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Among the various critical systems that are worth to be formally analyzed, a wide set
consists of controllers for dynamical systems. Those programs typically execute an infinite
loop in which simple computations update internal states and produce commands to
update the system state. Those systems are yet hardly analyzable by available static
analysis method, since, even if performing mainly linear computations, the computation
of a safe set of reachable states often requires quadratic invariants.

In this paper we consider the general setting of a piecewise affine program; that is a
program performing different affine updates on the system depending on some condi-
tions. This typically encompasses linear controllers with saturations or controllers with
different behaviors and performances activated on some safety conditions.

Our analysis is inspired by works performed a decade ago by Johansson et al., and
Morari et al., in the control community. We adapted their method focused on the analysis
of stability in continuous-time or discrete-time settings to fit the static analysis paradigm
and the computation of invariants, that is over-approximation of reachable sets using
piecewise quadratic Lyapunov functions.

This approach has been further extended to consider k-inductive properties of
reachable traces (trajectories) of systems.

The analysis has been implemented in Matlab and shown very good experimental
results on a very large set of synthesized problems.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the success of Astrée [4], static analysis in general and abstract interpretation in particular are now seriously
considered by industrials from the critical embedded system community, and more specifically by the engineers developing
and validating controllers. The certification norms concerning the V&V of those software have also evolved and now enable
the use of such methods in the development process.

These controller software are meant to perform an infinite loop in which values of sensors are read, a function of inputs
and internal states is computed, and the value of the result is sent to actuators. In general, in the most critical applications,
the controllers used are based on a simple linear update with minor non-linearities such as saturations, i.e. enforcing
bounds, or specific behaviors when some conditions are met. The controlled systems range from aircraft flight commands,
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guidance algorithms, engine control from any kind of device optimizing performance or fuel efficiency, control of railway
infrastructure, fan control in tunnels, etc.

It is therefore of utmost importance to provide suitable analyses to verify these controllers. One of the approaches is to
rely on quadratic invariants, such as the digital filters abstract domain of Feret [10], since, according to Lyapunov's theorem,
any globally asymptotically stable linear system admits a quadratic Lyapunov function. Unfortunately, this theorem does not
hold in the presence of disjunction, such as saturation. Moreover checking stability of piecewise systems is undecidable [25].

In static analysis, dealing with disjunction is an import concern. When the join of two abstract element is imprecise, one
can consider the disjunctive completion of the domain [11]. This process enriches the set of abstract elements with new
ones, but the cost, i.e. the number of new elements, could be exponential in the number of initial elements. Concerning
relation abstract domains, one should mention the tropical polyhedra of Allamigeon [2] in which an abstract element
characterizes a finite disjunction of zones [21]. However concerning quadratic properties, no static analysis actually per-
forms the automatic computation of disjunctive quadratic invariants.

The goal of this paper is to propose such a computation: produce a disjunctive quadratic invariant as a sub-level of a
piecewise quadratic Lyapunov function. Because of the undecidability of the problem, this search is heuristic, but shown to
perform well in our experiments.
1.1. Related works

Most relational abstractions used in the static analysis community rely on a linear representation of relationship between
variables, e.g. polyhedra [7], octagons [22], zonotopes [12] are not join-complete. Integrating constraints in invariants
generation was developed in [9] but for computing linear invariants. As mentioned above, the tropical polyhedra domain [2]
admits some disjunctions since it characterizes a family of properties encoded as finite disjunction of zones.

Concerning non-linear properties, the need for quadratic invariant was addressed a decade ago with ellipsoidal abstract
domains for simple linear filters [10] and more recently for non-linear template domains [8] and policy iteration based static
analysis [13].

More recently, techniques used in the control community have been used to synthesize appropriate quadratic templates
using SDP solvers and Lyapunov functions [28].

The proposed technique addresses a family of systems well beyond the ones handled by the mentioned methods. In
general, a global quadratic invariant is not enough to bound the reachable value of the considered systems, hence none of
these could succeed.

On the control community side, Lyapunov based analysis is typically used to show the good behavior of a controlled
system: it is globally asymptotically stable (GAS), i.e. when time goes to infinity the trajectories of the system goes to 0. Since
about a decade SDP solvers, i.e. convex optimization algorithms for semi-definite programming, have reached a level of
maturity that enable their use to compute quadratic Lyapunov functions. On the theory side, variants of quadratic Lyapunov
functions such as the papers motivating our work – Johansson and Rantzer [27,15] as well as Mignone, Ferrari-Trecate and
Morari [20] – addressed the study of piecewise linear systems for proving the GAS property.

Another related approach is the line of works supported by Lee and Dullerud [19,17,18] in which the problem is the
ability to synthesize a stable controller for a piecewise system. Their approach relies on the computation of a piecewise
quadratic Lyapunov for a subset of feasible transitions of the system, considering a bounded fixed number of switches
between system behaviors.

In general, computing a safe superset of reachable states, as needed when performing static analysis, is not a common
question for control theorist. They would rather address the related notions of controllability or stability under perturba-
tions. In most cases, either the property considered or the technique used relies on the existence of such a bound over
reachable state; which we aim to compute in static analysis.
1.2. Contributions

Our contribution is threefold and based on the method of Johansson and Mignone used to prove the GAS property of a
piecewise linear system:

� we detailed the method in the discrete setting, computing a piecewise quadratic Lyapunov function of a discrete-time
system;

� we adapted it to compute an invariant over reachable states of the analyzed system;
� we showed the applicability of the proposed method to a wide set of generated examples.

This paper is an extended version of [1] considering the expression of relationships between quadratic invariants along
program traces as inspired by Lee and Dullerud. This approach proposed can be considered as a lift of previous method to k-
induction [29,16].
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1.3. Organization of the paper

The paper is structured as follows. Section 2 introduces the kind of programs considered. Section 3 introduces the notion
of piecewise quadratic Lyapunov function. Section 4 presents the expression of conditions, such as guards in the program, as
quadratic constraints. This is required to generate the constraints presented in Section 5, computing a quadratic Lyapunov
function per behavior of the piecewise program. Section 6 develops the lift of the previous method to a k-induction setting:
considering sequences of up to k transitions when searching for quadratic invariants. Last, Section 7 presents the experi-
mentations while Section 8 concludes and opens future direction of research.
2. Problem statement

The programs we consider here are composed of a single loop with possibly a complicated switch-case type loop body.
Our switch-case loop body is supposed to be written as a nested sequence of ite statements, or as a switch:

Moreover, we suppose that the analyzed programs are written in affine arithmetic. Consequently, the programs analyzed
here can be interpreted as constrained piecewise affine discrete-time systems. Finally, we reduce the problem to compute
automatically an overapproximation of the reachable states of a piecewise affine discrete-time system. The term piecewise
affine means that there exists a polyhedral partition fXi; iA Ig of the state-input space XDRdþm such that for all iA I, the
dynamic of the system is affine and the system is represented by the following relation:

ðx0;u0ÞAX0 and 8 kAN; xkþ1 ¼ AixkþBiukþbi; if ðxk;ukÞAXi; ð1Þ

where X0DRdþm is the compact convex polyhedron of possible initial conditions, Ai is a d� d matrix, Bi a d�m matrix and
bi a vector of Rd. The variable xARd refers to the state variable and uARm refers to some input variable.

