
Computing just right:
Application-specific arithmetic

Florent de Dinechin
e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

Outline

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 2

Introduction and motivation

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 3

Dark silicon

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

“Dark silicon” is the percentage that must be off at a given time
... expected to represent 50% of the area of an high-end processor
around 2020

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation (compared
to a software implementation that would take many more cycles)

when unused, serve as radiator for the used parts

F. de Dinechin Computing Just Right: Application-specific arithmetic 4

Dark silicon

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

“Dark silicon” is the percentage that must be off at a given time
... expected to represent 50% of the area of an high-end processor
around 2020

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation (compared
to a software implementation that would take many more cycles)

when unused, serve as radiator for the used parts

F. de Dinechin Computing Just Right: Application-specific arithmetic 4

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)

Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).

Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC

Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)

Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)

Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.

... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Useful operators that make sense in a processor

(define “rare but useful”)

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to
FMA-based FPUs (first IBM then HP then Intel)
Then Yes again these days, because it reduces energy (D. Lutz).
Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC
Yes again soon as useful dark silicon? (e.g. SpiNNaker-2)
Should a processor include decimal hardware?
Yes say IBM, No say Intel
(motivation is weak IMHO, but if it is useful dark silicon...)
Should a processor include a multiplier by log(2)?
No of course.
... except as part of a (more useful) exponential operator

Specific arithmetic hidden in coarser dark silicon functions

(fingerprint recognition, AI accelerators, etc.)

F. de Dinechin Computing Just Right: Application-specific arithmetic 5

Second motivation: computing with FPGAs

Former title of this presentation was:

The arithmetic operators you will never see in a microprocessor
(and how to build them)

But I had to change it...

F. de Dinechin Computing Just Right: Application-specific arithmetic 6

Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

... a small configurable
automaton

Configurable routing instead of the
local routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

... a small configurable
automaton

Configurable routing instead of the
local routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

... a small configurable
automaton

Configurable routing instead of the
local routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

... a small configurable
automaton

Configurable routing instead of the
local routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Basic FPGA structure

Overal view

Logic: Look-Up Table F
4 inputs,
1 output

filled with an arbitrary
truth table

Memory: 1-bit register

Cell: configurable logic blocks

... a small configurable
automaton

Configurable routing instead of the
local routing

need random access here

Content of one block

F

x0
x1
x2
x3

R yr

y

In blue, switch boxes to connect crossing lines

F. de Dinechin Computing Just Right: Application-specific arithmetic 7

Two moments in the life of an FPGA

Configuration time (a few ms)

the LUTs are filled with truth tables

the switching state (on/off) of each switch in each switch boxes is
defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

F. de Dinechin Computing Just Right: Application-specific arithmetic 8

Two moments in the life of an FPGA

Configuration time (a few ms)

the LUTs are filled with truth tables

the switching state (on/off) of each switch in each switch boxes is
defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

F. de Dinechin Computing Just Right: Application-specific arithmetic 8

Two moments in the life of an FPGA

Configuration time (a few ms)

the LUTs are filled with truth tables

the switching state (on/off) of each switch in each switch boxes is
defined

a program == a lot of configuration bits

Run time (forever if needed)

Data is processed by each LUT according to its truth table

Data moves from LUT to LUT along the (static) connexions

The FPGA behaves as a circuit of gates

The programming model of FPGAs is the digital circuit.

F. de Dinechin Computing Just Right: Application-specific arithmetic 8

A configured FPGA

Also known as reconfigurable circuits
used for reconfigurable computing

F. de Dinechin Computing Just Right: Application-specific arithmetic 9

Compared to ASIC, 1/10th the speed

Why?

Most of the silicon is dedicated to programmable routing

Cost in area, but also delay: many transistors on each wire

“Customers buy logic, but they pay for routing” (Langhammer)

And it gets worse (Rent’s law)

F. de Dinechin Computing Just Right: Application-specific arithmetic 10

Rent’s law?

Yet another experimental law

In a circuit of diameter n,
the number of wires crossing a diameter

is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

note quite proportional to the area n2

of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Replace “circuit” with “city”, and “wires” with “citizen commuters”,
and you have the explanation of the Hopeless Universal Trafic Jam
in expanding cities.

F. de Dinechin Computing Just Right: Application-specific arithmetic 11

Rent’s law?

Yet another experimental law

In a circuit of diameter n,
the number of wires crossing a diameter

is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

note quite proportional to the area n2

of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Replace “circuit” with “city”, and “wires” with “citizen commuters”,
and you have the explanation of the Hopeless Universal Trafic Jam
in expanding cities.

F. de Dinechin Computing Just Right: Application-specific arithmetic 11

Useful operators that make sense in an FPGA

Elementary functions ?
Yes iff your application needs it

Divider or square root?
Yes iff your application needs it

Decimal hardware?
Yes iff your application needs it

A multiplier by log(2)?
Yes iff your application needs it

In FPGAs, useful means: useful to one application.

F. de Dinechin Computing Just Right: Application-specific arithmetic 12

Useful operators that make sense in an FPGA

Specialized operators: constant multipliers, squarers, ...

Elementary functions (sine, exponential, logarithm...)

Algebraic functions (
x√

x2 + y2
, polynomials, ...)

Compound functions (log2(1± 2x), e−Kt
2
, ...)

