

Exercices pour le module "Calcul Différentiel"

Année 2015/2016

1. Les parallélogrammes sont des boules

On considère le parallélogramme P de \mathbb{R}^2 de sommets (2, 1), (1, -1), (-2, -1), (-1, 1). Déterminer une norme sur \mathbb{R}^2 pour laquelle ce parallélogramme est la boule unité.

2. Boules unités convexes

Soit E un espace vectoriel de dimension finie et $N:E\to\mathbb{R}^{\geq 0}$ une application satisfaisant les deux propriétés suivantes : pour tout $x\in E$

- $\bullet N(x) = 0 \Leftrightarrow x = 0,$
- $N(\lambda x) = |\lambda| N(x)$ pour tout $\lambda \in \mathbb{R}$.

Montrer que N est une norme sur E si et seulement si le sous-ensemble $B := \{x \in E \mid N(x) \le 1\}$ est convexe.

3. Les normes $\|\cdot\|_p$

Soit p > 0. Pour $x = (x_1, ..., x_n) \in \mathbb{R}^n$, on pose

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad ||x||_{\infty} = \sup_{1 \le i \le n} |x_i|.$$

et on note $B_p^n := \{x \in \mathbb{R}^n \, | \, ||x||_p \le 1\}.$

- **a.** On suppose que n=2. Dessiner les sous-ensembles B_p^2 pour $p \in \{1/2, 1, 2, 3, \infty\}$.
- **b.** On suppose que p < 1. Montrer que B_p^n n'est pas un sous-ensemble convexe de \mathbb{R}^n . En déduire que $\|\cdot\|_p$ n'est pas une norme.
- **c.** On suppose que $p \ge 1$. Montrer que $x \mapsto (\|x\|_p)^p$ est une fonction convexe sur \mathbb{R}^n (on pourra commencer avec n = 1). En déduire que $\|\cdot\|_p$ est une norme.
- **d.** Montrer que pour tout $x \in \mathbb{R}^n$, on a $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$. À quoi est égal $\lim_{p \to 0} ||x||_p$?

4. Normes d'applications linéaires

Soient E et F deux \mathbb{R} -espaces vectoriels normés de dimension finie. On note L:=L(E,F) l'ensemble des applications linéaires de E dans F. C'est un \mathbb{R} -espace vectoriel que l'on munit de la norme suivante : pour $f \in L$

$$||f||_L := \sup_{\|x\|_E \le 1} ||f(x)||_F.$$

- **a.** Soit $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = 4x 2y + z. On suppose \mathbb{R} muni de la norme "valeur absolue". Déterminer la norme de f dans les trois situations où \mathbb{R}^3 est munie des normes $\|\cdot\|_1, \|\cdot\|_2$ et $\|\cdot\|_{\infty}$.
- **b.** Soit $f: \mathbb{R}^p \to \mathbb{R}^q$ une application linéaire définie par une matrice $M = (m_{i,j})_{\substack{1 \le i \le q \\ 1 \le j \le p}}$.
- Si \mathbb{R}^p et \mathbb{R}^q sont munis de la norme $\|\cdot\|_1$, montrer que $\|f\| = \max_{1 \le j \le p} \left(\sum_{i=1}^q |m_{i,j}|\right)$.
- Si \mathbb{R}^p et \mathbb{R}^q sont munis de la norme $\|\cdot\|_{\infty}$, montrer que $\|f\| = \max_{1 \le i \le q} \left(\sum_{j=1}^p |m_{i,j}| \right)$.

2

5. Continuité

Justifier la raison pour laquelle les applications suivantes sont continues :

(1)
$$f(x, y, z) = \frac{x^2 + xyz}{e^{xy} + 1}, (x, y, z) \in \mathbb{R}^3$$
,

(2)
$$M_n(\mathbb{R}) \to \mathbb{R}, A \mapsto \det(A)$$
,

(3)
$$M_n(\mathbb{R}) \to M_n(\mathbb{R}), A \mapsto AB - BA$$
, où $B \in M_n(\mathbb{R})$ est fixée,

$$(4) M_n(\mathbb{R}) \to M_n(\mathbb{R}), A \mapsto A^3,$$

(5)
$$GL_n(\mathbb{R}) \to GL_n(\mathbb{R}), A \mapsto A^{-1}$$
,

(6)
$$f(x, y) = xy \sin\left(\frac{1}{x^2 + y^2}\right)$$
, si $(x, y) \neq 0$ et $f(0, 0) = 0$,

(7)
$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
, si $(x,y) \neq 0$ et $f(0,0) = 0$.

6. Continuité d'une fonction à paramètre

Pour tout $\alpha > 0$ on considère la fonction $F_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ définie par $F_{\alpha}(0,0) = 0$ et

$$F_{\alpha}(x,y) = \frac{x|y|^{\alpha}}{x^2 + y^4},$$

$$si(x, y) \neq 0$$
.

- **a.** Montrer que F_{α} est continue en (0,0) si et seulement si $\alpha > 2$.
- **b.** Montrer que $\mathbb{R}^2 \times]2, \infty[\to \mathbb{R}, (x, y, z) \mapsto F_z(x, y)$ est continue.

7. Exercice (Contrôle Continu 2015)

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour $(x, y) \in \mathbb{R}^2$ par

$$f(x,y) = \begin{cases} y^2 \sin\left(\frac{x}{y}\right) & \text{si } y \neq 0, \\ 0 & \text{si } y = 0. \end{cases}$$

- **a.** Montrer que f est continue sur \mathbb{R}^2 .
- **b.** Montrer que f est différentiable en tout point de \mathbb{R}^2 .
- **c.** Est-ce que f est de classe C^1 ?