For us, a polyhedral partition is a family of convex polyhedra which partitions the state-input space i.e.
X ¼⋃iA IX

iDRdþm such that Xi \ Xj ¼∅ for all i; jA I, ia j. From now on, we call Xi cells. Cells fXigiA I are convex polyhedra
which can contain both strict and weak inequalities. Cells can be represented by a ni � ðdþmÞ matrix Ti and ci a vector of Rn

i .
We denote by Isi the set of indices which represent strict inequalities for the cell Xi, denote by Ts

i
and cs

i
the parts of Ti and ci

corresponding to strict inequalities and by Tw
i
and cw

i
the one corresponding to weak inequalities. Finally, we have the matrix

representation given by the following formula:

Xi ¼ ðx;uÞARdþm Ti
s

x

u

� �
⪡cis; T

i
w

x

u

� �
rciw

����
��

ð2Þ

We use the following notation: y⪡z means that for all coordinates l, ylozl and yrz means that for all coordinates l, ylrzl.
While the approach we propose can consider arbitrary partitioning of the system dynamics into cells, we infer auto-

matically the cell's definition using the guards of the switch case constructs.
In order to simplify the following analysis, it is easier to consider a linear system rather than an affine one. Therefore we

define an homogeneous flavor of the system dynamics: instead of considering a system state in Rd with inputs in Rm, we
manipulate system states in R1þdþm. Thus we introduce the ð1þdþmÞ � ð1þdþmÞ matrices Fi defined as follows:

Fi ¼
1 01�d 01�m

bi Ai Bi

0 0m�d Idm�m

0
B@

1
CA ð3Þ

The system defined in Eq. (1) can be rewritten as ð1; x>
kþ1;u

>
kþ1Þ> ¼ Fið1; x>

kþ1;u
>
k Þ> . Note that we introduce a “virtual”

dynamic law ukþ1 ¼ uk on the input variable in Eq. (3). In the point of view of set invariance computation, we will see that it
remains to consider such dynamic law. Indeed we suppose that the input is bounded and we write ukAU for all kAN with U
being a nonempty compact convex polyhedra (convex polytope). We make the following assumption:

X0 ¼ fxARd∣(uAU s:t: ðx;uÞAX0g � U: ð4Þ

It means that X0 is actually composed of initial conditions on the state variable x and the part of initial conditions on u is
given by U .

We are interested in proving that the reachable states R are bounded and a proof of this statement can be expressed by
directly computing it. Recalling that R is the smallest set C satisfying FðCÞDC where F is the mapping on subsets of Rd
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defined for all C �Rd by:

FðCÞ ¼ fyARd∣( iA I; (ðx;uÞAðC � UÞ \ Xi s:t: y¼ AixþBiuþbig [ fxARd∣(uAU s:t: ðx;uÞAX0g

and prove that this set is bounded. We can also compute an overapproximation of R from a set SDRdþm such that
ðx0;u0ÞAS, R� UDS and S is an inductive invariant in the sense of, for all iA I:

ðx;uÞAS \ Xi ) ðAixþBiuþbi;uÞAS:
Indeed, by induction since X0 is included in S, then ðxk;ukÞAS for all kAN. Since every image of the dynamic of the system
stays in S, a reachable state (y,u) belongs to S. Finally, if we prove that S is bounded then R is also bounded.

Working directly on sets can be difficult and usually invariant sets are computed as a sublevel of some function to find.
For (convergent) discrete-time linear systems, it is classical in the control community to compute ellipsoidal over-
approximation of reachable states. Indeed, sublevel sets of Lyapunov functions are invariant sets for the analyzed linear
system. Furthermore computing such an ellipsoid containing the initial states provides an overapproximation of reachable
states. Initially, Lyapunov functions are used to prove quadratic asymptotic stability. In this paper, we use an analogue of
Lyapunov functions for piecewise affine systems to compute directly an overapproximation of reachable states.

Example 2.1 (Running example). Let us consider the following program. It is constituted by a single while loop with two
nested conditional branches in the loop body.

The initial condition of the piecewise affine systems is ðx; yÞA ½�9;9� � ½�9;9� and the polytope where the input variable u
lives is U ¼ ½�3;3�.
We can rewrite this program as a piecewise affine discrete-time dynamical systems using our notations. We give details

on the matrices Ts
i
and Tw

i
and vectors cs

i
and cw

i
(see Eq. (2)) which characterize the cells and on the matrices Fi representing

the homogeneous version (see Eq. (3)) of affine laws in the cell Xi:

F1 ¼

1 0 0 0
0 0:4217 0:1077 0:5661
�1 0:1162 0:2785 0:2235
0 0 0 1

0
BBB@

1
CCCA;
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T1
s ¼

�9 7 6
�4 8 �8

� �
c1s ¼ ð5 4Þ>

8><
>: ;

T1
w ¼ 0 0 1

0 0 �1

� �
c1w ¼ ð3 3Þ>

8><
>:

F2 ¼

1 0 0 0
0 0:4763 0:0145 0:9033
9 0:1315 0:3291 0:1459
0 0 0 1

0
BBB@

1
CCCA;

T2
s ¼ �9 7 6ð Þ

c2s ¼ 5

(
;

T2
w ¼

4 �8 8
0 0 1
0 0 �1

0
B@

1
CA

c2w ¼ ð�4 3 3Þ>

8>>>><
>>>>:

F3 ¼

1 0 0 0
�4 0:2618 0:1177 0:0868
4 0:4014 0:4161 0:6320
0 0 0 1

0
BBB@

1
CCCA;

T3
s ¼ �4 8 �8ð Þ

c3s ¼ 4

(
;

T3
w ¼

9 �7 �6
0 0 1
0 0 �1

0
B@

1
CA

c2w ¼ ð�5 3 3Þ>

8>>>><
>>>>:

F4 ¼

1 0 0 0
10 0:3874 0:0771 0:5153
7 0:2430 0:4028 0:4790
0 0 0 1

0
BBB@

1
CCCA;

T4
w ¼

9 �7 �6
4 �8 8
0 0 1
0 0 �1

0
BBB@

1
CCCA

c4w ¼ ð�5 �4 3 3Þ>

8>>>>>><
>>>>>>:

3. Invariant as sublevel set of Lyapunov functions

In [15,20], the authors proposed a method to prove stability of piecewise affine dynamical discrete-time systems. The
method is a generalization of Lyapunov stability equations in the case where affine laws defining the system depend on the
current state. Let A be a d� d matrix and let xkþ1 ¼ Axk; kAN; x0ARd be a linear dynamical system.

Quadratic Lyapunov functions: We recall that V is a quadratic Lyapunov function iff there exists a d� d symmetric matrix P
such that VðxÞ ¼ x>Px for all xARd and Pg0 and P�A>PAg0. The notation Pg0 means that P is positive definite i.e.
x> Px40 for all xARd; xa0 and 0 for x¼0. We will denote by Q≽0 when Q is positive semidefinite i.e. x> PxZ0 for all
xARd. Positive definite matrices characterize square of norm on Rd.

A Lyapunov function allows us to prove the stability by the latter fact: the norm (associated to the Lyapunov function) of
the states xk decreases along the time. In switched system, similar to the classical case, we exhibited a positive definite
matrix (square norm) to prove that the trajectories decrease along the time. The main difficulty in the switched case is the
fact that we change the laws and we must decrease whenever a transition from one cell to other is fired. Moreover, we only
require the norm to be local i.e. positive only where the law is used.

