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A crucial issue in fluid dynamics is related to the knowledge of the fluid pressure. A new general pressure 
equation is derived from compressible Navier–Stokes equation. This new pressure equation is valid for all 
real dense fluids for which the pressure tensor is isotropic. It is argued that this new pressure equation 
allows unifying compressible, low-Mach and incompressible approaches. Moreover, this equation should 
be able to replace the Poisson equation in isothermal incompressible fluids. For computational fluid 
dynamics, it can be seen as an alternative to Lattice Boltzmann methods and as the physical justification 
of artificial compressibility.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Incompressible Navier–Stokes equations (INS) describes a fluid 
characterized by infinite sound speed. It is valid in the case of fluid 
flows in isothermal configuration and at low Mach numbers (Mach 
number, Ma = U �/c� is the ratio of the characteristic flow speed 
U � and the speed of sound c� defined at some reference temper-
ature T � and density ρ�). INS equations correspond to a mixture 
of hyperbolic and elliptic partial differential equations. They can be 
written

∂t ui + u j∂ jui + ∂i P = 1

Re
∂ j∂ jui ∂iui = 0 (1)

where u is the fluid velocity, P is the pressure and Re the Reynolds 
number, which represents the ratio between inertial and viscous 
forces [1]. The pressure in (1) is not an independent thermody-
namic variable. It can be seen as a Lagrangian multiplier of the 
incompressibility constraint. It is determined by the Laplace or 
Poisson equation:

∂i∂i P = −(∂ jui)(∂iu j) (2)

In very anisothermal flow, the low Mach number hypothesis con-
ducts to a similar system [2,3]. Considering that only density ρ
depends on temperature, the low Mach number equations can be 
written
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∂t ui + u j∂ jui + 1

ρ
∂i P = 1

ρRe

(
∂ j∂ jui + 1

3
∂i S

)

∂iui = S (3)

where ρ depends on temperature and S is a source term linked 
to conductive heat transfer (S depends on temperature). Again, the 
pressure is determined by a Poisson equation. It can be given by:

∂i

(
1

ρ
∂i P

)
= 1

Re

4

3ρ
∂ j∂ j S +

1

Re
∂ j

(
1

ρ

)(
∂i∂iu j + 1

3
∂i S

)

−(∂ jui)(∂iu j) − u j∂ j S − ∂t S (4)

The physical meaning of (2) and (4) is that in a system with in-
finitely fast sound propagation, any pressure disturbance induced 
by the flow is instantaneously propagated into the whole domain. 
This elliptic problem is a crucial issue for fluid dynamics. Indeed, 
the INS equations are difficult to study analytically and numeri-
cally. This difficulty has motivated the search of alternative numer-
ical approaches to determine pressure without solving the Poisson 
equation. Three different ways have been found. The first is the so-
called artificial compressibility method where a pressure evolution 
equation is postulated [4]. The second way is the Lattice Boltz-
mann method (LBM) which uses a velocity-space truncation of the 
Boltzmann equation from the kinetic theory of gases [5]. The third 
way consists in adopting an inverse kinetic theory which permits 
the identification of the (Navier–Stokes) dynamical system and 
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of the corresponding evolution operator which advances in time 
the kinetic distribution function and the related fluid fields [6]. 
The pressure evolution equation obtained by this method is non-
asymptotic. The full validity of INS equations is preserved.

In this paper, we determine a general and exact pressure evolu-
tion equation for all real dense fluids for which the pressure tensor 
is isotropic. Unlike the work of Tessarotto et al. [6], the obtained 
pressure equation is a physical one and not a mathematically rig-
orous theory for INS equations. The obtained general and exact 
pressure evolution equation gives the physical bases of artificial 
compressibility method and it allows the study of very anisother-
mal flow contrary to LBM. The goal is similar to the reduced 
compressible Navier–Stokes equations (RCNS) derived by Ansumali 
et al. [7] and the proposed pressure equation is very similar to the 
grand potential equation derived by Karlin et al. [8]. However we 
will argue that the use of pressure instead of the grand potential 
simplifies the equation of compressible hydrodynamics. Moreover, 
because the proposed pressure equation is valid for all real dense 
fluids, it builds bridge between compressible, low-Mach and in-
compressible approaches.

In section 2, we will determine the general and exact pres-
sure evolution equation (without any additional assumptions). This 
equation generalizes the one used by Zang et al. in the particular 
case of an ideal gas [9]. In section 3, we will simplify this equation 
in the low Mach number limit. Finally, in section 4, we will reduce 
the equation for low Mach number and isothermal flow.