8. Les applications multilinéaires

a. Parmi les applications de $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ dans \mathbb{R} suivantes, désigner lesquelles sont linéaires, bilinéaires ou trilinéaires :

(1)
$$\varphi(x, y, z) = x_1 + 5y_2 - z_3$$

(2)
$$\varphi(x, y, z) = x_1y_3 + (y_2 + x_3)z_1 + (z_3 - x_2)y_1$$

(3)
$$\varphi(x, y, z) = x_1 y_2 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2$$

(4)
$$\varphi(x, y, z) = x_1 x_2 x_3 + y_1 y_2 y_3 + z_1 z_2 z_3$$

(5)
$$\varphi(x, y, z) = (y_2 + 4y_3)(2x_1 - 3x_2)(z_1 + z_3)$$

Ici
$$x = (x_1, x_2, x_3) \in \mathbb{R}^3$$
 et idem pour $y, z \in \mathbb{R}^3$.

b. Soient E et F deux espaces vectoriels muni respectivement des bases $B_E := \{e_1, \dots, e_n\}$ et $B_F := \{f_1, \dots, f_p\}$.

- Déterminer une base de l'espace vectoriel $\mathcal{L}(E \times F, \mathbb{R})$ des applications linéaires de $E \times F$ dans \mathbb{R} .
- Déterminer une base de l'espace vectoriel $\mathcal{L}^2(E \times F, \mathbb{R})$ des applications bilinéaires de $E \times F$ dans \mathbb{R} .

9. Calcul de dérivées partielles

- **a.** On considère $f : \mathbb{R} \to \mathbb{R}^2$ définie par f(0) = (1,0) et $f(t) = (\sin(t)/t, t \ln|t|)$. Est-ce que f est continue sur \mathbb{R} ? Est-ce que f est dérivable sur \mathbb{R} ?
- **b.** On considère $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 3xy + y$. Soit $u = (a,b) \in \mathbb{R}^2$. Calculer la dérivée directionnelle $\partial_u f$ au point (1,2). En déduire la valeur de la différentielle de f en (1,2). Calculer la dérivée en 0 de la fonction $g(t) = f(e^t, 2\cos(t))$.
- **c.** On considère la fonction déterminant det : $M_n(\mathbb{R}) \to \mathbb{R}$. Pour $1 \le i, j \le n$, on note $E_{i,j} \in M_n(\mathbb{R})$ la matrice ayant un seul coefficient non nul : celui qui est à la *i*-ème ligne, *j*-ème colonne et valant 1. Calculer la dérivée directionnelle de la fonction det par rapport à $E_{i,j}$.
- **d.** On considère la fonction définie par $F(x,y) = \frac{x^2y}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et F(0,0) = 0. Montrer que F admet des dérivées directionnelles $\partial_u F(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$ et tout $u \in \mathbb{R}^2$. Est-ce que F est différentiable en (0,0)?

10. Calcul de différentielles

a. Pour les fonctions suivantes, donner leur domaine de définition et calculer leur différentielle.

(1)
$$f(x,y) = \frac{\sqrt{y}}{1-x^2}$$

(3)
$$f(x,y) = \left(\sqrt{x + e^y}, xy, \cos(x^2)\right)$$

(2)
$$f(x, y, z) = \left(\sin(x + 2y), \sqrt{yz}\right)$$

b. Déterminer les matrices jacobiennes des applications suivantes :

- (1) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = \sin(x + y)\cos(y x)$
- (2) $g: \mathbb{R} \to \mathbb{R}^2$ définie par $g(t) = (e^t, t)$
- (3) $f \circ g \text{ et } g \circ f$

11. Applications homogènes

Une application $f: \mathbb{R}^n \to \mathbb{R}^p$ est dite homogène de degré $\alpha \in \mathbb{R}$ si $f(tx) = t^{\alpha} f(x)$ pour tout $x \in \mathbb{R}^n \setminus \{0\}$ et tout $t \in]0, \infty[$.

- **a.** Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ homogène de degré 1. On suppose de plus que f est différentiable en 0. Montrer qu'alors f est une application linéaire. Application : est-ce qu'une norme $N: \mathbb{R}^n \to \mathbb{R}$ peut être différentiable en 0?
- **b.** (Identité d'Euler) Soit $f: \mathbb{R}^n \to \mathbb{R}$ que l'on suppose différentiable sur $\mathbb{R}^n \setminus \{0\}$. Montrer que f est homogène de degré α si et seulement si on a

$$df(x)x = \alpha f(x), \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

12. Applications à coefficients matriciels

- **a.** On considère l'espace vectoriel $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ des matrices symétriques. Soit $k \in \mathbb{N}$.
- Calculer la différentielle de $\pi_k: S_n(\mathbb{R}) \to S_n(\mathbb{R}), A \mapsto A^k$.
- Montrer que l'application $d\pi_2(A): S_n(\mathbb{R}) \to S_n(\mathbb{R})$ est inversible si toutes les valeurs propres de A sont strictement positives.
- **b.** On considère la fonction déterminant det : $M_n(\mathbb{R}) \to \mathbb{R}$.
- Justifier le fait que la fonction det est différentiable sur $M_n(\mathbb{R})$.

- Calculer $d(\det)(A)$. On commencera avec A = Id, ensuite A inversible et puis A quelconque dans $M_n(\mathbb{R})$.
- **c.** On considère la fonction inverse $i: GL_n(\mathbb{R}) \to GL_n(\mathbb{R}), A \mapsto A^{-1}$.
- Justifier le fait que la fonction i est différentiable sur $GL_n(\mathbb{R})$.
- Calculer d(i)(A). On commencera avec A = Id, puis A quelconque dans $GL_n(\mathbb{R})$.