Therefore, our main goal is to synthesize a Lyapunov function Vðx;uÞ and an associated bound α characterizing the
invariant of reachable states as a sublevel-set Sα, such that

8 iA I; 8ðx;uÞAXi; Vðx;uÞrα ð5Þ

8 i; jA I; 8ðx;uÞAXi; 8ðx0;u0ÞAXj; s:t: x0 ¼ AixþBiuþbi; Vðx;uÞZVðx0;u0Þ ð6Þ
In Sections 5 and 6 we will develop different approaches to synthesize such V functions based on a piecewise char-

acterization using quadratic Lyapunov functions. The next section focuses first in the expression of conditions.
4. Expressing conditions

In Eqs. (5) and (6), the inequalities on V are local on cells. In (6), the function has to decrease only on feasible transitions
from cell Xi to cell Xj.
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In the following we will synthesize piecewise Lyapunov function using SDP solvers. Encoding local constraints requires to
be able to express the positivity of a quadratic form over a polyhedron as a semidefinite constraint.

This is performed through multiple transformations: first the implication is rewritten as a copositive constraint. This
copositive constraint is further relaxed as quadratic computation with a matrix with nonnegative entries. This is the
quadratization of constraints.

4.1. Quadratization of cells

We recall that for us local means that true on a cell and thus true on a polyhedron. Using the homogeneous version of a
cell, we can define local positiveness on a polyhedral cone. Let Q be a d� d symmetric matrix and M be a n� d matrix. Local
positivity in our case means that MyZ0 ) y>QyZ0. The problem will be to write the local positivity as a constraint
without implication. The problem is not new (e.g. the survey paper [14]). The paper [23] proves that local positivity is
equivalent, when M has a full row rank, to Q�M>CM≽0 where C is a copositive matrix i.e. x>CxZ0 if xZ0. First in general
(when the rank of M is not necessarily equal to its number of rows), note that if Q�M>CM≽0 for some copositive matrix C
then Q satisfies MyZ0 ) y>QyZ0. Secondly every matrix C with nonnegative entries is copositive. Since copositivity
seems to be as difficult as local positivity to handle, we will restrict copositive matrices to be matrices with nonnegative
entries. The idea is instead of using cells as polyhedral cones, we use a quadratization of cells by introducing nonnegative
entries and we will define the quadratization of a cell Xi by:

Xi ¼ ðx;uÞARdþm

1
x

u

0
B@

1
CA

>

Ei
>
WiEi

1
x

u

0
B@

1
CAZ0

�������
9>=
>;

8><
>: ð7Þ

where Wi is a ð1þniÞ � ð1þniÞ symmetric matrix with nonnegative entries and Ei ¼ Eis
Eiw

� �
with Eis ¼ 1

cis

01�ðdþmÞ
�Ti

s

� �
and

Eiw ¼ ciw �Ti
w

� �
. Recall that ni is the number of rows of Ti. The matrix Ei is thus of the size niþ1� ð1þdþmÞ. The goal of

adding the row ð1;01�ðdþmÞÞ is to avoid to add the opposite of a vector of Xi in Xi . Indeed without this latter vector Xi would
be symmetric. We illustrate this fact at Example 4.1. Note that during optimization process, matrices Wi will be decision
variables.

Example 4.1 (The reason of adding the row ð1;01�ðdþmÞÞ). Let us take the polyhedra X ¼ fxAR∣xr1g. Using our notations, we
have X ¼ fx∣Mð1 xÞ> Z0g with M¼ ð1 �1Þ. Let us consider two cases, the first one without adding the row and the second
one using it.
Without any modification, the quadratization of X relative to a nonnegative real W is X0 ¼ fx∣ð1 xÞM>WMð1 xÞ> Z0g. But

ð1 xÞM>WMð1 xÞ> ¼Wð1 xÞð1 �1Þ> ð1 �1Þð1 xÞ> ¼ 2Wð1�xÞ2. Hence X0 ¼R for all nonnegative real W.
Now let us take E¼ 1

1
0
�1

	 

. The quadratization as defined by Eq. (7) relative to a 2�2 symmetric matrix W with non-

negative coefficients is X ¼ fx∣ð1 xÞE>WEð1 xÞ> Z0g. We have:

ð1 xÞ 1 1
0 �1

� � w1 w3

w3 w2

 !
1 0
1 �1

� �
ð1 xÞ> ¼w1þ2w3ð1�xÞþw2ð1�xÞ2:

To take a matrix W such that w2 ¼w1 ¼ 0 and w340 implies that X ¼ X.

Now we introduce an example of the quadratization of the cell X1 for our running example.

Example 4.2. Let us consider the running example and the cell X1. We recall that X1 is characterized by the matrices and
vectors:

T1
s ¼

�9 7 6
�4 8 �8

� �
c1s ¼ ð5 4Þ>

8><
>: ;

T1
w ¼ 0 0 1

0 0 �1

� �
c1w ¼ ð3 3Þ>

8><
>:

and

E1 ¼

1 0 0 0
5 9 �7 �6
4 4 �8 8
3 0 0 �1
3 0 0 1

0
BBBBBB@

1
CCCCCCA
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As suggested we have added the row ð1;01�3Þ. Take for example the matrix:

W1 ¼

63:0218 0:0163 0:0217 12:1557 8:8835
0:0163 0:0000 0:0000 0:0267 0:0031
0:0217 0:0000 0:0000 0:0094 0:0061
12:1557 0:0267 0:0094 4:2011 59:5733
8:8835 0:0031 0:0061 59:5733 3:0416

0
BBBBBB@

1
CCCCCCA

We have X1 ¼ fðx; y;uÞ∣ð1; x; y;uÞE1W1E1ð1; x; y;uÞ> Z0g+X1. In Section 7, we will come back on the generation of W1.

Local positivity of quadratic forms will also be used when a transition from a cell to an other is fired. For the moment, we
are interested in the set of (x,u) such that ðx;uÞAXi and whose the image is in Xj and we denote by Xij the set:

ðx;uÞARdþm ðx;uÞAXi and ðAixþBiuþbi;uÞAXj
��� on

for all pairs i; jA I. We will discuss in Section 4.2 the computation or a reduction to possible switches using linear pro-
gramming as suggested in [5]. To construct a quadratization of Xij, we use the same approach as before by introducing a
ð1þniþnjÞ � ð1þniþnjÞ symmetric matrix Uij with nonnegative entries to get a set Xij defined as:

Xij ¼ ðx;uÞARdþm

1
x

u

0
B@

1
CA

>

Eij
>
UijEij

1
x

u

0
B@

1
CAZ0

�������
9>=
>;

8><
>: ð8Þ

where Eij ¼
Eijs
Eijw

 !
with

Eijs ¼

1 01�ðdþmÞ

cis �Ti
s

cjs�Tj
s

bi

0

 !
�Tj

s
Ai Bi

0d�m Idm�m

 !
0
BBBBB@

1
CCCCCA

and

Eijw ¼
ciw �Ti

w

cjw�Tj
w

bi

0

 !
�Tj

w
Ai Bi

0d�m Idm�m

 !
0
BB@

1
CCA ð9Þ
4.2. Switching cells

We have to manage another constraint which comes from the cell switches. After applying the available law in cell Xi, we
have to specify the reachable cells i.e. the cells Xj such that there exists (x,u) satisfying:

ðx;uÞAXi and ðAixþBiuþbi;uÞAXj

We say that a switch from i to j is fireable iff:

ðx;uÞARdþm

Ti
sðx;uÞ>⪡cis

Tj
sðAixþBiuþbi;uÞ>⪡cjs

Ti
wðx;uÞ> rciw

Tj
wðAixþBiuþbi;uÞ> rcjw

�����������

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

a∅ ð10Þ

We will denote by i-j if the switch from i to j is fireable and we denote by Sw the set of fireable switches i.e.
Sw¼ fði; jÞA I2∣i-jg. Recall that the symbol o means that we can deal with both strict inequalities and inequalities. To check
whether ði; jÞASw is a linear programming feasibility problem with both strict and weak inequalities. However, we only
check whether the system is solvable and we can detect infeasibility by using Motzkin transposition theorem [24]. Motzkin's
theorem is an alternative type theorem: it considers two alternative linear systems such that exactly one of them is feasible.
To describe the alternative system, we have to separate strict and weak inequalities and use the matrices Es

ij
and Ew

ij
defined

at Eq. (9). Then ði; jÞASw is equivalent to check whether the set fyAR1þdþm∣EijwyZ0; Eijs y⪢0g is empty or not. To detect
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feasibility we test the infeasibility of the alternative system defined by:

ðEijs Þ>psþðEijwÞ>pw ¼ 0P
kA Isi

psk ¼ 1

pskZ0; 8kAIsi

pwk Z0; 8k=2Isi

8>>>>>><
>>>>>>:

ð11Þ

From Motzkin's transposition theorem [24], we get the following proposition.

Proposition 4.1. The pair ði; jÞASw iff Problem (11) is not feasible.

However reasoning directly on the matrices can allow unfireable switches. For certain initial conditions, for all kAN, the
condition ðxk;ukÞAXi and ðAixkþBiuþbi;uÞAXj does not hold whereas ði; jÞASw. To avoid it, we must know all the possible
trajectories of the system (which we want to compute) and remove all inactivated switches. A sound way to under-
approximate unfireable transitions is to identify unsatisfiable sets of linear constraints.

Example 4.3. We continue to detail our running example. More precisely, we consider the possible switches. We take for
example the cell X2. To switch from cell X2 to cell X1 is possible if the following system of linear inequalities has a solution:

�9xþ7yþ6uo5
�0:8532xþ2:5748y�10:4460o�68
�3:3662xþ2:1732y�1:1084uo�58
4x�8yþ8ur�4
ur3
�ur3 ð12Þ

The two first consists in constraining the image of ðx; y;uÞ to belong to X1 and the four last constraints correspond to the
definition of X2. The representation of these two sets (X2 and the preimage of X1 by the law defined in X2) is given at Fig. 1.
We see in Fig. 1 that the system of inequalities defined at Eq. (12) seems to not have solutions. We check that using Eq. (11)
and Proposition 4.1. The matrices Es

ij
and Ew

ij
of Eq. (11) are in this example:

E21s ¼
5 9 �7 �6

�68 0:8532 �2:5748 10:446
�58 3:3662 �2:1732 1:1084

0
B@

1
CA

and

E21w ¼
�4 �4 8 �8
3 0 0 �1
3 0 0 1

0
B@

1
CA

We thus solve the linear program defined in Eq. (11) (with Matlab and Linprog) and we found that
p¼ ð0:8735;0:0983;0:0282Þ> and q¼ ð0:3325;14:2500;7:8461Þ> . This means that the alternative system is feasible and
consequently the initial is not from Proposition 4.1. Finally the transition from X2 to X1 is not possible.
Fig. 1. The truncated representation of X2 in red (on the left) and the preimage of X1 by the law inside X2 in blue (on the right).
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5. Piecewise quadratic Lyapunov functions to compute invariant sets

Now we adapt the work of Rantzer and Johansson [15] and the work of Mignone et al. [20] to compute an invariant set
for switched systems i.e. a subset S such that ðxk;uÞAS implies ðxkþ1;uÞAS. These works are instead focused on deciding
whether a piecewise affine system is global asymptotic convergent (GAS) or not. Even if the GAS problem is undecidable [3]
the latter authors prove a stronger property on the system: there exists a piecewise Lyapunov functions for the piecewise
affine systems. Rantzer and Johansson [15] and Mignone et al. [20] suggest to compute a piecewise quadratic function as
Lyapunov function in the case of discrete-time piecewise affine systems to prove GAS property. Recall that a piecewise
quadratic function on Rd is a function defined on a polyhedric partition of Rd which is quadratic on each polyhedron of the
partition. In this paper, we propose to compute a (weaker) piecewise Lyapunov function to characterize an invariant set for
our piecewise affine systems. In this section, we will denote by V this function. The pieces are given by the cells of the
piecewise affine system and thus V is defined as:

Vðx;uÞ ¼ Viðx;uÞ; if ðx;uÞAXi

¼ x

u

� �>
Pi x

u

� �
þ2qi

> x

u

� �
; if ðx;uÞAXi

The function Vi is thus a local function only defined on Xi.
A sublevel set Sα of V of level αAR is represented as:

Sα ¼ ⋃
iA I

Si;α ¼ ⋃
iA I

ðx;uÞAXi∣
x

u

� �>
Pi x

u

� �
þ2qi

>
xrα

( )
¼ ⋃

iA I
ðx;uÞAXi∣

1
x

u

0
B@

1
CA

>
�α qi

>

qi Pi

 ! 1
x

u

0
B@

1
CAr0

8><
>:

9>=
>;:

The set Si;α is thus the local sublevel set of Vi associated to the level α.
So we are looking a family of pairs of a matrix and a vector fðPi; qiÞgiA I and a real αAR such that Sα is invariant by the

piecewise affine system. To obtain invariance property, we have to constraint Sα to contain initial conditions of the system.
Finally, to prove that the reachable set is bounded, we have to constraint Sα to be bounded.

Before deriving the semi-definite constraints, let us first state a useful result in Proposition 5.1. This result allows us to
encode implications into semi-definite constraint in a safe way. The implication must involve quadratic inequalities on both
sides.

Proposition 5.1. Let A;B;C be d� d matrices. Then CþAþB≽0 holds implies that the implication ðy>Ayr04y> Byr0Þ )
y>CyZ0 holds.

Proof. Suppose that CþAþB≽0. It is equivalent to say y> ðCþAþBÞyZ0 for all yARd. Now pick zARd such that z>Azr0
and z>Bzr0. Since z>CzZ�z>Az�z>Bz, we conclude that z>CzZ0 and the implication is true.□

5.1. Writing invariance as semi-definite constraints

We assume that ðx;uÞAXi \ Si;α (this index i is unique). Invariance means that if we apply the available law to (x,u) and
suppose that the image of (x,u) belongs to some cell Xj (notation ði; jÞASw), then the image of (x,u) belongs to Sj;α. Note that
ðx;uÞAXi and its image is supposed to be in Xj then ðx;uÞAXij. Let ði; jÞASw, invariance translated in inequalities and
implication gives:

ðx;uÞAXij4ðx;uÞASi;α ) ðAixþBiuþbi;uÞASj;α ð13Þ

We can use the relaxation of Section 4.1 as representation of cells and use matrix variables Wi and Uij to encode their
quadratization. We get:

1
x

u

0
B@

1
CA

>

Eij
>
UijEij

1
x

u

0
B@

1
CAZ04

1
x

u

0
B@

1
CA

>
�α qi

>

qi Pi

 ! 1
x

u

0
B@

1
CAr0

)
1
x

u

0
B@

1
CA

>

Fi
> �α qj

>

qj Pj

 !
Fi

 ! 1
x

u

0
B@

1
CAr0 ð14Þ

where Eij is the matrix defined at Eq. (8) and Fi is defined at Eq. (3).
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Finally, we obtain a stronger condition by considering semi-definite constraint such as the following equation:

�Fi
> 0 qj

>

qj Pj

 !
Fiþ 0 qi

>

qi Pi

 !
�Eij

>
UijEij≽0: ð15Þ

Note that the symbol �α is canceled during the computation.
Proposition 5.1 proves that if ðPi; Pj; qi; qj;UijÞ is a solution of Eq. (15) then ðPi; Pj; qi; qj;UijÞ satisfies Eq. (14).

