unrolling the loops, the tool implements the semantics
[[.]]WI discussed in Section 7. The results are given in the tables of figures 4,
5, 6 and 7. In each table, the comment column contains information on how
the methods are configured and the interpretation column says what we can
conclude from the test, assuming that we do not know anything else on the
programs. So, if a method fails to detect a problem, the corresponding conclusion
in the interpretation column is wrong.

Our first example is the program already introduced in Section 4 to show
how difficult it is to distinguish a purely numerical error from a sensitivity error,
mainly with an interval method. This example was inspired by the well-known
Patriot case (see, e.g. [13]) but, here, the solutions in R and F are finite.

float x = 1.0; float y = 1.0e-8;

for (int i=0;i<1e8;i++) { x = x-y; }

13



Result Comment Interpretation

[[.]]E x=1.0εf − 1.0εe [[.]]E is the theoretical, non imple-
mentable semantics.

An absorption arises at each iter-
ation. The float result is 1.0 and
the error w.r.t. to the real solu-
tion exactly is −1.0.

MPFI x=[-1.244141e1,1.000000] x is initialized by
mpfi init2(x,24) to simulate the
IEEE 754 Standard simple preci-
sion mode.

The real solution as well as the
float solution belong to the given
interval. The error may be as
large as the interval width, i.e.
11.44141.

MPFI x=[-4.11312855843084e-
9,3.28835822230294e-9]

x is initialized by mpfi init set d
to obtain a highly accurate
result.

The real solution is very close to
zero. There is no unstability in
this example.

CADNA x=-0.3808, cestac= 4 x and y are declared as single st
numbers.

With high probability, the real
solution is x = −0.3808 and the
first four significant digits seem
correct.

ADOL-C x = 1.0, ∂x
∂y

= −1.0e8 Since ADOL only has double
precision numbers, this test has
been carried out using adouble
numbers and y = 1.0e − 22. Re-
sults have been transposed to our
example.

The float result is 1.0 but the
sensitivity to y is high. By linear
approximation, the real solution
is 1.0 + ∂x

∂y
×∆y where ∆y is the

initial error on y.

Fluctuat x=1.0εf + [−∞,-1.0e-8]εe No instrumentation of the code.
Fluctuat does not unroll the loop
(5 iterations are carried out).

Fluctuat detects that there is
possibly (but not surely) a large
negative error on the result.

Fig. 4. Experimental results for the program iterating x=x-1.0e-8.

Our experimental results are given in Table 4. As discussed in Section 4, the
result returned by the interval method contains the interval [0, 1] if MPFI is
asked to simulate single precision numbers. One can conclude that both the real
and float solution belong to this interval, but we cannot conclude on the nature
of the inaccuracy. If MPFI is asked to use multiple precision numbers, it outputs
a small interval around 0. We can conclude that the real solution is close to 0,
but no hint is given about the error arising in the non-instrumented code.

Concerning the other methods, CADNA computes that the real solution is
close to -0.38, which is rather imprecise. As outlined in Section 5, this probably
stems from the fact that the errors arising at each iteration are not independent,
as supposed by the method. ADOL-C returns the float result and indicates that
it is very sensitive to the value of y. The pitfall is detected by the automatic
differentiation library as one could expect, since the computed function is linear.

Contrarily to the first example, our second test program, taken from [13], is
an unstable numerical scheme computing the nth power un of the golden number
u1 =

√
5−1
2 ≈ 0.618034 using the property un+2 = un − un+1.

double x = 1.0; double y = 0.618034;

for (i=0;i<=100;i++) {

z=x; x=y;

y=z-y;

};

Our experimental results are given in Figure 5. With MPFI, y is initialized to
the small interval [0.618034, 0, 618035]. MPFI returns a large interval and we

14



Result Comment Interpretation

MPFI y = [-9.37805732496113e14, -
1.04330402763639e13]

y initialized with mpfi interv d. The real solution belong to the
given interval. The error may be
as large as the interval width,
i.e. approximatively 9.27e14. The
computation is unstable.

CADNA y=-0.474119386437716e+15,
cestac=15

x, y, z have double st type. y was
initialized to the median value of
the interval.

With high probability, the real
solution is y≈-0.47e+15 and the
first fifteen significant digits are
correct. This computation seems
stable.

ADOL-C y=-4.74119e+14,
grad(y)=-3.54225e+20

x, y, z have adouble type. y is ini-
tialized to the median value of
the interval.

The gradient indicates that this
computation is unstable.

