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We investigate the ferromagnetic resonance characteristics of a magnetic dimer composed of two

shifted parallel chains of iron nanoparticles coupled with dipolar interactions. The latter are treated

beyond the point-dipole approximation, taking into account the finite size and arbitrary shape of

the nano-elements and arbitrary separation. The resonance frequency is calculated as a function of

the amplitude of the applied magnetic field, and the resonance field is computed as a function

of the direction of the applied field, varied both in the plane of the two chains and perpendicular to

it. We highlight a critical value of the magnetic field which marks a state transition that should be

important in magnetic recording media. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4948570]

I. INTRODUCTION

Organized assemblies of nearly monodisperse nanopar-

ticles are a recent achievement in materials science, which is

a result of a long-term endeavor of many research groups

around the world.1–3 One of the main initial objectives for

working towards this goal was to minimize the effects of

volume and anisotropy distributions which make it more

difficult, if not impossible, to access the intrinsic effects of

magnetic nanoparticles. In parallel with this progress in

fabrication and synthesis, several measuring techniques have

benefited from considerable improvements with regard to

time and spatial resolution. Some of the standard techniques,

such as ferromagnetic resonance (FMR),4,5 stage a successful

come-back.6–8 The latter is a very efficient technique for

characterizing assemblies of magnetic nanoparticles.9

Accordingly, in this work, we investigate the FMR char-

acteristics of a monolayer of chains of (almost) monodis-

perse Fe nanoparticles of D¼ 20 nm in diameter. Within

each chain, the particles are closely packed and touch each

other, while the (nearly) parallel chains are a certain distance

from each other, and may be shifted with respect to each

other along their (major) axes. We investigate the effects of

the inter-chain shift and separation on the FMR frequency

and resonance field. These two parameters greatly affect the

dipolar interactions (DI) between the chains, in addition to

the size and shape of the chains. This aspect has been

recently mentioned by Var�on et al.10 in a study of the dipolar

magnetism in ordered and disordered low-dimensional nano-

particle assemblies. In particular, these authors show that the

DI are no longer negligible in such systems with respect to

the usual prevalence of the exchange coupling in classical

materials. In order to account for the effects of all these

parameters, we shall consider here the more general

formalism of DI11–13 between finite-size magnetic elements

of cylindrical shape. From the applied physics standpoint,

this investigation is of interest in the context of magnetic

recording. Indeed, researchers have realized since the syn-

thesis of FePt nanorods14 that 1D nano-elements have a

major advantage compared to more conventional nanopar-

ticle assemblies. While spherical nanoparticles have mag-

netic moments that are difficult to texture, nanochains are

usually aligned with one another due to geometric con-

straints.9,15 In addition, since a nanochain usually exhibits a

magnetic anisotropy with an easy axis along the chain, these

1D nano-elements turn out to be quite promising to form bits

with a well-defined orientation, owing to a strong magnetic

signal and a large packing density. In this context, we com-

pute the resonance frequency for both the binding and anti-

binding modes and the resonance field as a function of the

orientation of the applied external magnetic field. This is

also motivated by the fact that the difference in frequency

between the two modes in a pair of (200 nm) disks can now

be measured with the help of magnetic resonance force

microscopy as a function of the nanodisks separation16 of the

order �103 nm. Finally, for the coupled chains, we found

(and calculated) a “flipping” magnetic field hf (depending on

the shift between the chains along the major axis) that marks

a “spin-flop” transition into a different magnetic state. This

transition could be of interest in magnetic recording.

II. SYSTEM SETUP AND FORMALISM

For the study of the system considered here we make the

approximation that it is composed of nearly parallel chains

of Fe nanoparticles, shifted with respect to each other along

their major axes. Hence, the effects of DI on ferromagnetic

resonance in such assemblies can be studied by first investi-

gating their effects on a pair of two shifted chains. Each

chain is composed of N identical closely packed nanopar-

ticles. Since these particles are touching, they may be

assumed to form a giant magnetic moment with a strong
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effective uniaxial anisotropy whose easy axis is along the

chain axis (see Section II B). As such, the chains can be

pictured as cylinders of diameter D and length L ¼ ND, and

diameter D¼ 2R. The system setup consisting of two chains

of nanoparticles, assumed to lie in the zx plane, is shown in

Fig. 1.