5.2. Integrating initial conditions

Inductive invariants require both inductiveness and initial conditions. We address here the additional constraint for our
computed invariant to contain initial states. Recall that possible initial conditions belong to some compact polyhedron
X0 ¼ fðx;uÞARdþm∣T0

wðx;uÞrc0w; T
0
s ðx;uÞ⪡c0s g. We must have X0DSα. Since fXi; iA Ig defines a partition of Rdþm, X0 is the

union over iA I of the sets X0 \ Xi. If, for all iA I, the set X0 \ Xi is contained in Si;α then X0DSα. Let us denote by Init the set
of indices whose the cell meets X0 i.e. Init¼ fiA I∣X0 \ Xia∅g. We can use the same method as before to express that for all
iA Init, Si;α must contain X0 \ Xi. Now let us take iA Init. In term of implications, X0 \ XiDSi;α can be rewritten as:

ðx;uÞAX0 \ Xi ) ðx;uÞPiðx;uÞ> þ2ðx;uÞqirα ð16Þ
Since X0 \ Xi is a polyhedra, it admits some quadratization that is: X0 \ Xi ¼ fðx;uÞARdþm∣ð1; x;uÞE0i> ZiE0ið1; x;uÞ> Z0g
where E0i ¼ E0is

E0iw

� �
with:

E0iw ¼
c0w �T0

w

ciw �Ti
w

 !
and E0is ¼

1 01�ðdþmÞ

c0s �T0
s

cis �Ti
s

0
BB@

1
CCA

and Zi is some symmetric matrix whose coefficients are nonnegative.
Then, we obtain a stronger notion by introducing semi-definite constraints:

� �α qi
>

qi Pi

 !
�E0i

>
ZiE0i≽0 ð17Þ

Proposition 5.1 proves that if ðPi; qi; ZiÞ is a solution of Eq. (17) then ðPi; qiÞ satisfies Eq. (16).
Note since X0 \ Xi is a polyhedron then its emptiness can be decided by checking the feasibility of the linear problem

(18) and by using of the same argument than Proposition 4.1

ðE0is Þ>psþðE0iwÞ>pw ¼ 0P
kA Isi

psk ¼ 1

pskZ0; 8kAIsi

pwi Z0; 8k=2Isi

8>>>>>><
>>>>>>:

ð18Þ

Linear program (18) is feasible iff X0 \ Xi ¼∅ (notation iA Init).

5.3. Writing boundedness as semi-definite constraints

The sublevel Sα is bounded if and only if for all iA I, the sublevel Si;α is bounded. The boundedness constraint in term of
implications is, for all iA I, there exists βZ0:

ðx;uÞAXi4ðx;uÞASi;α ) J ðx;uÞJ22rβ ð19Þ

where J � J2 denotes the Euclidian norm of Rdþm.
As invariance, we use the quadratization of Xi and the definition of Si;α. We use the fact that

J x;uð ÞJ22 ¼ x
u

	 
> IdðdþmÞ�ðdþmÞ x
u

	 

and we get for all iA I:

1
x

u

0
B@

1
CA

>

Ei
>
WiEi

1
x

u

0
B@

1
CAZ0 and

1
x

u

0
B@

1
CA

>
�α qi

>

qi Pi

 ! 1
x

u

0
B@

1
CAr0

)
1
x

u

0
B@

1
CA

>
�β 01�ðdþmÞ

0ðdþmÞ�1 IdðdþmÞ�ðdþmÞ

 ! 1
x

u

0
B@

1
CAr0 ð20Þ

where Ei is defined in Eq. (7).
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Finally, as invariance we obtain a stronger condition by considering semi-definite constraint such as Eq. (21). Proposition
5.1 proves that ðPi; qi;WiÞ is a solution of Eq. (21) then ðPi; qi;WiÞ satisfies Eq. (20). For all iA I:

�Ei
>
WiEiþ �α qi

>

qi Pi

 !
þ

β 01�ðdþmÞ
0ðdþmÞ�1 � IdðdþmÞ�ðdþmÞ

 !
≽0 ð21Þ

5.4. Method to compute invariant set for piecewise affine systems and prove the boundedness of its reachable set

Algorithm 1 aims to prove the boundedness of the reachable values set of systems of the form (1).

Algorithm 1.

1. Define the real variables α; β;
2. For iA I, compute the matrix Ei of Eq. (7); define the variable Pi as a symmetric matrix of size ðdþmÞ � ðdþmÞ, the variable

matrix Wi with nonnegative coefficients of size ð♯ lines of EiÞ � ð♯lines of EiÞ and add the constraint (21). If iA Init, define
a the variable matrix Zi with nonnegative coefficients of size ð♯lines of E0iÞ � ð♯lines of E0iÞ and add Constraint (17);

3. For all ði; jÞASw, construct the matrix Eij defined by Eq. (8) and define the symmetric matrix variable Ui;j of the size
ð♯lines of EijÞ � ð♯lines of EijÞ with nonnegative coefficients and add the constraint (15);

4. Add as linear objective function the sum of α and β to minimize;
5. Solve the semi-definite program.

Theorem 5.1. Let R be the reachable values set of a given piecewise affine system of the form (1) and U be the bounded compact
convex polyhedron where the control variable u lives. Assume that the SDP problem solved at Algorithm 1 has a solution
fPi

opt ; q
i
opt ; iA Ig; fZi

opt ; iA Ing; fUij
opt ; ði; jÞASwg; αopt ; βopt

� �
. Then:

1. The set Sαopt ¼⋃iA Ifðx;uÞAXi∣
x

u

� �>
Pi
opt

x

u

� �
þ2qiopt>

x

u

� �
rαoptg is bounded and R� UDSαopt .