Fluctuat y=[-9.37805732496110e14,-
1.04330402763639e13]εf +[-
25363.4,25363.4]εe

An assertion is used to initialize
y to [0.618034,0.618035]εf +0εe.
Fluctuat is asked to unroll the
loop.

The results belong to a large in-
terval but the errors never are
greater than 25363.4. If the ini-
tial error on y is null, the com-
putation is unstable but roundoff
errors are negligible.

Fluctuat y=[-1.04330402763639e13,-
1.04330402763639e13]εf +[-
9.27373e+14,-0.00149523]εe

An assertion is used to initial-
ize y to 0.618034εf +[0,0,02]εe.
Fluctuat is asked to unroll the
loop.

This program is very sensitive to
the initial value of y.

Fig. 5. Experimental results for the program computing the nth power of the golden

number. Note that in the reals un → 0 as n →∞ if u1 =
√

5−1
2

.

can conclude that the scheme is unstable. When Fluctuat is initialized with
y=[0.618034, 0, 618035]εf + 0εe, which means that the initial float is an exact
value belonging to the given interval, Fluctuat states that the result belongs to
a wide interval but that the error term is small. So this computation is unstable
but it is not much perturbed by the roundoff of the operations arising in the
loop. When Fluctuat is initialized with y = 0.618034εf +[0, 0.02]εe, which means
that the initial float exactly is 0, 618034 and that a roundoff error is attached to
it, the tool detects a large sensitivity to y.

Concerning the other methods, CADNA does not detect the instability while
ADOL-C does (again, this scheme is linear).

ADOL-C caught the numerical problems arising in the first two examples in-
volving linear calculations. However, as discussed in Section 6, automatic differ-
entiation methods may fail to detect such numerical errors, e.g. in the non-linear
calculation introduced in Section 6 and repeated below:

x = 1.0; y = 0.99;

for (int i=0;i<1000;i++) { x = x*y; }

The experimental results obtained for this example are given in Figure 6. ADOL-
C numerically computes the derivative given in Section 6 and does not de-
tect the sensitivity of this code to the value of y. CADNA also indicates that
this computation does not seem to be sensitive to its input values, possibly
because the dominant error is non-linear. Using an assertion stating that ini-
tially y= 0.99εf + [0, 0.02]εe, Fluctuat states that the float computed by a non-

15



Result Comment Interpretation

[[.]]E x= 0.43e-4εf − ωεe ω is scriptsize
if initially y=0.99εf + ω′εe with
ω′ < 0.01. ω is large otherwise.

This computation is sensitive to
y.

MPFI x=[4.31712474106544e-
5,4.31712474106612e-5]

x and y initialized by
mpfi init set d.

The float solution is close to the
real one since the interval width
is small.

CADNA x=0.43171247410657e-4, cestac
=14

x and y are declared as double st
numbers.

With high probability, the real
solution is x ≈ 0.43e − 4 and
the first fourteen significant dig-
its are correct.

ADOL-C x=4.31712e-5, ∂x
∂y

=0.0436073 The experiment has been carried
out using adouble numbers.

The derivative is small. This
computation seems to be not
much sensitive to y.

Fluctuat x=4.31712474106578e-
5εf +[8.22526e-21,6.17629e-
20]εe

No instrumentation of the code.
Fluctuat is asked to fully unroll
the loop.

Assuming that initially y is ex-
act, no numerical error arises in
this execution.

Fluctuat x=4.31712474106578e-5εf +[-
1.42622e-12,20959.2]εe

An assertion states that initially
y = 0.99εf + [0.0, 0.02]εe. Fluc-
tuat is asked to fully unroll the
loop. The tool states that the
dominant error is a higher order
error.

The sensitivity to y is detected.

Fig. 6. Experimental results for the non-linear computation of Section 6.

instrumented version of the program goes to 0 while the error with respect to
the real result is increasingly large.

We end this section with a case study taken from [22] and concerning the
validation of a class of executions of a simple numerical program implementating
Jacobi’s iterative method to solve a system of linear equations. As discussed in
Section 8, in order to validate a class of executions for this program, we aim at
showing that the errors arising during any execution performed with parameters
taken in a certain set remain acceptable. We consider the systems:

(S1) :


2x + y = 5

3

x + 3y = 5
2

(S2) :


xn+1 = 5

6
− 1

2
yn

yn+1 = 5
6
− 1

3
xn

(S3) :


xn+1 = [0.80, 0.85]− [0.4, 0.6]yn

yn+1 = [0.80, 0.85]− [0.30, 0.35]xn

To solve (S1) by Jacobi’s method [12], the sequence (S2) is computed. (S3) defines
a class of systems including (S2). Any system taken in the ranges given in (S3)
is stable The program implementing (S2) is given below. The initial values are
x0 = y0 = [2.0, 3.0].