13. Applications contractantes

Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension fini. Soit $D \subset E$ une partie fermée.

a. Soit $(u_k)_{k \in \mathbb{N}}$ une suite de E. On suppose qu'il existe C > 0 et $\rho \in [0, 1[$ tels que $||u_{k+1} - u_k|| \le C\rho^k$ pour tout $k \in \mathbb{N}$. Montrer que la suite $(u_k)_{k \in \mathbb{N}}$ est convergente.

On considère une application $f: D \to E$ qui est *contractante* : il existe $\rho \in [0, 1[$ tels que $||f(x) - f(y)|| \le \rho ||x - y||$ pour tout $x, y \in D$.

- **b.** On suppose que $f(D) \subset D$. On considère la suite définie par récurrence : $u_{k+1} = f(u_k)$ et $u_o \in D$. Montrer que la suite $(u_k)_{k \in \mathbb{N}}$ est convergente.
- **c.** En déduire que $\{x \in D, f(x) = x\}$ est réduit à un seul élément si $f(D) \subset D$.

14. Applications contractantes: exemples

- **a.** On considère les fonctions de \mathbb{R} dans \mathbb{R} définies par $f_1(x) = \frac{x^2}{x^2+1}$ et $f_2(x) = \cos(x) + x$. Pour chaque i = 1, 2 déterminer un intervalle $D_i \subset \mathbb{R}$ sur lequel f_i est contractante et pour lequel on a $f_i(D_i) \subset D_i$.
- **b.** On considère l'application linéaire $f_c: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f_c(x, y) = \left(\frac{x+y}{2}, cy\right)$.
- a) Montrer que f_c est contractante par rapport à la norme euclidienne de \mathbb{R}^2 si $c \in \left] \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$.
- b) Montrer que pour tout $c \in \mathbb{R}$, l'application f_c n'est pas contractante par rapport à la norme $\|\cdot\|_{\infty}$.
- **c.** On considère l'application $f(x, y) = (y^2 \frac{x}{2}, xy)$.
- a) Montrer qu'il existe r > 0 tel que f est contractante sur la boule fermée $B(0, r) \subset \mathbb{R}^2$.
- b) Montrer que la fonction f admet un unique point fixe dans B(0, r).

15. Équations

- **a.** Déterminer les fonctions $F: \mathbb{R}^2 \to \mathbb{R}$ satisfaisant les relations $\frac{\partial F}{\partial x}(x,y) = e^x + \sin(y)$ et $\frac{\partial F}{\partial y}(x,y) = x\cos(y) + y$ pour tout $(x,y) \in \mathbb{R}^2$.
- **b.** Déterminer les fonctions $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ satisfaisant la relation $x \frac{\partial F}{\partial x}(x,y) + y \frac{\partial F}{\partial y}(x,y) = \sqrt{x^2 + y^2}$ pour tout $(x,y) \neq (0,0)$. On pourra chercher une solution particulière sous la forme $f(x,y) = c(x^2 + y^2)^{\alpha}$.

16. Dérivées partielles d'ordre 2

- **a.** On considère la fonction $F: \mathbb{R}^2 \to \mathbb{R}$ définie par $F(x,y) = \frac{x^3y}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et F(0,0) = 0.
- *a*) Montrer que les dérivées partielles $\frac{\partial^2 F}{\partial y \partial x}(x, y)$ et $\frac{\partial^2 F}{\partial x \partial y}(x, y)$ sont bien définies sur \mathbb{R}^2 . Est-ce que $\frac{\partial^2 F}{\partial y \partial x}(0, 0) = \frac{\partial^2 F}{\partial x \partial y}(0, 0)$?
- b) Est-ce que la différentielle seconde $d^2F(x, y)$ existe en (x, y) = (0, 0)?
- **b.** On considère l'application $F: \mathbb{R}^2 \to \mathbb{R}$ définie par $F(x,y) = y^3 \sin\left(\frac{x}{y}\right)$ si $y \neq 0$ et F(x,0) = 0.
- a) Étudier l'existence des dérivées partielles premières et secondes de F.
- b) Déterminer le plus grand domaine ouvert de \mathbb{R}^2 sur lequel F est C^1 , C^2 .

- **c.** On considère la fonction sur $M_n(\mathbb{R})$ définie par $g(X) = \text{Tr}(X^3)$.
- a) Calculer les différentielles premières et secondes dg(X) et $d^2g(X)$.
- b) On se place en X = Id. Déterminer la signature de la forme quadratique $h \mapsto d^2g(Id)(h,h)$.

17. Fonctions convexes

Soit $D \subset \mathbb{R}^n$ un domaine ouvert convexe de \mathbb{R}^n . Une fonction $g : D \to \mathbb{R}$ est convexe si on a $g(tx + (1 - t)y) \le tg(x) + (1 - t)g(y)$ pour tout $x, y \in D$ et tout $t \in [0, 1]$.

- **a.** On suppose que $g: D \to \mathbb{R}$ est différentiable. Montrer que g est convexe si et seulement si pour tout $x, y \in D$ on a $g(x) g(y) \ge dg(y)(x y)$.
- **b.** On suppose que $g: D \to \mathbb{R}$ est deux fois différentiable. Montrer que g est convexe si et seulement si pour tout $x \in D$ la Hessienne $h \mapsto d^2g(x)(h,h)$ est positive.
- **c.** Montrer que la fonction $g:]0, \infty[\times]0, \infty[\to \mathbb{R}$ définie par $g(x, y) = \frac{1}{\sqrt{xy}}$ est convexe.