2. General pressure evolution equation

The total energy E conservation is given by

∂t(ρE) + ∂ j((ρE + p)u j) = ∂ j(σi jui) − ∂ jq j (5)

with σi j the shear-stress tensor for a Newtonian fluid

σi j = 2μSij − 2

3
μδi j Skk Si j = 1

2
(∂iu j + ∂ jui) (6)

and qi the conductive heat flux

qi = −κ∂i T (7)

Introducing internal energy U = E − ui ui
2 and enthalpy H = U + P

ρ , 
one gets

ρDt H = Dt P − ∂iqi + � � = σi j∂iu j (8)

with Dt the material derivative (total derivative [1]):

Dtφ = ∂tφ + ui∂iφ (9)

Using the relations of heat capacity at constant pressure cp and of 
the isobaric thermal expansion coefficient α(

∂ H

∂T

)
P

= cp

(
∂ H

∂ P

)
T

= 1

ρ
(1 − Tα) with α = − 1

ρ

(
∂ρ

∂T

)
P

(10)

an alternative formulation can be derived for temperature

ρcp Dt T = TαDt P − ∂iqi + � (11)

We propose to derive a new pressure equation from the tempera-
ture formulation (11). We introduce the isothermal compressibility 
coefficient χT = 1

ρ

(
∂ρ
∂ P

)
T

and we consider temperature as a func-

tion of density and pressure Dt T =
(

∂T
∂ρ

)
P

Dtρ + (
∂T
∂ P

)
ρ

Dt P . Using 
mass conservation and (11), the recomputation poses no difficul-
ties and we here write the result:
(ρcp
χT

α
− αT )Dt P = −∂iqi − ρcp

α
∂iui + � (12)

In order to simplify this expression, one introduces isochoric heat 
capacity cv = (

∂U
∂T

)
ρ

, heat capacity ratio γ = cp
cv

and the Mayer 
relation

α2T = ρcvχT (γ − 1) (13)

One obtains

Dt P + γ

χT
∂iui = α

ρcvχT
(� − ∂iqi) (14)

Sound velocity c and the isentropic compressibility coefficient χS

are given by

c2 =
(

∂ P

∂ρ

)
S

χS = 1

ρ

(
∂ρ

∂ P

)
S

(15)

Using the Reech relation γ = cp
cv

= χT
χS

, one obtains the general and 
exact pressure evolution equation

Dt P + ρc2∂iui = α

ρcvχT
(� − ∂iqi) (16)

In the particular case of an ideal gas α = 1
T , χT = 1

P and c2 = γ rT
with r the specific gas constant, this equation is equivalent to the 
one used by Zang et al. [9,10]. It is worth noting that equation (16)
can be used for any real dense fluids (gas or liquid) without re-
striction on Mach number or temperature gradient. It gives the 
physical bases of artificial compressibility methods that postulate 
the pressure equation. The pressure equation (16) can be seen as 
an energy equation: to complete the system, one has to consider in 
addition mass conservation, momentum conservation and an equa-
tion of state.

3. Pressure equation for low Mach number flow

At this step, the pressure evolution equation (16) depends on 
the total derivative. At low Mach number, the first simplification 
consists in assuming that viscous dissipation is negligible. We now 
show that, at low Mach number, advection can be neglected. One 
defines the following nondimensionalized quantities:

ρ X = ρ

ρ�
u X

i = ui

c�

P X = γ P

ρ�(c�)2
t X

P = 1

Ma2

tU �

x�
(17)

It is worth noting that in the classical low Mach number assump-
tion, nondimensionalized time is defined by t X

U = tU �

x� . The factor 
1

Ma2 is justified by the fact that pressure time evolution is much 
faster than velocity time evolution (subscripts U and P indicate 
that the nondimensionalized time corresponds to velocity or pres-
sure respectively). One defines moreover, the Reynolds number Re, 
the Prandtl number Pr and the Peclet number Pe:

Re = ρU �x�

μ
Pr = ν

aT
Pe = PrRe (18)

One uses the asymptotic expansion of pressure, temperature and 
velocity

P X = P0 + Ma2 P1 (19)

T X = T0 + Ma2T1 (20)

u X = Ma(ui0 + Ma2ui1) (21)
i
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where P X is the nondimensionalized pressure, P0 the zero-order 
pressure that is constant in space and P1 the second-order pres-
sure (see [2,11]). It follows that the orders of magnitude of the 
different terms of equation (16) are given by:

∂t P = ρ�

x�γ
(c�)3 1

Ma
∂t(P0 + Ma2 P1) (22)

ui∂i P = ρ�

x�γ
(c�)3Ma3ui0∂i P1 (23)