int i; double x1,y1;

double a = [0.8,0.85]; double b = [0.4,0.6];

double c = [0.8,0.85]; double d = [0.3,0.35];

double x2 = [2.0,3.0]; double y2 = [2.0,3.0];

for(i=0;i<1000;i++) {

x1 = x2; y1 = y2;

x2 = a-b*y1;

y2 = c-d*x1;

}

16



Result Comment Interpretation

MPFI x=[3.53658536585365e-
1,6.16279069767442e-1],
y=[5.84302325581395e-
1,7.43902439024391e-1]

x and y initialized by
mpfi interv d.

The real solution as well as the
float solution belong to the given
intervals. The errors never are
larger than the interval widths,
i.e. about 0.26 for x and 0.15 for
y.

CADNA x=0.49253731343283, cestac=15;
y=0.664925373134328,
cestac=15

a, b, c, d, x2 and y2 are initialized
to the median values of the inter-
vals using the double st type.

The large number of common
digits indicates that the pro-
gram, executed with the chosen
parameters, is stable, with high
probability.

ADOL-C x=0.492537, grad(x)=0.0971263,
y=0.664925, grad(y)=0.475897

a, b, c, d, x2 and y2 are initial-
ized to the median values of the
intervals using the adouble type.

The gradients indicate that this
computation is stable in
the neighborhood of the chosen
parameters.

Fluctuat x=[3.53658536585366e-
1,6.16279069767442e-1]εf +[-
1.58101e-16,1.58101e-16]εe

y=[5.84302325581395e-
1,7.43902439024390e-1]εf +[-
1.24724e-16,1.24724e-16]εe

Assertions are used to initialize
the identifiers. Fluctuat is asked
to unroll the loop.

Fluctuat states that the errors on
x and y never are larger than, ap-
proximatively, 1.0e − 16 for any
execution.

Fig. 7. Experimental results for the program implementing Jacobi’s Method.

Our results are given in Figure 7. MPFI outputs small intervals enabling to
assess the stability of the class of executions: the errors on x and y never exceed
0.26 and 0.15, respectively. Fluctuat finds intervals for x and y comparable to
these of MPFI and, additionally, states that for any execution, the errors on x
and y never exceed 2.0e-16, approximatively. For a particular execution achieved
using the median values of the intervals, CADNA and ADOL-C also claim that
the computation is stable. However, this does not enable us to conclude on the
stability of the whole class of executions. It is interesting to note that, in this test,
all the methods output comparable values: the real number output by CADNA
belongs to MPFI and Fluctuat intervals which are almost identical. The error
term of Fluctuat (≈1e-16) is in adequacy with CADNA result (cestac=15).

10 Conclusion

The validation of the numerical quality of programs is a difficult research topic.
Independently of any tool or method, that is independently of how the vali-
dation can be carried out, the properties that must be proven, i.e. what must
be verified, breads many discussions. In addition to the accuracy losses intro-
duced by floating-point numbers, other sources of imprecision are introduced
by modeling, by the choice of algorithms, etc. For instance, should an unstable
numerical scheme such as the golden number example of Section 9 be considered
as acceptable? On one hand the errors introduced by floating-point numbers are
negligible and the program mimicks closely what happens in the reals. On the
other hand the sensitivity to the possibly approximative initial value is high.

In this article, we attempted to clarify what properties some techniques ex-
actly compute and what we can conclude from these properties about the numer-

17



ical quality of the tested programs. The differences can be subtle: for instance,
as discussed in sections 4 and 9, an interval method working with the same pre-
cision as the non-instrumented code does not only less accurately compute the
same properties as an interval method using a higher precision. By examining
closely what is computed by each technique, we do not provide sufficient condi-
tions for the validation of numerical codes in general, as asked in the previous
paragraph, but we clearly define which aspects of the whole validation can be
addressed by each method.

In Section 9, we introduced academic examples containing different kinds of
numerical errors and mostly designed to show the limits of each method. For the
sake of simplicity, these examples are very short but all the tools tested in this
article are applicable to larger, non toy programs. The fact that, in our tests,
some method fails to detect a numerical precision problem does not mean that
it should be depreciated: our examples have been designed to this aim, many
successful applications of each tool being available in its bibliography.

References

1. K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos, an Introduction to Dynamical
Systems. Springer-Verlag, 1996.