Floating-point sums, dot products, sums of squares

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

Oh yes, basic operations, too.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Useful operators that make sense in an FPGA

Specialized operators: constant multipliers, squarers, ...

Elementary functions (sine, exponential, logarithm...)

Algebraic functions (
x√

x2 + y2
, polynomials, ...)

Compound functions (log2(1± 2x), e−Kt
2
, ...)

Floating-point sums, dot products, sums of squares

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

Oh yes, basic operations, too.

F. de Dinechin Computing Just Right: Application-specific arithmetic 13

Two different ways of wasting silicon

Here are two programmable chips.

Which is best for (insert your computation here) ?

F. de Dinechin Computing Just Right: Application-specific arithmetic 14

Are FPGAs any good at floating-point?

Long ago (1995), people ported the basic operations: +,−,×
Versus the highly optimized FPU in the processor,

each operator 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak figures for double-precision floating-point exponential

Pentium core: 20 cycles / DPExp @ 4GHz: 200 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 400MHz: 400 MDPExp/s

Chip vs chip: 6 Pentium cores vs 150 FPExp/FPGA

Power consumption also better

Single precision data better

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)

F. de Dinechin Computing Just Right: Application-specific arithmetic 15

Are FPGAs any good at floating-point?

Long ago (1995), people ported the basic operations: +,−,×
Versus the highly optimized FPU in the processor,

each operator 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak figures for double-precision floating-point exponential

Pentium core: 20 cycles / DPExp @ 4GHz: 200 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 400MHz: 400 MDPExp/s

Chip vs chip: 6 Pentium cores vs 150 FPExp/FPGA

Power consumption also better

Single precision data better

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)

F. de Dinechin Computing Just Right: Application-specific arithmetic 15

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

(who is “rare but useful” here?)

F. de Dinechin Computing Just Right: Application-specific arithmetic 16

Not your Pentium’s exponential

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

Not your Pentium’s exponential

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

Not your Pentium’s exponential

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

generator
Need a

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

F. de Dinechin Computing Just Right: Application-specific arithmetic 17

The FloPoCo project: Not your neighbour’s FPU

A generator framework

written in C++, outputting VHDL
open and extensible

Goal: provide application-specific arithmetic operators

open-ended list
all operators fully parameterized
flexible pipeline for all operators

Approach: computing just right
Interface: never output bits that are not numerically meaningful
Inside: never compute bits that are not useful to the final result

F. de Dinechin Computing Just Right: Application-specific arithmetic 18

The FloPoCo project: Not your neighbour’s FPU

A generator framework

written in C++, outputting VHDL
open and extensible

Goal: provide application-specific arithmetic operators

open-ended list
all operators fully parameterized
flexible pipeline for all operators

Approach: computing just right
Interface: never output bits that are not numerically meaningful
Inside: never compute bits that are not useful to the final result

F. de Dinechin Computing Just Right: Application-specific arithmetic 18

Optimizing operators in context

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 19

What’s nice with arithmetic operators

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

What’s nice with arithmetic operators

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

What’s nice with arithmetic operators

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

What’s nice with arithmetic operators

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

F. de Dinechin Computing Just Right: Application-specific arithmetic 20

Sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

The FloPoCo Recipe

provide the floating-point interface

build a fixed-point architecture

ensure a clear accuracy specification

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

Sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

The FloPoCo Recipe

provide the floating-point interface

build a fixed-point architecture

ensure a clear accuracy specification

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

Sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

The FloPoCo Recipe

provide the floating-point interface

build a fixed-point architecture

ensure a clear accuracy specification

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

Sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

The FloPoCo Recipe

provide the floating-point interface

build a fixed-point architecture

ensure a clear accuracy specification

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

Sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

The FloPoCo Recipe

provide the floating-point interface

build a fixed-point architecture

ensure a clear accuracy specification

F. de Dinechin Computing Just Right: Application-specific arithmetic 21

A floating-point adder

λ

LZC/shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex − ey

close path c/f

ex

ez

my

shift

|mx − my |

my

1-bit shift

ex

ez

mx

far path
mz , r

mz , r

sticky

s

gr

prenorm (2-bit shift)

s

F. de Dinechin Computing Just Right: Application-specific arithmetic 22

Optimization opportunities

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

F. de Dinechin Computing Just Right: Application-specific arithmetic 23

Optimization opportunities (2)

A few results for floating-point sum-of-squares on Virtex4:
(classic: assembly of classical FP adders and multipliers,
custom: the architecture on previous slide)

Simple Precision area performance

LogiCore classic 1282 slices, 20 DSP 43 cycles @ 353 MHz

FloPoCo classic 1188 slices, 12 DSP 29 cycles @ 289 MHz

FloPoCo custom 453 slices, 9 DSP 11 cycles @ 368 MHz

Double Precision area performance

FloPoCo classic 4480 slices, 27 DSP 46 cycles @ 276 MHz

FloPoCo custom 1845 slices, 18 DSP 16 cycles @ 362 MHz

all performance metrics improved, FLOP/s/area more than doubled

Plus: custom operator more accurate, and symmetrical

F. de Dinechin Computing Just Right: Application-specific arithmetic 24

Adapting to context: frequency-directed pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

F. de Dinechin Computing Just Right: Application-specific arithmetic 25

Adapting to context: frequency-directed pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

F. de Dinechin Computing Just Right: Application-specific arithmetic 25

Adapting to context: frequency-directed pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

F. de Dinechin Computing Just Right: Application-specific arithmetic 25

Frequency-directed pipelining

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

Better because compositional

When you assemble components working at frequency f , you obtain a
component working at frequency f .