ρc2∂iui = ρ�

x�
(c�)3Ma∂iui0 (24)

−α

ρcvχT
∂iqi = ρ�

x�
(c�)3 Ma

Re Pr
∂i∂i T0 (25)

Consequently, the leading order gives:

∂t P0 = 0 (26)

The zero-order pressure P0 is the reference pressure that is con-
stant in time. It is worth noting that in the classical low Mach 
number assumption the zero-order pressure P0 is not constant in 
time. This difference between the classical low Mach number as-
sumption and the new low Mach number assumption proposed in 
this paper is due to the fact that asymptotic expansion depends 
of the chosen nondimensionalized quantities. More precisely, the 
zero-order pressure of this new low Mach number assumption is 
constant in time because of the choice of characteristic time for 
pressure variation. This choice is justified by the fact that pressure 
has very fast time variation compared to velocity for small Mach 
number. The second-order pressure P1 corresponds to the thermo-
dynamic pressure and the pressure of the momentum equation. 
The time evolution of the second-order pressure is given by:

∂t(P1) + γ ∂iui0 = γ

Re Pr
∂i∂i T0 (27)

The realized asymptotic expansion conducts to neglect advection 
for small Mach number. This hypothesis is further confirmed using 
the results of large eddy simulations and direct numerical simu-
lations of biperiodic turbulent channel flow at different Reynolds 
numbers and different temperature ratios. The simulations are re-
alized with the ideal gas assumption. The temperature ratio is 
defined as the ratio of wall imposed temperature at the hot wall 
to the wall imposed temperature at the cold wall (temperatures 
are in Kelvin). The studied temperature ratios are 2 and 5. The 
studied turbulent Reynolds numbers (based on the friction veloc-
ity) are 180 and 395. More details about the simulations can be 
find in [12–14,3,15,16]. In all these cases, at a given distance from 
the wall, the statistic average of the term ρc2∂iui = γ P∂iui is a 
thousand times bigger than the statistic average of ui∂i P . Written 
with dimensionalized variables, the pressure evolution equation 
becomes for low Mach number (viscous dissipation is assumed to 
be negligible):

∂t P + ρc2∂iui = −α

ρcvχT
∂iqi (28)

In the particular case of an ideal gas, one finds the equation used 
for P0 in the low Mach number approximation [2,11]. We show 
here that equation (28) can be used for the pressure of momentum 
equation P1 and for all fluids (gas and liquid). It is a local non-
advected equation for the scalar thermodynamic field. Combined 
with mass conservation, momentum conservation and an equation 
of state, it constitutes a system very similar to Lattice Boltzmann 
method (LBM): low Mach number equations avoiding the nonlo-
cality of pressure (there is no Poisson equation and so no need 
for elliptic solver). Compared to LBM, the system is valid with-
out the ideal gas assumption and the small temperature gradient 
restriction. Indeed, it is well known that LBM has stability prob-
lems in very anisothermal flows. Compared to fully compressible 
Navier–Stokes, the energy equation is expressed in a pressure form 
without the ideal gas assumption and without the advection term.

4. Pressure equation for isothermal low Mach number flow

At this stage, the pressure evolution equation (28) depends on 
temperature. We now consider the isothermal limit of this equa-
tion. Considering temperature as a function of pressure and den-
sity, one gets:

∂i∂i T =
(

∂2T

∂ P 2

)
ρ

(∂i P )(∂i P ) +
(

∂2T

∂ρ2

)
P
(∂iρ)(∂iρ) +

(
∂T

∂ P

)
ρ

∂i∂i P +
(

∂T

∂ρ

)
P
∂i∂iρ (29)

For sufficiently large time–space scales (see the discussion in [7]), 
one can neglect density variation (ρ , χT and α are supposed 
constant and evaluated at equilibrium) and temperature variation 
(around a globally uniform equilibrium temperature) becomes a 
function of pressure:

∂i∂i T ≈
(

∂T

∂ P

)
ρ

∂i∂i P = χT

α
∂i∂i P (30)

It is worth noting that the pressure in this equation corresponds 
to P1 the second-order pressure. This pressure corresponds to the 
pressure of the momentum equation (P0 the zero-order pressure is 
constant in space). In the isothermal limit, thermal conductivity is 
assumed to be constant: −∂iqi = κ∂i∂i T . The isothermal pressure 
evolution (IPE) equation is finally given by:

∂t P + ρc2∂iui = κ

ρcv
∂i∂i P (31)

Note that all “material parameters” appearing in (31) (κ , ρ and cv ) 
are evaluated at a constant equilibrium temperature. A very inter-
esting point of this equation is the presence of a diffusion term. By 
analogy with temperature diffusivity aT = κ