2. For all ðx;uÞAR� U , J ðx;uÞJ22rβopt .

Proof (Sketch). For the first assertion, since from Assumption (4), R� U ¼ [kANT
kðX0Þ where T : ðx;uÞ↦ðAixþBiuþbi;uÞ if

ðx;uÞAXi, we can use an induction. To prove the initialization of the induction, the property holds from the fact that if Eq.
(17) holds then by Proposition 5.1, Eq. (16) holds. The induction holds from the fact that if Eq. (15) holds then by Proposition
5.1, Eq. (13). The second assertion follows readily from the fact if Eq. (21) holds then by Proposition 5.1, Eq. (19).□

5.5. Solution

The method is implemented in Matlab and the solution is given by a semi-definite programming solver in Matlab. For our
running example, Matlab returns the following the values:

αopt ¼ 242:0155
βopt ¼ 2173:8501

This means that J ðx; y;uÞJ22 ¼ x2þy2þu2rβopt . We can conclude, for example, that the values taken by the variables x are
between ½�46:6154;46:6154�. The value αopt gives the level of the invariant sublevel of our piecewise quadratic Lyapunov
function where the local quadratic functions are characterized by the following matrices and vectors:

P1 ¼
1:0181 �0:0040 �1:1332
�0:0040 1:0268 �0:5340
�1:1332 �0:5340 �13:7623

0
B@

1
CA and q1 ¼ ð0:1252;1:3836; �29:6791Þ>

P2 ¼
9:1540 �7:0159 �2:6659
�7:0159 9:5054 �2:4016
�2:6659 �2:4016 �8:9741

0
B@

1
CA and q2 ¼ ð�21:3830; �44:6291;114:2984Þ>

P3 ¼
1:1555 �0:3599 �2:6224
�0:3599 2:4558 �2:8236
�2:6224 �2:8236 �2:3852

0
B@

1
CA and q3 ¼ ð�5:3138;6:7894; �40:5537Þ>

P4 ¼
3:7314 �3:4179 �3:1427
�3:4179 6:1955 0:9499
�3:1427 0:9499 �10:6767

0
B@

1
CA and q4 ¼ ð28:5011; �73:5421;48:2153Þ>
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Finally, for conciseness reason, we only give the matrix certificates for the cell X1. First we give the matrixW1 which encodes
the quadratization of the guard X1. Recall that this matrix ensures that ðx; y;uÞ↦α�ðx; y;uÞP1ðx; y;uÞ> �2ðx; y;uÞqi is non-
negative on X1:

W1 ¼

63:0218 0:0163 0:0217 12:1557 8:8835
0:0163 0:0000 0:0000 0:0267 0:0031
0:0217 0:0000 0:0000 0:0094 0:0061
12:1557 0:0267 0:0094 4:2011 59:5733
8:8835 0:0031 0:0061 59:5733 3:0416

0
BBBBBB@

1
CCCCCCA

Secondly, we give the matrices U1j which encodes the quadratization of polyhedron X1j. Recall that those matrices ensure
that the image of ð1; x; y;uÞ by F1 belongs to the set Sj;α for all ð1; x; y;uÞ such that F1ð1; x; y;uÞAXj:

U11 ¼

0:0004 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001
0:0000 �0:0000 �0:0000 �0:0000 �0:0000 �0:0000 �0:0000
0:0000 �0:0000 �0:0000 �0:0000 �0:0000 0:0000 �0:0000
0:0000 �0:0000 �0:0000 �0:0000 �0:0000 �0:0000 �0:0000
0:0000 �0:0000 �0:0000 �0:0000 �0:0000 0:0000 �0:0000
0:0000 �0:0000 0:0000 �0:0000 0:0000 0:0000 0:0000
0:0001 �0:0000 �0:0000 �0:0000 �0:0000 0:0000 0:0001

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

U12 ¼

2:1068 0:4134 0:0545 1:4664 0:1882 2:3955 2:4132
0:4134 0:0008 0:0047 0:0009 0:0819 0:5474 0:0484
0:0545 0:0047 0:0050 0:0147 0:0097 0:1442 0:2316
1:4664 0:0009 0:0147 0:0041 0:3383 0:8776 0:0999
0:1882 0:0819 0:0097 0:3383 0:0675 0:4405 0:4172
2:3955 0:5474 0:1442 0:8776 0:4405 8:1215 9:6346
2:4132 0:0484 0:2316 0:0999 0:4172 9:6346 0:9532

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

U13 ¼

0:3570 0:2243 0:0031 0:0050 0:1431 0:0388 0:7675
0:2243 0:0201 0:0023 0:0050 0:1730 0:0494 0:1577
0:0031 0:0023 0:0001 0:0001 0:0071 0:0006 0:0088
0:0050 0:0050 0:0001 0:0002 0:3563 0:0009 0:0168
0:1431 0:1730 0:0071 0:3563 0:0527 0:2689 0:8979
0:0388 0:0494 0:0006 0:0009 0:2689 0:0137 0:1542
0:7675 0:1577 0:0088 0:0168 0:8979 0:1542 0:2747

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

U14 ¼

1:3530 0:1912 0:0280 0:1178 2:9171 0:7079 1:4104
0:1912 0:0512 0:0068 0:0326 1:7179 0:3764 0:6045
0:0280 0:0068 0:0022 0:0048 0:1396 0:0264 0:0679
0:1178 0:0326 0:0048 0:0409 0:5231 0:1204 0:2390
2:9171 1:7179 0:1396 0:5231 15:0992 5:1148 14:3581
0:7079 0:3764 0:0264 0:1204 5:1148 0:5102 1:6230
1:4104 0:6045 0:0679 0:2390 14:3581 1:6230 1:2985

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

We remark that U11 has negative coefficients whereas in our method, we are looking for a nonnegative coefficients matrix. It
is due to the interior point method which is used to solve the semi-definite programming problems. Interior point methods
return ϵ-optimal solution i.e. a solution which belongs to the ball of radius ϵ centered at an optimal solution. Hence, the
solution furnished by the solver can slightly violate the constraints of the semi-definite program. We are aware of that and
the projection of the returned solution on the feasible set should be studied as a future work.
6. k-Inductive piecewise quadratic Lyapunov functions

Another approach by Lee and Dullerud [17–19] uses a similar principle to check the stability of a piecewise dynamical
system. Instead of assigning a quadratic function to each cell, they rather consider bounded paths in the graph of possible
switches. Their setting is different: they do not intend to prove stability of an existing system or bound its reachable states
but rather want to study the subset of possible switches that can make the system controllable. Their algorithm starts from
paths of length 1 and, in case of failure, increments the considered path length.
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We extend here this idea applied to our search of a piecewise quadratic invariant bounding reachable states of affine
systems with switches of the form (1). Instead of considering only paths of length exactly k, we rather map this idea to the k-
induction principle [29,16].

Definition 6.1 (k-induction). Let ðΣ; In; TÞ be a transition system over states Σwith initial states InDΣ and transition relation
TDΣ � Σ. A safety property PropDΣ is said k-inductive with respect to the transition system iff:

� for all system traces of length less than k, all reachable states verify Prop:

8 jrkAN; 8x0;…; xjAΣ; x0A In4 ⋀
iA ½0;j�1�

ðxi; xiþ1ÞAT ) xjAProp

� for all system subtraces of length k satisfying Prop then the next state satisfies Prop as well

8x0;…; xkAΣ; ⋀
iA ½0;k�1�

xiAProp4 ðxi; xiþ1ÞAT ) xkAProp

When proving a property by k-induction, one have to consider all the real transitions, i.e. actual traces of the system,
starting from an initial state, up to k transitions. Then prove the inductive case, considering any prefix of length k. Since the
systems we are considering are piecewise, it is possible to split to proof search into subcases and consider all transitions
from one specific cell to another.