F. de Dinechin Computing Just Right: Application-specific arithmetic 26

Frequency-directed pipelining

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

Better because compositional

When you assemble components working at frequency f , you obtain a
component working at frequency f .

F. de Dinechin Computing Just Right: Application-specific arithmetic 26

Frequency-directed pipelining

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

Better because compositional

When you assemble components working at frequency f , you obtain a
component working at frequency f .

F. de Dinechin Computing Just Right: Application-specific arithmetic 26

Here should come a demo

FloPoCo is not a library, but a generator of operators written in C++.

Command line syntax: a sequence of operator specifications

Options: target frequency, target hardware, ...

Output: synthesizable VHDL.

FloPoCo is open-source and freely available from

http://flopoco.gforge.inria.fr/

F. de Dinechin Computing Just Right: Application-specific arithmetic 27

http://flopoco.gforge.inria.fr/

Example: Multiplication by
rational constants

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 28

Multiplication by a constant, 1

FPGA-specific LUT-based methods

Write x in radix 2α: x =
n∑

i=0

2αixi with 0 ≤ xi < 2α

Ex: good old hexadecimal is α = 4 : x2 x1 x0

then Cx =
n∑

i=0

2αi (Cxi)

and tabulate the products Cxi in α-input LUTs

(also works if C is a real number like, say, 1/ log(2))

Extremely efficient for small n (input size) on LUT-based FPGAs.

F. de Dinechin Computing Just Right: Application-specific arithmetic 29

Multiplication by a constant, 2

Shift-and-add methods for integer constants

17x = 16x + x = (x � 4) + x

15x = 16x − x (Booth recoding)

7697x = 15x � 9 + 17x (open problem here)

very good recent ILP-based heuristics

In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).

F. de Dinechin Computing Just Right: Application-specific arithmetic 30

Multiplication by a constant, 2

Shift-and-add methods for integer constants

17x = 16x + x = (x � 4) + x

15x = 16x − x (Booth recoding)

7697x = 15x � 9 + 17x (open problem here)

very good recent ILP-based heuristics

In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).

F. de Dinechin Computing Just Right: Application-specific arithmetic 30

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 31

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

1/3 = 0.0101010101010101010101010101010 · · ·
1/9 = 0.000111000111000111000111000111 · · ·

Two specificities

The binary representation of the constant is periodic
−→ specific optimisation of the shift-and-add approach

Precision required for correct rounding

F. de Dinechin Computing Just Right: Application-specific arithmetic 31

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

a < b

2 divides neither a nor b (powers of two are a matter of exponent)

Then

a/b has a purely periodic binary representation

The period size s is the multiplicative order of 2 modulo b

(the smallest integer such that 2s mod b = 1)

The periodic pattern is the integer p = b2sa/bc

Example: 1/9

b = 9; period size is s = 6 because 26 mod 9 = 1.
The periodic pattern is b1× 26/9c = 7, which we write on 6 bits
000111, and we obtain that

1/9 = 0.(0001112)∞ .

F. de Dinechin Computing Just Right: Application-specific arithmetic 32

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

a < b

2 divides neither a nor b (powers of two are a matter of exponent)

Then

a/b has a purely periodic binary representation

The period size s is the multiplicative order of 2 modulo b

(the smallest integer such that 2s mod b = 1)

The periodic pattern is the integer p = b2sa/bc

Example: 1/9

b = 9; period size is s = 6 because 26 mod 9 = 1.
The periodic pattern is b1× 26/9c = 7, which we write on 6 bits
000111, and we obtain that

1/9 = 0.(0001112)∞ .
F. de Dinechin Computing Just Right: Application-specific arithmetic 32

Optimal architecture for precision pc

x

n

π3 = x × p p p p p p p p

π0 = x × p

π1 = x × p p

π2 = x × p p p p

x × p p p p p p p p p p

n + 2s

n + s

n + 4s

n + 8s

n + 10s

×p

� s

� 2s

� 4s

F. de Dinechin Computing Just Right: Application-specific arithmetic 33

Correct rounding of a floating-point x by a rational a/b

A lemma adapted from the exclusion lemma of FP division

Correct rounding on n bits needs n + 1 + dlog2 be bits of the
constant

In practice, it is for free if b is small.

F. de Dinechin Computing Just Right: Application-specific arithmetic 34

This work was motivated by divisions by 3 and by 9

constant p
This work previous SotA
pc #FA pc #FA depth

1/3 24 32 118 27 190 4
53 64 317 56 368 5

p = 012 113 128 792 116 1026 6

1/9 24 30 132 29 131 5
53 60 356 58 408 6

p = 0001112 113 120 885 118 1116 7
(The precisions chosen here are those of the IEEE754-2008 formats)

... But the FloPoCo code manages arbitrary a/b (including a > b).

F. de Dinechin Computing Just Right: Application-specific arithmetic 35

And now for something completely different

Instead of specializing multiplication, let us try and specialize division.