2. ANSI/IEEE. IEEE Standard for Binary Floating Point Arithmetic, Std 754 edition,
1985.

3. Christian Bischof, Paul D. Hovland, and Boyana Norris. Implementation of au-
tomatic differentiation tools. In Proceedings of the ACM-SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Transformations, PEPM’02.
ACM Press, 2002.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Programming
Language Design and Implementation, PLDI’03. ACM Press, 2003.

5. S. Boldo and M. Daumas. Representable correcting terms for possibly underflowing
floating point operations. In J.-C. Bajard and M. Schulte, editors, Proceedings of
the 16th Symposium on Computer Arithmetic. IEEE Press, 2003.

6. H. Bronnimann and G. Melquiond. The boost interval arithmetic library. In
Proceedings of the Real Numbers and Computers Conference, RNC’5, 2003.

7. CADNA for C/C++ source codes User’s Guide.
http://www-anp.lip6.fr/cadna/Documentation/Accueil.php.

8. F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations.
SIAM, 1996.

9. J.-M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA. Habilitation
à diriger des recherches, Université Pierre et Marie Curie, Paris, 1995.

10. M. Daumas, Rideau L., and L Théry. A generic library for floating-point numbers
and its application to exact computing. In TPHOLs’01, International Conference
on Theorem Proving and Higher Order Logics, number 2152 in LNCS. Springer-
Verlag, 2001.

11. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1), 1991.

12. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 2d edition, 1990.

18



13. E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, LNCS. Springer-Verlag, 2001.

14. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations: a simple abstract interpreter. In European Symposium on Program-
ming, ESOP’02, LNCS. Springer-Verlag, 2002.

15. A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic differ-
entiation of algorithms written in c/c++. ACM Trans. Math. Software, 22:131–167,
1996.

16. Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation. Frontiers in Applied Mathematics. SIAM, 2000.

17. M. Grimmer, K. Petras, and N. Revol. Multiple precision interval packages: Com-
paring different approaches. In Proceedings of the Dagstuhl Seminar on Numerical
Software with Result Verification, LNCS. Springer-Verlag, 2003. to appear.

18. G. Hanrot, V. Lefevre, Rouillier F., and P. Zimmermann. The MPFR library.
Institut de Recherche en Informatique et Automatique, 2001.

19. J. Harrison. A machine-checked theory of floating point arithmetic. In TPHOLs’99,
International Conference on Theorem Proving and Higher Order Logics, number
1690 in LNCS. Springer-Verlag, 1999.

20. P. Langlois. Automatic linear correction of rounding errors. BIT, Numerical Math-
ematics, 41(3):515–539, 2001.

21. P. Langlois and F. Nativel. Improving automatic reduction of round-off errors. In
IMACS World Congress on Scientific Computation, Modelling and Applied Math-
ematics, volume 2, 1997.

22. M. Martel. Propagation of roundoff errors in finite precision computations: a
semantics approach. In European Symposium on Programming, ESOP’02, number
2305 in LNCS. Springer-Verlag, 2002.

23. M. Martel. Static analysis of the numerical stability of loops. In Static Analysis
Symposium, SAS’02, number 2477 in LNCS. Springer-Verlag, 2002.

24. C. Michel, M. Rueher, and Y. Lebbah. Solving constraints over floating-point
numbers. In CP’2001, Seventh International Conference on Principles and Practice
of Constraint Programming, number 2239 in LNCS. Springer-Verlag, 2001.

25. D. Monniaux. Abstract interpretation of probabilistic semantics. In Static Analysis
Symposium, SAS’00, number 1824 in LNCS. Springer-Verlag, 2000.

26. D. Monniaux. An abstract Monte-Carlo method for the analysis of probabilis-
tic programs. In ACM Symposium on Principles of Programming Languages,
POPL’01. ACM Press, 2001.

27. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.
28. P. J. Potts, A. Edalat, and H. M. Escardó. Semantics of exact real arithmetic. In

Procs of Logic in Computer Science. IEEE Computer Society Press, 1997.
29. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Ko-

rnerup and D. Matula, editors, Proceedings of the 10th Symposium on Computer
Arithmetic, pages 132–144. IEEE Computer Society Press, 1991.

30. N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Technical Report RR-200227, Laboratoire de l’Informatique
du Parallélisme, ENS-Lyon, France, 2002.

31. J. Vignes. A stochastic arithmetic for reliable scientific computation. Mathematics
and Computers in Simulation, 35(3):233–261, 1993.

19