We recall that we consider a system of the form (1) composed of cells Xi indexed by a set I of partition labels. Then to
apply the k-induction principle, we take Σ ¼Rdþm ¼⋃iA IX

i, In¼ X0 and we define the transition relation T as a piecewise
transition relation f ¼ ff i; f i defined on Xig defined as follows: ðx; yÞA f i iff ð1; y> Þ> ¼ Fið1; x> Þ> (where Fi is defined at Eq.
(3)). The k-inductive property Prop denotes here a boundedness property represented by S0. Then, a k-induction proof
amounts to find this set S that satisfies:

8 jokAN; 8 i0;…ijA I; 8x0;…; xjAΣ;

x0AX04 ⋀
lA ½0;j�1�

xlAXil 4 ðxl; xlþ1ÞA f il ) xjAS0 ð22Þ

8 i0;…ikA I; 8x0;…; xkAΣ;

⋀lA ½0;k�1�xlAðXil \ S0αÞ4 ðxl; xlþ1ÞA f il ) xkAS0 ð23Þ

Let In be the set of finite words of the letters in I, and I�k its restriction to words of length exactly k. In the following, we
denote by jwj the length of word w, by a � b the concatenation of the words a and b into ab and by tl(w) the tail of a non-
empty word w, i.e. w without its first letter. For example tlði �wÞ ¼w.

Following Lee and Dullerud approach, we reinforce Eqs. (22) and (23) to gather the states which share the same path w
(sequence of switches) in a same set Sw;α. To consider a finite number of possible paths we bound these paths by k i.e. w is a
non-empty sequence of switches of length at most k. We obtain the new (stronger) system of implications:

8wA I�1; 8xAΣ; xAX0 \ Xw ) xAS0w

81r jok; 8w � iA I�j ; 8x; yAΣ; ( lA I; ð24Þ

ðx; yÞA f i4xAS0w�i4yAXl ) yAS0w�i�l

8w � iA I�k; 8x; yAΣ; ( lA I; ð25Þ

ðx; yÞA f i4xAS0w�i4yAXl ) yAS0tlðw�iÞ�l ð26Þ

Proposition 6.1. Suppose that the system of Eqs. (24)–(26) has a solution fS0wj81r jrk;wA I�j g. Let us define the set S that
satisfies:

S0 ¼ ⋃
iA I

⋃
wA I�

j
;

0r jr k� 1

S0w�i

Proof (Sketch). It suffices to prove that S0 satisfies Eqs. (22) and (23). The first equation follows from i0 �… � ik�1 ¼w is a
word, X0 \ Xi0 DS0i0 (Eq. (24)) and by using k times Eq. (25), we conclude that Eq. (23) holds with S0w�ik DS0. Now for Eq. (23),
x0AS0 then for some word w, x0AS0w�i0 using k times either Eq. (25) or Eq. (26) (depending on the path length), we conclude
that xkAS0.□
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To turn the sets equations in term of sublevel sets equations, we introduce the family of quadratic functions para-
meterized by words of length at most k. For wA I�j with 1r jrk we define for all ðx;uÞARdþm:

Vwðx;uÞ ¼ x

u

� �>
Pw x

u

� �
þ2qw

x

u

� �
;

for some ðdþmÞ � ðdþmÞ symmetric matrix Pw and some dþm-vector qw. Then we can also define:

V 0ðx;uÞ ¼ V 0iðx;uÞ if ðx;uÞAXi where V 0i ¼ min
w0 A I�j ; 0r jrk�1

Vw�iðx;uÞ:

Finally, a sublevel solution of systems of equations consists in:

S0α ¼ ðx;uÞARdþm∣V 0ðx;uÞrα
n o

¼ ⋃
iA I

ðx;uÞAXi∣V 0iðx;uÞrα
n o

:

In the next, we will need the family of auxiliary ellipsoidal sets parameterized by words w of length at most k:

S0w;α ¼ ðx;uÞARdþm∣Vwðx;uÞrα
n o

:

By introducing quadratic functions, we will reinforce Eqs. (24), (25) and (26) from Proposition 5.1 as semidefinite con-
straints. In the next, we will adapt the semi-definite constraints of previous section to satisfy the k-inductive based con-
straints. While it is possible to target directly the synthesis of a k-inductive piecewise quadratic sublevel set, the approach
typically starts from k¼1 and increase to kþ1 in case of failure to find a minimal k-inductive piecewise quadratic invariant.

6.1. Characterizing the graph of possible switches – enumerating the paths

As a first step, we compute the set of possible paths of given length up to k. First a graph G¼ ðI; Init; SwÞ denoting possible
switches between cells iA I is computed using the approach presented in Section 4.2.

Recall that Init denotes the subset of cells iA I that verify the initial conditions i.e. Init¼ fiA IjX0 \ Xia∅g. In this graph
context, these indices are used to label the vertices I. Recall also that Sw is the set of possible switches i.e.
Sw¼ fði; jÞA I2∣( ðx;uÞAXi s:t: ðAixþBiuþbi;uÞAXjg. In this graph context, it represents the edges. Recall that Init and Sw are
computed using the method presented in Section 4.1.

We then enumerate the possible paths in the graph using classical graph algorithms. Let Pathsk be such set of paths of
length up to k.

Example 6.1. Fig. 2 presents the possible transitions as over-approximated by our method presented in Section 4.2.
Depending on the target length the following paths are generated:

length
1
 1,2,3,4

2
 11, 12, 13, 14, 22, 24, 31, 33, 34, 41, 42, 43, 44

3
 111, 112, 113, 114, 122, 124, 131, 133, 134, 141, 142, 143, 144, 222, 224, 241, 242, 243, 244, 311, 312, 313, 314, 331, 333, 334, 341, 342, 343,

344, 411, 412, 413, 414, 422, 424, 431, 433, 434, 441, 442, 443, 444

4
 …
Fig. 2. Switch graph of the running example.



A. Adjé, P.-L. Garoche / Computer Languages, Systems & Structures 47 (2017) 44–6158
6.2. Integrating initial conditions

The initial condition only applies for the quadratic sublevel associated to initial cells. Let Init be the set of cells admitting
initial elements, as defined in the graph construction.

By construction of the set of paths Pathsk, it contains the single letter words denoting initial cells fijiA InitgDPathsk. The
set of initial constraints only apply for these one letter word satisfying the initial condition:

ðx;uÞAX0 \ Xi ) ðx;uÞPiðx;uÞ> þ2ðx;uÞqirα ð27Þ
We can rely on the same stronger encoding as a semi-definite constraint, using the quadratization of the condition

X0 \ Xi as the matrix E0i:

� �α qi
>

qi Pi

 !
�E0i

>
ZiE0i≽0 ð28Þ

Note that, independently of the value of k, a system with n cells is parametrized by at most n Zi variables.

6.3. Expressing transitions in initial and inductive cases as semi-definite constraints

Eqs. (25) and (26) denoting a transition Xij from cell Xi to cell Xj can be defined as:

ðx;uÞAXij4ðx;uÞASw�i;α ) ðAixþBiuþbi;uÞASw�i�j;α ð29Þ

ðx;uÞAXij4ðx;uÞASw�i;α4 jw � ij ¼ k ) ðAixþBiuþbi;uÞAStlðw�iÞ�j;α ð30Þ
As before, these constraints are first relaxed with the use of quadratization of cell transitions Eij, and then expressed as

semi-definition constraints using Proposition 5.1.
when jw � ij ¼ k:

�Fi
> 0 qtlðw�iÞ�j>

qtlðw�iÞ�j Ptlðw�iÞ�j

 !
Fiþ 0 qw�i>

qw�i Pw�i

 !
�Eij

>
Uw�i;jEij≽0: ð31Þ

when jw � ijok:

�Fi
> 0 qw�i�j>

qw�i�j Pw�i�j

 !
Fiþ 0 qw�i>

qw�i Pw�i

 !
�Eij

>
Uw�i;jEij≽0: ð32Þ

Note that we have jPathskj variables qw, Pw and jPathskj � jIj variables Uw;j.