F. de Dinechin Computing Just Right: Application-specific arithmetic 36

Anybody here remembers how we compute divisions?

7 7 6

1 7

2 6

2

2 5 8

3

iteration body: Euclidean division of a 2-digit decimal number by 3

The first digit is a remainder from previous iteration:
its value is 0, 1 or 2

Possible implementation as a look-up table that, for each value
from 00 to 29, gives the quotient and the remainder of its division
by 3.

F. de Dinechin Computing Just Right: Application-specific arithmetic 37

Anybody here remembers how we compute divisions?

7 7 6

1 7

2 6

2

2 5 8

3

iteration body: Euclidean division of a 2-digit decimal number by 3

The first digit is a remainder from previous iteration:
its value is 0, 1 or 2

Possible implementation as a look-up table that, for each value
from 00 to 29, gives the quotient and the remainder of its division
by 3.

F. de Dinechin Computing Just Right: Application-specific arithmetic 37

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

0 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

20 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

D2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

The same, but in binary-friendly radix

Writing an integer x in radix 2α

x =
n∑

i=0

2αixi (split of the bits of x into chunks of α bits)

Example: good old hexadecimal is α = 4

x2 x1 x0

F

0

D2

020 5

3F 2 D

F. de Dinechin Computing Just Right: Application-specific arithmetic 38

And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri)← (byi/dc, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = dlog2 de
produces α bits of q, and a remainder of size γ

implemented as a table with α + γ bits in, α + γ bits out

F. de Dinechin Computing Just Right: Application-specific arithmetic 39

And now for some mathematical obfuscation

procedure ConstantDiv(x , d)
rk ← 0
for i = k − 1 down to 0 do

yi ← xi + 2αri+1 (this + is a concatenation)
(qi , ri)← (byi/dc, yi mod d) (read from a table)

end for
return q =

∑k
i=0 qi .2

−αi , r0
end procedure

Each iteration

consumes α bits of x , and a remainder of size γ = dlog2 de
produces α bits of q, and a remainder of size γ

implemented as a table with α + γ bits in, α + γ bits out

F. de Dinechin Computing Just Right: Application-specific arithmetic 39

At this point nobody wants to see the proof

(if you’re convinced the decimal version works...)

prove that we indeed compute the Euclidean division

prove that the result is indeed a radix-2α number

F. de Dinechin Computing Just Right: Application-specific arithmetic 40

Sequential implementation

LUT

clk

reset

α

α

xi

γγ

qi

ri+1 ri

F. de Dinechin Computing Just Right: Application-specific arithmetic 41

Unrolled implementation

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

F. de Dinechin Computing Just Right: Application-specific arithmetic 42

Logic-based version

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

For instance, assuming a 6-input LUTs (e.g. LUT6)

A 6-bit in, 6-bit out consumes 6 LUT6

Size of remainder is γ = log2 d

If d < 25, very efficient architecture: α = 6− γ
The smaller d , the better

Easy to pipeline (one register behind each LUT)

F. de Dinechin Computing Just Right: Application-specific arithmetic 43

Dual-port RAM-based version?

For larger d?

LUT LUTLUT LUT

x3 x2 x1 x0

q0q1q2q3 r

(not really studied, waiting for the demand)

F. de Dinechin Computing Just Right: Application-specific arithmetic 44

Synthesis results on Virtex-5
for combinatorial Euclidean division

n = 32 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 47 (6*8=48) 7.14ns
d = 5 (α = 3) 60 (6*11=66) 6.79ns
d = 7 (α = 3) 60 (6*11=66) 7.30ns

n = 64 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 95 (6*16=96) 14.8ns
d = 5 (α = 3) 125 (6*22=132) 13.8ns
d = 7 (α = 3) 125 (6*22=132) 15.0ns

Logic optimizer even finds something to chew: don’t care lines in the tables.

F. de Dinechin Computing Just Right: Application-specific arithmetic 45

Synthesis results on Virtex-5
for combinatorial Euclidean division

n = 32 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 47 (6*8=48) 7.14ns
d = 5 (α = 3) 60 (6*11=66) 6.79ns
d = 7 (α = 3) 60 (6*11=66) 7.30ns

n = 64 bits
constant LUT6 (predicted) latency

d = 3 (α = 4) 95 (6*16=96) 14.8ns
d = 5 (α = 3) 125 (6*22=132) 13.8ns
d = 7 (α = 3) 125 (6*22=132) 15.0ns

Logic optimizer even finds something to chew: don’t care lines in the tables.

F. de Dinechin Computing Just Right: Application-specific arithmetic 45

Synthesis results on Virtex-5
for pipelined Euclidean division by 3

n = 32 bits
FF + LUT6 performance

33 Reg + 47 LUT 1 cycle @ 230 MHz
58 Reg + 62 LUT 2 cycles @ 410 MHz
68 Reg + 72 LUT 3 cycles @ 527 MHz

n = 64 bits
FF + LUT6 performance

122 Reg + 112 LUT 2 cycles @217 MHz
168 Reg + 198 LUT 5 cycles @ 410 MHz
172 Reg + 188 LUT 7 cycles @ 527 MHz

F. de Dinechin Computing Just Right: Application-specific arithmetic 46

Floating-point version is cheap, too

01

m < d ′?