ρcp
, one can define the 

pressure diffusivity aP = κ
ρcv

. The ratio of pressure/temperature 
diffusivities corresponds to the heat capacity ratio γ = ap

aT
. This 

diffusion term is a crucial difference with artificial compressibility 
method [4]. This term allows to stabilize the simulation. It guar-
antees the numerical applicability of the method. Indeed, Ohwada 
and Asinari [17] proposed to introduce a dissipation term in order 
to improve the quality of numerical solution obtained with artifi-
cial compressibility method. Moreover, the kinetically reduced lo-
cal Navier–Stokes (KRLNS) equations [8] contains exactly the same 
diffusion term applied to grand potential instead of pressure. In 
fact, the KRLNS grand potential equation is exactly the same than 
the proposed IPE equation (31) if one replaces grand potential G
by pressure P . This observation leads to two conclusions. In one 
hand, it is expected that numerical simulations using IPE equation 
associated with momentum equation capture the correct transient 
behavior of complex flows as KRLNS does [18]. On the other hand, 
because KRLNS grand potential equation and IPE equation are the 
same, kinetic energy k = P −G can be neglected in KRLNS. Indeed, 
the substraction of the KRNLS grand potential equation from the 
proposed IPE equation (31) gives

∂tk = κ

ρcv
∂i∂ik (32)

In the case of a Prandtl number different from heat capacity ra-
tio (Pr �= γ ), this last equality will not be accurate unless kinetic 
energy and its space/time variations are very small.
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Finally, it is interesting to write the IPE equation (31) in a 
nondimensional form. Omitting the exponent X for the sake of 
simplicity, the nondimensionalized form of (31) is

∂t P + γ

Ma2
∂iui = γ

Re Pr
∂i∂i P (33)

It shows that “pressure diffusion” cannot be neglected for pressure 
time evolution because its order of magnitude can be similar to the 
one of pressure time derivative due to the Peclet number. Again, it 
is a fundamental difference with artificial compressibility method. 
It allows to stabilize the simulation. Furthermore, considering a 
Reynolds number around one and a Prandtl number similar to the 
Mach number squared (very small Prandtl number), pressure dif-
fusion has the same order of magnitude of the divergence term. 
Consequently, it is anticipated that isothermal low Mach number 
flows may not be incompressible. To the best of our knowledge, 
experimental evidence of compressible (∂iui �= 0) isothermal low 
Mach number flows does not exist. It would be very interesting 
to investigate. Considering numeric interest of IPE, because the 
Prandtl number has no effect on isothermal incompressible flow, 
it is expected that it can be used in the IPE equation (31) as a nu-
merical parameter to stabilize the simulation. Obviously, the Peclet 
number has to be much bigger to the Mach number if one wants 
to approximate the incompressible limit.

5. Conclusion

This work establishes the general and exact pressure equation 
evolution. The pressure equation has been obtained

• for real dense fluids for which the pressure tensor is isotropic,
• in the low Mach number limit and
• in the isothermal limit.

For real dense fluids for which the pressure tensor is isotropic, the 
obtained equation generalizes the ideal gas pressure equation. In 
the low Mach number limit, we propose a new asymptotic anal-
ysis that conducts to neglect advection. The proposed low Mach 
number assumption conducts to the same equation than the clas-
sical one. However, the new equation corresponds to the pressure 
of momentum equation. It means that the coupling between the 
energy equation and the momentum equation is increased. Conse-
quently, the new assumption is less restrictive than the classical 
one. It is expected that it better corresponds to the physics of 
turbulent anisothermal flows where turbulent time scales can be 
of the same order of magnitude as pressure time scales. In the 
isothermal limit, the pressure equation gives the physical bases of 
ACM. The obtained equation is different from ACM. Indeed, a new 
diffusion term is added. This new term is coherent with the fact 
that both viscosity and thermal conductivity are involved in acous-
tic wave attenuation.

In a fundamental point of view, this equation provides a 
thermodynamic theory of incompressible hydrodynamics. More 
precisely, it gives an asymptotic1 thermodynamic derivation of 

1 A pressure evolution equation directly (not asymptotically) consistent with the 
isochoricity condition should probably follow from a first-principle microscopic/ki-
netic statistical description.
incompressibility without the isentropic flow assumption. Such a 
thermodynamic derivation goes far beyond academic interest. In-
deed, the general pressure evolution equation paves the way for 
new technique or methodology for computational fluid dynamics. 
In future works, we will use this equation as an alternative numer-
ical approach to determine pressure without solving the Poisson 
equation as ACM or LBM.
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