18. Extrema

- **a.** Déterminer les extrema globaux de la fonction $F(x, y) = x^4 y^4$ sur le domaine $D := \{(x, y), x^2 + \sqrt{3}y^2 \le 1\}$.
- **b.** Étudier les extrema locaux et globaux des fonctions définies par :
- $f_1(x, y) = x^3 + y^3 3xy \text{ sur } \mathbb{R}^2$,
- $f_2(x, y) = x^4 + y^4 4xy \text{ sur } \mathbb{R}^2$,
- $f_3(x, y) = y(x^2 + \ln(y)^2) \operatorname{sur} \mathbb{R} \times [0, \infty[$,
- $f_4(x, y) = x^2 + y^2 xy + 2x y \text{ sur } \mathbb{R}^2 \text{ et sur le domaine } [0, 1] \times [0, 2].$
- **c.** Déterminer $\inf_{x>0,y>0}(1/x+1/y+xy)$.
- **d.** Trouver les points de la surface $S := \{(x, y, z) \in \mathbb{R}^3; y^2 = 9 + xz\}$ qui sont les plus proches de l'origine de \mathbb{R}^3 .

19. Exercice (Examen juin 2015)

On consider la fonction $f: \mathbb{R}^n \to \mathbb{R}$ définie par la relation : pour $x = (x_1, \dots, x_n)$,

$$f(x) = \prod_{i=1}^{n} x_i = x_1 \times x_2 \times \cdots \times x_n.$$

À s > 0 on associe le sous-ensemble $K_s := \{x \in \mathbb{R}^n, x_i \ge 0 \ \forall i, \ \text{et} \ \sum_{i=1}^n x_i \le s \}.$

- **a.** Montrer que K_s est un compact de \mathbb{R}^n .
- **b.** Montrer que $\sup\{f(x), x \in K_s\}$ est atteint en un point $a \in \mathbb{R}^n$ tel que $a_i > 0$, $\forall i$ et $\sum_{i=1}^n a_i = s$. Calculer $\sup\{f(x), x \in K_s\}$.
- c. En déduire l'inégalité ci-dessous (que l'on appelle inégalité arithmético-géométrique) :

$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^n x_i$$

pour tout x_1, \ldots, x_n positifs.

20. Exercice (Contrôle Continu 2015)

On consider la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = x^3 + y^3 - xy$.

- **a.** Déterminer les points critiques de f.
- **b.** Déterminer les extrema locaux de f.

- **c.** Soit $C \subset \mathbb{R}^2$ le carré formé des points $(x, y) \in \mathbb{R}^2$ tels que $0 \le x \le 1$ et $0 \le y \le 1$. Déterminer $\max_{(x,y)\in C} f(x,y)$ et $\min_{(x,y)\in C} f(x,y)$.
- **d.** Déterminer $Inf_{x \ge 0, y \ge 0} f(x, y)$.

21. Fonctions harmoniques

Pour une fonction $f: U \subset \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , le laplacien de f est la fonction définie par la relation

$$\Delta f = \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x_k^2}$$

La fonction f est dite harmonique si $\Delta f = 0$.

- **a.** Soit $n \in \mathbb{N}$. Vérifier que les fonctions $F_n(x,y) = \text{Re}((x+iy)^n)$ et $G_n(x,y) = \text{Im}((x+iy)^n)$ sont harmoniques.
- **b.** On travaille avec $U = \mathbb{R}^n \setminus \{0\}$ et une fonction de la forme $f(x_1, \dots, x_n) = g\left(\sqrt{x_1^2 + \dots + x_n^2}\right)$ avec $g:]0, +\infty[\to \mathbb{R}$ de classe C^2 . Déterminer lesquelles sont harmoniques.
- **c.** On considère le changement de variables en polaires $\varphi(r,\theta) = (r\cos(\theta), r\sin(\theta))$. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 et $F = f \circ \varphi$. Exprimer Δf en fonction de $\frac{\partial^2 F}{\partial r^2}$, $\frac{\partial F}{\partial r}$ et $\frac{\partial^2 F}{\partial \theta^2}$.
- **d.** Soient $n \in \mathbb{N}$ et $f : \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 qui est n-homogène : $f(\lambda x, \lambda y) = \lambda^n f(x, y)$ pour tout $\lambda > 0$. Montrer que f est harmonique si et seulement si $f \in \text{Vect}(F_n, G_n)$.

22. Exercice (Examen mai 2015)

Soit U un ouvert de \mathbb{R}^2 . Une fonction $f:U\to\mathbb{R}$ de classe C^2 est dite harmonique si $\frac{\partial^2 f}{\partial x^2}(x,y)+\frac{\partial^2 f}{\partial y^2}(x,y)=0$ pour tout $(x,y)\in U$. Soit R>0. On notera $D_R:=\{(x,y);x^2+y^2\leq R^2\}$ le disque fermé de \mathbb{R}^2 de centre (0,0) et de rayon R, et $C_R:=\{(x,y);x^2+y^2=R^2\}$ le bord de D_R .