+1 h

div by d

1

me

−s − 1
ovftz

Exn

e m

� s � s + 1

ξ

ξ

pre-normalisation and pre-rounding:

◦
(

2s+εm

d

)
=

⌊
2s+εm

d
+

1

2

⌋
=

⌊
2s+εm + d/2

d

⌋
F. de Dinechin Computing Just Right: Application-specific arithmetic 47

Synthesis results on Virtex-5
for pipelined floating-point division by 3

single precision

FF + LUT6 performance

35 Reg + 69 LUT 1 cycle @ 217 MHz
105 Reg + 83 LUT 3 cycles @ 411 MHz

standard correctly rounded divider
1122 Reg + 945 LUT 17 cycles @ 290 MHz

double precision

FF + LUT6 performance

122 Reg + 166 LUT 2 cycles @ 217 MHz
245 Reg + 250 LUT 6 cycles @ 410 MHz

using shift-and-add
282 Reg + 470 LUT 5 cycles @ 307 MHz

F. de Dinechin Computing Just Right: Application-specific arithmetic 48

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

F. de Dinechin Computing Just Right: Application-specific arithmetic 49

My personal record

Two weeks from the first intuition of the algorithm
to complete pipelined FloPoCo implementation + paper submission.

Implementation time

10 minutes to obtain a testbench generator

1/2 day for the integer Euclidean division

20 mn for its flexible pipeline

1/2 day for the FP divider by 3

and again 20 mn

This was advertising for the FloPoCo framework.

F. de Dinechin Computing Just Right: Application-specific arithmetic 50

Example: Sin/Cos

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 51

Introduction

Why compute the trigonometric functions sine and cosine?
fundamental in signal processing and signal processing applications
like FFT, modulation/demodulation, frequency synthesizers, ...

How to compute them ? In this work:
1. the classical CORDIC algorithm, based on additions and shifts
2. a method based on tables and multipliers, suited for modern FPGAs
3. a generic polynomial approximation

Which is best on FPGAs?

What is the cost of w bits of sine and cosine?

F. de Dinechin Computing Just Right: Application-specific arithmetic 52

Which method is best on FPGAs?

A fair comparison of methods computing sine and cosine:

same specification (the best possible
one)

Fixed-point inputs and outputs
compute sin(πx) and cos(πx) for
x ∈ [−1, 1)
Faithful rounding:
all the produced bits are useful, no
wasted resources

same effort (the best possible one)

open-source implementations in
FloPoCo
state-of-the-art?

Computing just one, or both?

some applications need both sine and cosine (e.g. rotation)

some methods compute both

F. de Dinechin Computing Just Right: Application-specific arithmetic 53

Textbook Stuff

Decomposition of the exponential in
two exponentials

e i(a+b) = e ia × e ib

From complex to real

e iϕ = cos(ϕ) + i sin(ϕ)

Decompose a rotation in smaller
sub-rotations{

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)
F. de Dinechin Computing Just Right: Application-specific arithmetic 54

Argument Reduction

based on the 3 MSBs of the
input angle x

s - sign
q - quadrant
o - octant

remaining argument
y ∈ [0, 1/4)

y ′ =

{
1
4 − y if o = 1
y otherwise.

compute cos(πy ′) and sin(πy ′)

reconstruction:

000

001010

011

100

101 110

111

sqo Reconstruction

000

{
sin(πx) = sin(πy ′)
cos(πx) = cos(πy ′)

001

{
sin(πx) = cos(πy ′)
cos(πx) = sin(πy ′)

010

{
sin(πx) = cos(πy ′)
cos(πx) = − sin(πy ′)

011

{
sin(πx) = sin(πy ′)
cos(πx) = − cos(πy ′)

F. de Dinechin Computing Just Right: Application-specific arithmetic 55

CORDIC Architecture


c0 = 1

Πn
i=1

√
1+2−i

s0 = 0
α0 = y (the reduced argument)


di = +1 if αi > 0, otherwise − 1

ci+1 = ci − 2−idi si
si+1 = si + 2−idici
αi+1 = αi − di arctan(2−i)

cn→inf = cos(y)
sn→inf = sin(y)
αn→inf = 0

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 56

CORDIC Improvements

Reduced α-Datapath

αi < 2−i

decrement the α-datapath
by 1 bit per iteration

benefits

saves space
saves latency

α2

c0 s0 z0

>>0 >>0 α0

c1 s1 z1

>>1 >>1 α1

c2 s2 z2

>>2 >>2

cn−1 sn−1 zn−1

xn yn zn

>>n−1 αn−1>>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 57

CORDIC Improvements

Reduced Iterations

stop iterations when they can
be replaced by a single
rotation, with enough accuracy{

sin(α) ' α
cos(α) ' 1

half the iterations replaced by{
xi+1 = xi + α · yi
yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for
larger sizes

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 58

CORDIC Improvements

Reduced Iterations

stop iterations when they can
be replaced by a single
rotation, with enough accuracy{

sin(α) ' α
cos(α) ' 1

half the iterations replaced by{
xi+1 = xi + α · yi
yi+1 = yi − α · xi

only 2 multiplications

2 DSPs for up to 32 bits
truncated multiplications for
larger sizes xn yn zn

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn/2+1 sn/2+1

d0

d1

d2

F. de Dinechin Computing Just Right: Application-specific arithmetic 58

CORDIC Error Analysis

Goal: last-bit accuracy of the result

the result is within 1ulp of the
mathematical result

ulp = weight of least significant
bit

Intermediate precision

approximations and roundings
→ computations on w+g bits
internally

guard bits g

Error budget: total of 1ulp
1
2ulp for the final rounding error

1
4ulp for the method error

1
4ulp for the rounding errors

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 59

CORDIC Error Analysis (1)