6.4. Expressing boundedness

The boundedness constraint expressed as a semi-definite constraint is straightforward. We require that all path-
associated quadratic sublevel is bounded by the same scalar β.

For all w � iAPathsk, there exists βZ0:

ðx;uÞAXi4 ðx;uÞASw�i;α ) J ðx;uÞJ22rβ ð33Þ
The associated semi-definite constraints is:

�Ei
>
Ww�iEiþ �α qw�i>

qw�i Pw�i

 !
þ

β 01�ðdþmÞ
0ðdþmÞ�1 � IdðdþmÞ�ðdþmÞ

 !
≽0 ð34Þ

We have here jPathskj variables Ww.

6.5. Algorithm

The invariant computation is performed iteratively, increasing the length of the paths considered, using similar steps as
the algorithm presented in Section 5.4. This new method is presented at Algorithm 2.

Algorithm 2.

1. Precompute unfeasible transitions and synthesize the matrix L of fireable switches
2. Start with a path of length l¼1 and increase until timeout or success:
(a) Generate from matrix L all feasible paths w of length up to l, including paths of length 1.
(b) Define real variables α and β
(c) For each path w, introduce variables Pw, qw, Ww, and for each cell index iA I, the variables Uw�i and Zi.
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(d) Depending on the system definition and the quadratization of guards, characterize the matrices E0i; Eij; Ei; Fi, for all
i; jA I.

(e) Solve the semi-definite program defined by the constraints (28), (31), (32), and (34) on such variables and constants.
(f) If there exist a solution, then return the solution fðPw; qw;Ww;Uw�i; Zi; αopt ; βoptÞ; iA I;wA jPathsljg. Otherwise, increase

the path length l and go to (a).

Theorem 6.1. Let R be the reachable values set of a given piecewise affine system of the form (1) and U be the bounded compact
convex polyhedron where the control variable u lives. Assume that Algorithm 2 stops at some lAN� with the solution
fðPw; qw;Ww;Uw�i; Zi; αopt ; βoptÞ; iA I;wA jPathsljg. Then:

1. The set:

S0αopt ¼ ⋃
iA I

⋃
wA I�

j
0r jr l� 1

ðx;uÞAXi∣
x
u

� �>
Pw�i
opt

x
u

� �
þ2qw�i

opt>
x
u

� �
rαopt

( )

is bounded and R� UDS0αopt .

2. For all ðx;uÞAR� U , J ðx;uÞJ22rβopt .

Proof (Sketch). Apply the same method of the proof of Theorem 5.1.□

6.6. Remark: special case of length 1

When one considers Eqs. (28), (31), (32), and (34) with the set of paths Paths1 of length up to 1, we obtain exactly Eqs.
(17), (15), and (21). In that case, Eq. (32) does not hold since no non-empty word of length strictly less than 1 exists.

6.7. Solution

The analysis of the running example with increased length generates the following results:
Fig. 3. Results of the analysis of benchmark
length l0o l.
s. A benchmark is associated to the category jwjr l
 iff it has not been bounded with a CLF or a s
Length
 βð ffiffiffi
β

p Þ
 α
 jPathskj
1
 2173 (46.6154)
 242.0155
 4

2
 2133 (46.1844)
 233.0847
 17

3
 1652 (40.6448)
 220.8596
 73

4
 1574 (39.6737)
 228.5051
 314
Note that the bound α on the piecewise quadratic sublevel applies on different sets of such local Lyapunov function. Their
comparison is meaningless.
7. Experimentations

To illustrate the applicability of our method to a wide set of examples, we generated about a thousand (1030) of
dynamical systems with at most 16 partition cells, 5 state variables and a single input.

In [3], the authors show (Theorem 2) that to determine the stability a piecewise affine dynamical system is undecidable.
In order to generate more stable examples, we restricted the class of program generated. Each partition cell affine semantics
maller path



Fig. 4. Relative precision: this graph summarizes the relative precision obtained for successful analyses, i.e. excluding system proved with a common
Lyapunov function nor the unproved ones. The line y¼1 represents for each benchmark the normalized results, i.e. the bound on the value β obtained with
the minimal succeeding path length. The background color shows the value of such length: e.g. all benchmarks at the right hand-side of the plot are proved
bounded with paths of length 1, while the leftmost part required a path of length 4. Within each of such blocks, we sorted the benchmark by the increase in
precision obtained with a longer path. For example the benchmark 504 (vertical line) obtained the bound β¼23,271 with a path of length 1. This value
becomes 21,853, that is 7% smaller, with a path of length 2, β¼13,343 (43% smaller) with a path of length 3 and β¼888 with a path of length 4. But in this
last case the timing cost becomes prohibitive.
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would be (i) generated with small coefficients, since big coefficients are usually avoided in controllers and, (ii) enforced
locally stable when needed by updating the values of the coefficients using the spectral radius.

Our example synthesis still does not guarantee to obtain globally stable system, but, with these required properties of
local stability and small coefficients, it is more likely that switching from one cell to the other would not break stability and
therefore boundedness of the reachable states. The intuition behind is that when we pass from a cell to another cell, we
multiply a vector by a small number then all the coordinates of the vector image are strictly smaller than the ones of initial
vector.

As illustrated in Fig. 3 about 561 of such 1030 examples are automatically shown to be bounded using our technique
while this class of program considered is unlikely to be analyzable with other static analysis tools the author are aware of,
including the previous analyzes proposed [26]. For the sake of comparison we also evaluated the existence of a simpler
Common Lyapunov function (CLF) which existed in 298 cases. A typical run of the analysis is about 20 s for a path of length
1, a minute for a length 2. In order to avoid long run of the analysis, we did not compute the piecewise invariants in a case of
a system and a path length generating more than a thousand paths.

Fig. 4 analyzes the obtained results with respect to the relative precision and the path length.
All the computation have been performed within Matlab, including the synthesis of the examples. The source code of the

analysis as well a document summarizing the examples and their analysis is available at https://cavale.enseeiht.fr/piece
wisequadratic/.
8. Conclusion

The presented approach is able, considering a piecewise affine system, to compute a piecewise quadratic invariant able to
bound the set of reachable state.

The technique extends the classical quadratic Lyapunov function synthesis using SDP solvers by formulating a more
complex set of constraints to the SDP solver. This new formulation accounts the definition of the partitioning and encodes
within the SDP constraints the relationship between partitions.

In practice our technique has been applied to a wide set of generated examples and was able to bound their reachable
state space while a global quadratic invariant was proven not computable.

Our future work will consider the combination of this technique with other formal methods. A first direction will rely on
the computed piecewise quadratic form as a template domain, bounding its value on some code using either Kleene
iterations [6] or policy iteration [13]. This will require to extend the existing algorithms to fit this piecewise description of
the template.

A second direction is to ease the applicability of the method and to integrate the technique in a more common analysis
framework. A requirement for the presented work is to obtain a global representation of the program, as matrix updates and
conditions. Existing static analysis [26] used for policy iteration extracts such a graph with the appropriate representation.
We plan to integrate the two frameworks to ease the applicability on more realistic programs in an automated fashion.

http://www.cavale.enseeiht.fr/piecewisequadratic/
http://www.cavale.enseeiht.fr/piecewisequadratic/
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