- **a.** Montrer que la fonction $F(x, y) = e^{x-y} \cos(x + y)$ est harmonique.
- **b.** Soit $g: \mathbb{R} \to \mathbb{R}$ de classe C^2 et $h: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ définie par $h(x, y) = g(\frac{y}{x})$.
 - (i) Montrer que h est harmonique si et seulement si g satisfait l'équation différentielle

$$g''(t) + \frac{2t}{1+t^2}g'(t) = 0, \quad \forall t \in \mathbb{R}.$$

- (ii) Trouver les fonctions g rendant h harmonique.
- **c.** Soit $\varphi : \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 . Pour chaque entier $k \ge 1$, on considère $\varphi_k(x,y) = \varphi(x,y) + \frac{1}{\iota}(x^2 + y^2)$.
- (i) Justifier que φ et φ_k admettent un maximum sur D_R , que l'on notera respectivement $\max_{D_R} \varphi$ et $\max_{D_R} \varphi_k$. Montrer que $|\max_{D_R} \varphi \max_{D_R} \varphi_k| \le \frac{R^2}{k}$.
- (ii) Supposons que $\max_{D_R} \varphi_k$ est atteint en un point (a,b) qui est à l'intérieur du disque D_R . Montrer que $\frac{\partial^2 \varphi_k}{\partial x^2}(a,b) \leq 0$ et $\frac{\partial^2 \varphi_k}{\partial y^2}(a,b) \leq 0$.
- **d.** Dans cette question, on suppose que φ est harmonique.
 - (i) Montrer que pour tout $k \ge 1$, $\max_{D_R} \varphi_k$ est atteint sur le cercle C_R .
 - (ii) Montrer que $\max_{D_R} \varphi$ est atteint sur le cercle C_R .

23. Difféomorphismes de \mathbb{R}^n

Soit $F : \mathbb{R}^n \to \mathbb{R}^n$ une application de classe C^1 .

- **a.** On suppose que l'application F est propre. C'est à dire que pour tout tout compact K de \mathbb{R}^n , l'ensemble $F^{-1}(K)$ est compact. Montrer alors que l'image de F est un fermé de \mathbb{R}^n .
- **b.** On suppose que pour tout $x \in \mathbb{R}^n$ la différentielle $dF(x) : \mathbb{R}^n \to \mathbb{R}^n$ est bijective. Montrer alors que l'image de F est un ouvert de \mathbb{R}^n .
- **c.** On suppose que la fonction F satisfait les conditions des points **a.** et **b.**. Que peut-on conclure sur l'image de F?
- **d.** Le Théorème de Hadamard-Levy nous assure qu'une application f vérifiant les conditions des points **a.** et **b.** est injective. Que peut-on alors conclure sur f?

24. Difféomorphismes : exemples

a. Soient $a, b \in \mathbb{R}$ tels que |ab| < 1. On considère l'application $F : \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$F(x, y) = (x + a\sin(y), y + b\sin(x)).$$

- i) Montrer que F est injective.
- ii) Montrer que l'application F est propre.
- iii) Montrer que F est un difféomorphisme de \mathbb{R}^2 dans lui même.
- **b.** Montrer que l'application $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (e^{2y} + e^{2z}, e^{2x} e^{2z}, x y)$ est un difféomorphisme sur son image que l'on déterminera.
- **c.** On considère l'espace vectoriel E des matrices symétriques réelles 2×2 . On considère l'ouvert $U \subset E$ formé des matrices symétriques définies positives, et l'application $\phi: U \to E$ définie par $\phi(X) = X^2$.
- i) Soit $X \in U$. En utilisant le fait que X est diagonalisable, montrer qu'il existe $a, b \in \mathbb{R}$ tel que $X = aId + bX^2$. En déduire que ϕ est injective.
- *ii*) Montrer que $\phi(U) = U$.
- iii) Montrer que ϕ définit un difféomorphisme de U sur lui-même.
- **d.** On considère l'application $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par F(x,y) = (A(x,y), B(x,y)) avec $A(x,y) = \frac{1}{2}\text{Re}(e^{x+iy} + e^{-x-iy})$ et $B(x,y) = \frac{1}{2}\text{Im}(e^{x+iy} + e^{-x-iy})$. Montrer que F détermine un difféomorphisme de $U:=\{x>0,0< y<2\pi\}$ sur l'ouvert F(U) que l'on déterminera.

25. Difféomorphismes : autres exemples

Soit c > 0 une constante. On considère une application $f : \mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 satisfaisant la relation $||f(a) - f(b)|| \ge c||a - b||$, pour tout $a, b \in \mathbb{R}^n$.

- **a.** Montrer que f est injective.
- **b.** Montrer que pour tout $x \in \mathbb{R}^n$, la différentielle df(x) est inversible. En déduire que $f(\mathbb{R}^n)$ est une partie ouverte de \mathbb{R}^n .
- **c.** Montrer qu'une suite $(a_k)_{k\in\mathbb{N}}$ de \mathbb{R}^n est de Cauchy si et seulement si $(f(a_k))_{k\in\mathbb{N}}$ est une suite de Cauchy. En déduire que $f(\mathbb{R}^n)$ est une partie fermée de \mathbb{R}^n .
- **d.** En déduire que f est un difféomorphisme de \mathbb{R}^n dans \mathbb{R}^n .

26. Exercice (Examen juin 2015)

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(x,y) = \left(x + \frac{1}{y^2 + 1}, y + \frac{1}{x^2 + 1}\right).$$

a. Montrer que $\frac{a+b}{(a^2+1)(b^2+1)} < 1$ pour tout $(a,b) \in \mathbb{R}^2$. En déduire que f est injective.

- **b.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$, la différentielle df(x, y) est inversible. En déduire que $f(\mathbb{R}^2)$ est une partie ouverte de \mathbb{R}^2 .
- **c.** Montrer qu'il existe C > 0 tel que $||f(x,y)|| \ge ||(x,y)|| C$ pour tout $(x,y) \in \mathbb{R}^2$. En déduire que $f(\mathbb{R}^2)$ est une partie fermée de \mathbb{R}^2 .
- **d.** Montrer que f est un difféomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 .