Analysis: method error (εmethod)

εmethod of the order of the value of
αfinal

αfinal can be bounded numerically

→ number of iterations:
smallest number for which
εmethod < 2−w−2

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 60

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

CORDIC Error Analysis (2)

Analysis: rounding errors (εround)
on the α datapath

correct rounding of arctan(2−i)
error bounded by 2−w−g−1

total error on the α-datapath:
nb iter × 2−w−g−1

on the sin() and cos() datapath

for each shift operation, error
bounded by 2−w−g

total error larger than on the
α-datapath

must be smaller than 2−w−2:
ε× 2−w−g < 2−w−2

this gives g

εmethod + εround < 2−w−1

Final rounding of sin and cos has error
of the order 2−w−1

c0 s0

>>0 >>0

c1 s1

>>1 >>1

c2 s2

>>2 >>2

cn−1 sn−1

xn yn zn

>>n−1 >>n−1

d0

d1

d2

dn−1

F. de Dinechin Computing Just Right: Application-specific arithmetic 61

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method

Algorithm

angle split:
y (the reduced angle) = t + yred

t on a bits
yred such that yred < 2−(a+2)

store sin(πt) and cos(πt) in tables

evaluate sin(πyred) and cos(πyred)
using a Taylor polynomial
approximation

need to compute first z = yred × π
sin(z) ≈ z − z3/6
cos(z) ≈ 1− z2/2

reconstruct the values of sin(πy) and
cos(πy) using{

sin(π(t + yred)) = sin(πt) cos(πyred) + cos(πt) sin(πyred)

cos(π(t + yred)) = cos(πt) cos(πyred)− sin(πt) sin(πyred)

F. de Dinechin Computing Just Right: Application-specific arithmetic 62

Table- and DSP-based method: Details

approximating y ′ = 1
4 − yred as ¬yred

choose a such that z4

24 ≤ 2−w−g

so that a degree-3 Taylor polynomial
may be used
means that 4(a + 2)− 2 ≥ w + g

truncated multiplications

constant multiplication by π

z2/2

computed using a squarer

z3/6

read from a table for small precisions
computed with a dedicated
architecture for larger precisions
(based on a bit heap and divider by
3, see paper)

T T

T

T T
T

T
TZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 63

Table- and DSP-based method: Error Analysis

Error Analysis
1
2ulp lost per table

1ulp per truncation and
truncated multiplier/squarer

1ulp for computing 1
4 − yred

(as ¬yred)

total of 15ulp, independent of
the input width

→ gives g=4

T T

T

T T
T

T
TZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 64

Polynomial-based method

using existing software (more
details in the reference)

based on polynomial
approximation

computes only one of the
functions, depending on an
input

T

T

mult.
trunc.

mult.
trunc.

y

D

ROM
Coef.

A

a0

an−1

an

ỹ2

y

+

i

ỹ1

+

R

round

F. de Dinechin Computing Just Right: Application-specific arithmetic 65

Results – 16−bit Precision

Approach latency frequency Reg. + LUTs BRAM DSP

CORDIC 18 478 969 + 1131 0 0
CORDIC 14 277 776 + 1086 0 0
CORDIC 7 194 418 + 1099 0 0
CORDIC 3 97 262 + 1221 0 0

Red. CORDIC 16 273 657 + 761 0 2
Red. CORDIC 13 368 625 + 719 0 2
Red. CORDIC 7 238 327 + 695 0 2
Red. CORDIC 4 238 106 + 713 0 2

SinAndCos 4 298 107 + 297 0 5
SinAndCos 3 114 168 + 650 0 2

SinOrCos (d=2) 9 251 136 + 183 1 2
SinOrCos (d=2) 5 115.3 87 + 164 1 2

Synthesis Results on Virtex5 FPGA, Using ISE 12.1

F. de Dinechin Computing Just Right: Application-specific arithmetic 66

Results – Highest Frequency

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 16 bits

CORDIC 18 478 969 + 1131 0 0

Red. CORDIC 13 368 625 + 719 0 2

SinAndCos 4 298 107 + 297 0 5

SinOrCos (d=2) 9 251 136 + 183 1 2

precision = 24 bits

CORDIC 28 439.9 1996 + 2144 0 0

Red. CORDIC 20 273.4 1401 + 1446 0 4

SinAndCos 5 262 197 + 441 3 7

SinOrCos (d=2) 9 251 202 + 279 2 2

precision = 32 bits

CORDIC 37 403.5 3495 + 3591 0 0

Red. CORDIC 24 256.8 2160 + 2234 0 4

SinAndCos 10 253 535 + 789 3 9

SinOrCos (d=3) 14 251 444 + 536 4 5

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0

Red. CORDIC 37 252 3695 + 3768 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12

SinOrCos (d=3) 15 251 628 +725 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17

SinOrCos 15 250 734 + 879 17 10

F. de Dinechin Computing Just Right: Application-specific arithmetic 67

Results – Options for Z 3

6

Approach latency frequency Reg. + LUTs BRAM DSP

precision = 40 bits

CORDIC 45 375 5070 + 5289 0 0
CORDIC 25 149 2948 + 5245 0 0

Red. CORDIC 37 252 3695 + 3768 0 8
Red. CORDIC 9 123 931 + 3339 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12
SinAndCos (bit heap) 4 154 612 + 2826 0 12

SinAndCos (table z3/6) 4 156 395 + 2268 2 12

SinOrCos (d=3) 15 251 628 +725 4 8
SinOrCos (d=3) 9 132 376 +675 4 8

precision = 48 bits

SinAndCos (bit heap) 13 232 1322 + 2369 12 17
SinAndCos (bit heap) 6 132 972 + 2133 12 17

SinOrCos 15 250 734 + 879 17 10
SinOrCos 9 124 431 + 823 17 10

F. de Dinechin Computing Just Right: Application-specific arithmetic 68

Conclusions

A wide range of open-source accurate implementations
CORDIC implementation on par with vendor-provided solutions
some tuning still needed on DSP-based methods

SinAndCos method overall best

Little point in using unrolled CORDIC for FPGAs

Approach latency area

CORDIC 16 bits 30.3 ns 1034 LUTs
SinAndCos 16 bits 15.0 ns 1211 LUTs

CORDIC 24 bits 44.6 ns 2079 LUTs
SinAndCos 24 bits 17.0 ns 2183 LUTs

CORDIC 32 bits 62.1 ns 3513 LUTs
SinAndCos 32 bits 19.4 ns 3539 LUTs

Synthesis results for logic-only implementations

What is the cost of computing w bits of sine/cosine?

F. de Dinechin Computing Just Right: Application-specific arithmetic 69

The universal bit heap

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 70

Introduction and motivation

So much VHDL to write, so few slaves to write it

FPGA arithmetic the way it should be:

An infinite number of application-specific operators

Each heavily parameterized (bit-size, performance, etc)

Portable to any FPGA, and even ASIC

How to ensure performance across all this range?

object-oriented abstraction of vendor-specific features

... not enough

F. de Dinechin Computing Just Right: Application-specific arithmetic 71

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size

frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency

DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target

... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Portable versus optimized

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

size frequency DSP ratio

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic 72

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators

exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Reducing the combinatorics

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

What is a bit heap?

A data-structure
capturing bit-level descriptions of a wide class of operators
exposing bit-level parallelism and optimization opportunities

An associated architecture generator
which can be optimized for each target

F. de Dinechin Computing Just Right: Application-specific arithmetic 73

Operations as bit heaps

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 74

Weighted bits

Integers or real numbers represented in binary fixed-point

X =
imax∑

i=imin

2ixi

2i : “weight” =⇒ X “sum of weighted bits”

Representation as a dot diagrams

x0x1x2x3x4x5x6x7

weight 2021222324252627

F. de Dinechin Computing Just Right: Application-specific arithmetic 75

Integer or fixed-point

Example: 42 written in binary

01010100

weight 2021222324252627

Example: 17.42 written in binary

111010110001

weight 2−72−62−52−42−32−22−12021222324

F. de Dinechin Computing Just Right: Application-specific arithmetic 76

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

The historical bit heap

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i ,j

2i+jxiyj

weight 2021222324252627

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

F. de Dinechin Computing Just Right: Application-specific arithmetic 77

Beyond product

A +

XY =
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Beyond product

A + XY =
∑
i

2iai +
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Beyond product

A + XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Beyond product

A + XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality
inside operators, and between operators

focus on true timing information
e.g. critical path delay of each weighted bit

A global optimization instead of several local ones

F. de Dinechin Computing Just Right: Application-specific arithmetic 78

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 79

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 79

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin Computing Just Right: Application-specific arithmetic 79

When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013)

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 80

When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (HEART 2013) with 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Computing Just Right: Application-specific arithmetic 80

A bit heap for Z − Z 3/6 in the previous architecture

Full bit heap

w=16 bits

Bit heap truncated just right

F. de Dinechin Computing Just Right: Application-specific arithmetic 81

The constant vector

Quite often you need to add a constant to a bit heap:

Rounding bit

Constant coefficient

Sign extension for two’s complement (generalizating a classical
multiplier trick)

To replicate bit s from weight p to weight q

add s at weight p.

then add 2q − 2p to the constant bit vector
(a string of 1’s stretching from bit p to bit q)

This performs the sign extension both when s = 0 and s = 1.

All these constants may be pre-added, and only their sum added to the
bit heap.
Managing signed number costs at most one line in the bit heap.

F. de Dinechin Computing Just Right: Application-specific arithmetic 82

Generating an architecture

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 83

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Architecture computing the value of a bit heap

Elementary case 1: the compressor

A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

archetype: the full adder is a 3 to 2 compressor

on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.

survey and refs in the FPL 2013 paper, see also
papers by M. Kumm.