27. Fonctions implicites

- **a.** On considère le sous-ensemble $C := \{\cos(xy) + \sin(xy) = y\}$. Montrer que si $|x| < \frac{1}{\sqrt{2}}$ il existe un unique $y = \phi(x)$ tel que $(x, y) \in C$. Justifier le fait que ϕ est de classe C^{∞} .
- **b.** On considère l'ensemble $C := \{(x,y) \in \mathbb{R}^2 \mid x^4 + y^3 x^2 y^2 + 3x + y = 0\}$. Montrer qu'il existe une fonction $\varphi : \mathbb{R} \to \mathbb{R}$ de classe C^{∞} tel que $(x,y) \in C \iff y = \varphi(x)$. Déterminer le DL de φ en x = 0 à l'ordre 3.
- **c.** On considère le sous-ensemble $M \subset \mathbb{R}^3$ défini par les relations : $x^2 + 3y^2 z^2 = 1$ et xyz = 1. Soit $(a,b,c) \in M$. Montrer qu'il existe des fonctions Φ_1, Φ_2 définies sur un intervalle $]a \epsilon, a + \epsilon[$ et un voisinage ouvert U de (a,b,c) tel que

$$(x, y, z) \in U \cap M \iff y = \Phi_1(x)$$
 et $z = \Phi_2(x)$.

Quelle est la droite tangente à M au point (a, b, c)?

- **d.** On considère l'application $F: \mathbb{R}^3 \to \mathbb{R}$ définie par $F(x, y, z) = x^2 xy^3 y^2z + z^3$, puis la surface S d'équation F(x, y, z) = 0.
- (i) Déterminer l'équation du plan tangent à S au point (1, 1, 1).
- (ii) Vérifier qu'au voisinage du point (1, 1, 1), la surface S est décrite par une équation de la forme $z = \varphi(x, y)$ où φ est une fonction de classe C^{∞} définie au voisinage de (1, 1).
- (iii) Écrire le développement limité de φ à l'ordre 2 au point (1, 1).
- (*iv*) Donner la matrice Hessienne de φ au point (1, 1).
- (v) Quelle est la position de S par rapport à son plan tangent au point (1, 1)?

28. Extrema liés

- **a.** Trouver les extrema globaux de la fonction f(x, y) = xy sur l'ellipse $\mathcal{E} := \{(x, y) \in \mathbb{R}^2 : x^2 xy + y^2 = 1\}$.
- **b.** Soit *A* une matrice symétrique réelle de taille $n \times n$. On munit \mathbb{R}^n de la norme euclidienne. En utilisant la méthode des multiplicateurs de Lagrange, montrer que le réel

$$\lambda := \sup_{\|x\|=1} \langle x, Ax \rangle$$

est une valeur propre de A, où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire euclidien dans \mathbb{R}^n .

- **c.** Soit $M := \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + z^2 = 5, \ x^2 + y^2 2z = 0\}, \ \phi \text{ la fonction de } \mathbb{R}^3 \text{ dans } \mathbb{R}^2 \text{ définie par } \phi(x, y, z) = (x^2 + 2y^2 + z^2 5, x^2 + y^2 2z), \text{ et } f \text{ la fonction de } \mathbb{R}^3 \text{ dans } \mathbb{R} \text{ définie par } f(x, y, z) = y + z.$
- (i) Montrer que M est une partie compacte de \mathbb{R}^3 .
- (ii) Montrer qu'en tout point de M, le rang de la différentielle de ϕ est 2.
- (iii) Trouver tous les points d'extremum de f et préciser leur nature.

29. Exercice (Examen mai 2015)

Soit la fonction $\varphi : \mathbb{R}^3 \to \mathbb{R}$ définie par $\varphi(x, y, z) = (x + z)y$. On considère le domaine $D := \{(x, y, z); \ x^2 + 3y^2 + z^2 \le 1\}$ et son bord $B := \{(x, y, z); \ x^2 + 3y^2 + z^2 = 1\}$.

a. Déterminer l'équation de l'espace tangent à B en un point $(a, b, c) \in B$.

b. Justifier que φ admet un maximum sur D que l'on notera $\max_D \varphi$. Montrer que ce maximum est atteint sur B.

c. Déterminer $\max_D \varphi$.

30. Équations linéaires du premier ordre

Résoudre les équations différentielles suivantes

$$y' - 2y = te^t$$
, $y' + 2y = \cos(t)$, $(1 + t^2)y' = 2ty + 5(1 + t^2)$.

31. Recollement

- **a.** On considère l'équation différentielle $ty' 4y = t^2$ (E)
 - (*i*) Résoudre (*E*) sur les intervalles $\mathbb{R}_{>0}$, $\mathbb{R}_{<0}$
 - (ii) Déterminer les solutions de (E) définies sur \mathbb{R} .
- **b.** On considère l'équation différentielle $t(t^2 1)y' + 2y = t^2$ (E')
 - (i) Résoudre (E') sur un intervalle de \mathbb{R} ne contenant ni 1, ni 0, ni -1.
 - (ii) Déterminer les solutions de (E') définies sur \mathbb{R} (respectivement sur]-1,1[).

32. Solutions périodiques

On considère l'équation différentielle

$$(E) \quad y' + a(t)y = b(t),$$

où $a,b:\mathbb{R}\to\mathbb{R}$ sont deux fonctions continues 2π -périodiques. On note S_E l'ensemble des solutions de (E), et S_E' le sous-ensemble formé des solutions 2π -périodiques.

- **a.** On suppose que a n'admet pas de primitive 2π -périodique. Montrer alors que S'_E contient un seul élément.
- **b.** On suppose que a admet des primitives 2π -périodiques. Montrer que l'ensemble S'_E est soit vide soit égal à S_E .

33. Variables séparées

a. Résoudre les équations différentielles suivantes :

$$y' = y^2 - 1$$
, $y' = \tan(t)y$, $y' = t^2 \sqrt{1 - y^2}$, $y' = \sin(y)$.

b. Montrer que l'équation différentielle

$$y' = \frac{y+t}{y-t}$$

se ramène à une équation différentielle à variables séparées, puis la résoudre.

34. Équations linéaires du second ordre

a. Intégrer les équations différentielles suivantes :

$$(i) y'' + y = |t|,$$

(ii)
$$y'' + 6y' + 9y = \frac{e^{-3t}}{\sqrt{1+t^2}}$$
,

(ii)
$$y'' - 2y' + 5y = te^t \cos(t)^2$$
.

35. Zéros d'une solution

On considère une solution non-nulle φ de l'équation différentielle y'' - q(t)y = 0. Ici q désigne une fonction continue sur \mathbb{R} .

- **a.** Montrer que tout zéro de φ est simple.
- **b.** Supposons que q(t) > 0, $\forall t \in \mathbb{R}$.
 - (i) Montrer que φ^2 est convexe. Est-ce que φ peut être bornée ?
 - (ii) Montrer que φ admet au plus un zéro.

36. Polynômes de Legendre

Soit $n \ge 1$ un entier. On considère l'équation différentielle

$$(E_n) (1-t^2)y'' - 2ty' + n(n+1)y = 0.$$

On considère le polynôme $P_n = \frac{d^n}{dt^n} [(t^2 - 1)^n]$, et on note L l'opérateur défini par $L(y) = ((t^2 - 1)y')'$.

- **a.** Quel est le lien entre l'opérateur L et les solutions de (E_n) ?
- **b.** Montrer que (E_n) admet une unique solution polynomiale ayant son coefficient dominant égal à 1.
- **c.** (**) Si on pose $U_n = (t^2 1)^n$, vérifier la relation $(t^2 1)U'_n(t) = 2nt U_n(t)$. En dérivant (n + 1)-fois cette dernière relation, montrer que P_n satisfait l'équation différentielle (E_n) .
- **d.** Soit φ une solution de (E_n) définie sur \mathbb{R} . Montrer que la fonction φ est proportionnelle à P_n . On pourra considérer le Wronskien :

$$W(t) = \det \begin{pmatrix} P_n(t) & \varphi(t) \\ P'_n(t) & \varphi'(t) \end{pmatrix}.$$

37. Systèmes différentiels

Soient x, y, z des fonctions de t. Résoudre les systèmes :

$$(A) \begin{cases} y' = -y + z \\ z' = y - 2z - 1 \end{cases} \qquad (B) \begin{cases} y' = y + z + \sin(t) \\ z' = -y + 3z \end{cases} \qquad (C) \begin{cases} x' = 2y + 2z \\ y' = -x + 2y + 2z \\ z' = -x + y + 3z \end{cases}$$
$$(E) \begin{cases} x' = 2x + y - z \\ y' = 2x + y - 2z \\ z' = -x + 2y + z \end{cases} \qquad (F) \begin{cases} x' = 2x + y + z \\ y' = x - y - z \\ z' = -x + 2y + 2z \end{cases} \qquad (G) \begin{cases} x' = 2x + y + z + \sin(t) \\ y' = x - y - z + \cosh(t) \\ z' = -x + 2y + 2z - \cosh(t) \end{cases}$$

38. Exercice (Examen mai 2015)

On considère les systèmes différentiels

(A)
$$\begin{cases} x' = 4x - 9y \\ y' = x - 2y \end{cases}$$
 (B)
$$\begin{cases} x' = 4x - 9y \\ y' = x - 2y + e^t \end{cases}$$

où x, y sont des fonctions de t.

- **a.** Déterminer la forme générale des solutions de (A).
- **b.** Déterminer la solution de (B) satisfaisant la condition initiale x(0) = y(0) = 0.

39. Exercice (Examen juin 2015)

On considère les systèmes différentiels

(A)
$$\begin{cases} x' = x + y + z \\ y' = 2y - 4z \\ z' = y - 2z \end{cases}$$
 (B)
$$\begin{cases} x' = x + y + z + 1 \\ y' = 2y - 4z + 1 \\ z' = y - 2z + 1 \end{cases}$$

où x, y, z sont des fonctions de t

- **a.** Déterminer la forme générale des solutions de (A).
- **b.** Calculer l'exponentielle $t \mapsto e^{tM}$ où

$$M = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & -4 \\ 0 & 1 & -2 \end{array}\right).$$

c. Déterminer la solution de (B) satisfaisant la condition initiale x(0) = y(0) = z(0) = 0.

40. Changement de variable

a.
$$y'' - y' - e^{2t}y = e^{3t}$$
 (poser $x = e^t$).

b.
$$t^2y'' + 2ty' + y = t^3$$
 (poser $x = \ln(t)$).

41. Exercice (Examen mai 2015)

On étudie sur $I =]0, \infty[$ l'équation différentielle

(E)
$$t^2y''(t) + ty'(t) + y(t) = \frac{1}{t}$$
.

- a. Les solutions de (E) sont-elles globales sur I? Que peut-on dire en général de l'espace des solutions ?
- **b.** Montrer que le changement de variable $t = e^u$, $z(u) = y(e^u)$ permet de ramener (E) à une équation différentielle linéaire à coefficients constants.
- **c.** Résoudre le problème de Cauchy pour (E) avec la condition initiale : y(1) = 1 et y'(1) = 0.