Elementary case 2: the adder

An adder replaces two n-bit lines, and a carry
by a line of n + 1 bits

F. de Dinechin Computing Just Right: Application-specific arithmetic 84

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 85

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 85

Architecture computing the value of a bit heap

1. Compression
Tile the bit heap with compressors

I use as many compressors in parallel as possible
I this produces a new, smaller bit heap
I ... in one LUT delay

Start again on the compressed bit heap

Stop when bit heap height equal to two

2. Final fast addition

add the remaining two lines

Both steps can be done in log n time and n log n area

F. de Dinechin Computing Just Right: Application-specific arithmetic 85

Bit heaps and DSP blocks

Elementary case: the DSP block?

Xilinx DSP blocks compute A + XY (48+18x25)

Altera DSP blocks compute XY (36x36)
or AB± CD (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV

F. de Dinechin Computing Just Right: Application-specific arithmetic 86

Bit heaps and DSP blocks

Elementary case: the DSP block?

Xilinx DSP blocks compute A + XY (48+18x25)

Altera DSP blocks compute XY (36x36)
or AB± CD (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV
F. de Dinechin Computing Just Right: Application-specific arithmetic 86

Reconciling bit heaps and DSP blocks

Instanciating DSP blocks is part of the compression

merge operands from various sources in a DSP

unused DSP adders may remove random bits from the heap

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

Virtex-5

D(0)(0)

D(-1)(1)

D(1)(-1)

Stratix IV

Many more details in the paper.

F. de Dinechin Computing Just Right: Application-specific arithmetic 87

Current status

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Elem. function

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description

Bit heap

Architecture generation

Spartan-4Spartan-5Spartan-6
Virtex-4Virtex-5Virtex-6

......
StratixIIIStratixIVStratixV

F. de Dinechin Computing Just Right: Application-specific arithmetic 88

So, does it work?

Benefits in terms of software engineering

Reduction of FloPoCo code size

Fewer obscure bugs hidden in obscure operators

(I didn’t say fewer bugs)

Benefits in terms of performance

... thanks to operator fusion

Already a few examples

complex product
cosine transforms

Still work in progress

improve compression heuristics
fuse in all the integer adder variants
rework the polynomial evaluator

Progress in the BitHeap class benefits to many operators

F. de Dinechin Computing Just Right: Application-specific arithmetic 89

So, does it work?

Benefits in terms of software engineering

Reduction of FloPoCo code size

Fewer obscure bugs hidden in obscure operators

(I didn’t say fewer bugs)

Benefits in terms of performance

... thanks to operator fusion

Already a few examples

complex product
cosine transforms

Still work in progress

improve compression heuristics
fuse in all the integer adder variants
rework the polynomial evaluator

Progress in the BitHeap class benefits to many operators

F. de Dinechin Computing Just Right: Application-specific arithmetic 89

Generate VHDL, test bench,
and nice clickable SVG graphics

before first compression

0 1.653 ns

0 1.773 ns

1 1.061 ns

1 1.204 ns

before 3-bit height additions

before final addition

F. de Dinechin Computing Just Right: Application-specific arithmetic 90

Future work, from short-term to hopeless

Adapt all the remaining operators to take advantage of bit heaps

Improve the compression heuristics
done, thanks to Martin Kumm

Automate some of the algebraic optimisations done by hand so far

Answer open questions like:

How many bits must flip to compute 16 bits of sin(x)?

F. de Dinechin Computing Just Right: Application-specific arithmetic 91

Conclusion

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 92

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Computing just right

In a processor

the choice is between

an integer SUV, or

a floating-point SUV.

In an FPGA

If all I need is a bicycle, I have the possibility to build a bicycle

(and I’m usually faster to destination)

Save routing! Save power! Don’t move useless bits around!

F. de Dinechin Computing Just Right: Application-specific arithmetic 93

Busy until retirement (1)

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.

F. de Dinechin Computing Just Right: Application-specific arithmetic 94

Busy until retirement (2)

Designing the flexible parameters was only half of the problem...

(the easy half)

The difficult half is: how to use them?

What precision is required at what point of a computation

F. de Dinechin Computing Just Right: Application-specific arithmetic 95

Meanwhile, in the real world

A very nice paper at Arith 2018 by Lutz and Bruguera:

radix-64 divider architecture in future ARM processors

Massive speculation: replicating hardware that computes many
results in parallel, most of which will be thrown out

in order to reduce latency (whatever the hardware cost)

... and this is a low-power processor!

Almost, but not quite, everything but Computing Just Right

Any cycle gain
allowing us to switch off earlier this huge superscalar core

actually saves energy

F. de Dinechin Computing Just Right: Application-specific arithmetic 96

Thanks for your attention

The following people have contributed to FloPoCo:
S. Banescu, Louis Beseme, Nicolas Bonfante,
Maxime Christ, N. Brunie, S. Collange, J. Detrey,
P. Echeverŕıa, F. Ferrandi, Luc Forget, M. Grad,
K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, M. Kumm, D. Mastrandrea, K. Moeller,
B. Pasca, B. Popa, X. Pujol, G. Sergent, D. Thomas,
R. Tudoran, A. Vasquez.

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

http://flopoco.gforge.inria.fr/

Introduction and motivation

Optimizing operators in context

Example: Multiplication by rational constants

Example: Sin/Cos

The universal bit heap

Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic 97

http://flopoco.gforge.inria.fr/

	Introduction and motivation
	Optimizing operators in context
	Example: Multiplication by rational constants
	Example: Sin/Cos
	The universal bit heap
	Conclusion