42. Valeurs propres.

On considère (\star) $y'' + 2ty' + (t^2 - 1)y = 0$. Soit E l'espace vectoriel des fonctions C^{∞} sur \mathbb{R} à valeurs complexes, et l'endomorphisme $\Phi: E \to E$ défini par $\Phi(f)(t) = f'(t) + tf(t)$.

- a. Trouver les valeurs propres et les vecteurs propres de Φ .
- **b.** Trouver les valeurs propres et les vecteurs propres de Φ^2 .
- c. Résoudre (*).

43. Équation différentielle y'' + p(t)y = 0

- **a.** Soit $p: \mathbb{R} \to \mathbb{R}$ une fonction continue. On suppose que $\int_0^\infty |p(t)|dt < \infty$. Montrer que l'équation différentielle y'' + p(t)y = 0 admet des solutions non bornées. (Raisonner par l'absurde en utilisant le Wronskien).
- **b.** On suppose que p est une fonction positive. Montrer que toute solution de y'' + p(t)y = 0 s'annule au moins une fois sur \mathbb{R} .
- **c.** Soient f, g deux solutions indépendantes de y'' + p(t)y = 0. Si $\alpha < \beta$ sont deux zéros consécutifs de f, montrer qu'il existe $\gamma \in]\alpha, \beta[$ tel que $g(\gamma) = 0$.

44. Exercice (Examen juin 2015)

On fixe une fonction paire $q: \mathbb{R} \to \mathbb{R}$ continue. On considère l'équation différentielle

(E)
$$y''(t) + q(t)y(t) = 0, \quad t \in \mathbb{R}.$$

- **a.** Donner une équation différentielle linéaire matricielle d'ordre 1 dont la résolution équivaut à celle de (*E*).
- **b.** Vérifier que si y est une solution de (E), alors $t \mapsto -y(-t)$ est aussi une solution de (E).
- **c.** En utilisant le théorème de Cauchy-Lipschitz, montrer qu'une solution y est une fonction impaire si et seulement si y(0) = 0.
- **d.** Montrer que l'espace des solutions de (E) ne peut pas admettre une base de solutions constituée de fonctions impaires.
- e. Montrer que l'espace des solutions de (E) ne peut pas admettre une base de solutions constituée de fonctions paires.

45. Utilisation du Wronskien

- **a.** Soit $I \subset \mathbb{R}$ un intervalle ouvert et $a, b: I \to \mathbb{R}$ deux fonctions continues. Soit φ une solution non-nulle de l'équation différentielle (E): y'' + a(t)y' + b(t)y = 0. À toute fonction y de classe C^2 sur I on associe le Wronskien $W(t) = \det \begin{pmatrix} \varphi(t) & y(t) \\ \varphi'(t) & y'(t) \end{pmatrix}$. Montrer que y est une solution de (E) si et seulement si W'(t) = -a(t)W(t).
- **b.** Résoudre l'équation différentielle (E): t(t+1)y'' y' 2y = 0 en cherchant une solution de la forme $\varphi(t) = t^{\alpha}$ et en appliquant ensuite le procédé décrit précédemment.

46. Lemme de Gronwall

a. Soient f et a deux fonctions continues sur l'intervalle [0,T], avec a positive. On suppose que pour tout $t \in [0,T]$ on a $f(t) \le \lambda + \int_0^t a(s)f(s)ds$ pour une certaine constante $\lambda \ge 0$. Montrer alors que pour tout $t \in [0,T]$ on a

$$f(t) \le \lambda \exp\left(\int_0^t a(s)ds\right).$$

On pourra se ramener au cas $\lambda = 0$ en considérant la fonction $F(t) := f(t) - \lambda \exp\left(\int_0^t a(s)ds\right)$.

- **b.** On considère l'équation différentielle (E): y'' + p(t)y = 0 où p(t) = 1 a(t) avec $\int_0^\infty |a(t)| dt < \infty$.
- i) Déterminer la forme générale des solutions de l'équation différentielle $y'' + y = \varphi(t)$ où φ est une fonction continue sur \mathbb{R} .
- *ii*) Montrer que les solutions de (E) satisfont une certaine équation fonctionnelle en prenant $\varphi(t) = a(t)y(t)$. En déduire que toute solution de (E) est bornée sur $[0, \infty[$.
- **c.** Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 telle que $||f(x)|| \le \alpha ||x|| + \beta$ pour tout $x \in \mathbb{R}^n$. Montrer que toute solution maximale de l'équation différentielle x' = f(x) est définie sur \mathbb{R} .

47. Lotka-Volterra

On considère le système différentiel

$$(V) \begin{cases} x' = x(1-y) \\ y' = y(x-1) \end{cases}$$

dont on cherche les solutions (x, y) définies sur \mathbb{R} à valeurs dans $(\mathbb{R}_{>0})^2$.

- (i) Déterminer une fonction $F:(\mathbb{R}_{>0})^2\to\mathbb{R}$ telle que pour toute solution (x,y) de (V), la fonction $t\mapsto F(x(t),y(t))$ soit constante.
- (ii) Montrer que les solutions de (V) sont périodiques.

48. Équation du pendule

Soit φ la solution maximale du système

$$\begin{cases} y'' + \sin(y) = 0 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

- i) Vérifier que la fonction $(\varphi, \varphi') \mapsto \frac{1}{2}(\varphi')^2 \cos(\varphi)$ est constante.
- ii) Montrer que φ est définie sur tout \mathbb{R} .
- iii) Montrer que φ est une fonction impaire et périodique.