A. Magnetostatic interaction: Beyond the point-dipole
approximation

Our system consists of two chains of nanoparticles,

assumed to lie in the xz plane: chain 1 lies on the x-axis and

extends from �L/2 to þ L/2 and chain 2 is parallel to the first

chain with separation d in the z-direction and is shifted a dis-

tance s along the x-axis; it lies from (�L/2þ s, d) to (L/2þ s, d)

(see Fig. 1).

Inside the chain, the magneto-crystalline anisotropy and

shape anisotropy (for a cylinder with demagnetizing factors

Nz¼ 0, Nx ¼ Ny ¼ 1
2
) add up to induce a strong effective

anisotropy along the chain’s axis with constant Keff . The

magnetic field H is of variable amplitude and direction and

is applied in an arbitrary direction with respect to the chain’s

axis. This allows for the calculation of the resonance fre-

quency as a function of the field amplitude and the resonance

field as a function of the field direction. Consequently, the

energy of a single chain reads (in dimensionless units)

E � E=ðKeffVÞ ¼ �2h �m� km2
x ; (1)

where h ¼ l0HMs=2KeffV. M ¼ Msm, where Ms is the mate-

rial’s saturation magnetization, m the unit vector along the

(equilibrium) magnetization direction, and V ¼ L� pR2 is

the volume of the cylindrical chain. The symbol k in Eq. (1)

is inserted as a flag to identify the anisotropy contribution

and it assumes the value 0 in the absence of anisotropy and 1

otherwise.

In addition to the single-chain terms in the energy,

chains 1 and 2 are coupled by the DI. We denote by M1 ¼
Msm1 and M2 ¼ Msm2 the two magnetic moments of the

two chains. In the limit of homogeneous chains with the

magnetization aligned along the chains axis, Escrig et al.17

have shown that the interaction energy can be rewritten in

the compact form Eint ¼ gint m1 �Dm2, where D is the usual

dipolar tensor with matrix elements Dab ¼ dab � 3ea
12eb

12,

where dab is the Kronecker symbol and ea
12 are the Cartesian

components of the unit vector e12 joining the centers of the

chains. Finally, gint is the coefficient of the DI between two

nano-chains as defined in Eq. (4) of Ref. 17.

In the present work, we consider the general case

involving anisotropy and an applied magnetic field with arbi-

trary orientation. Therefore, the magnetic moments M1 and

M2 may adopt orientations that are not necessarily collinear

with each other and/or with the chains’ axes. Thus, we derive

the dipolar tensor for this general situation. For this purpose,

we regard each chain as being made up of elementary mag-

netic moments dMi ¼ kdximi, where k is the linear density

of dipoles (kdx ¼ MsdV), dxi the differential element along

the chain and mi is the unit vector along the magnetic

moment of the chain. Since we are dealing with chains (L�
R), the magnetization dMi associated with the differential

element dxi can be considered as being radially uniform. If

we use the index i to label these elements in chain 1 and j
those in chain 2, the corresponding elements dMi and dMj

can be considered as point dipoles interacting via the well-

known dipole-dipole interaction

dEint ¼
l0

4p
dM1 � dM2 � 3 dM1 � e12ð Þ dM2 � e12ð Þ

r3
12

¼ l0

4p
k2dx1dx2

m1 �m2 � 3 m1 � e12ð Þ m2 � e12ð Þ
r3

12

; (2)

with

r12 ¼ dez þ x2 � x1ð Þex; r12 ¼ d2 þ x2 � x1ð Þ2
h i1=2

;

e12 �
r12

r12

¼ d

r12

ez þ
x2 � x1ð Þ

r12

ex:

Next, upon integrating over the (length of) chains with

the corresponding variables x1, x2 in the ranges � L
2
� x1

� L
2
;� L

2
þ s � x2 � L

2
þ s, we obtain the energy of the DI,

taking account of the size and shape of the chains through

the length and the chains’ separation d. More precisely, this

interaction energy can be rewritten for arbitrary orientations

of the two magnetic moments m1;m2 as Eint ¼ nm1 � ~D �m2,

where

~D ¼
I 03 � 3I 25 0 �3dI 15

0 I 03 0

�3dI 15 0 I 03 � 3d2I 05

0
B@

1
CA; (3)

is the new DI tensor and

n ¼ 1

KeffV
� l0

4p

� �
k2

d

� �
;

the new (dimensionless) DI coefficient. The matrix elements

in Eq. (3) are given by the surface integrals: I03 ¼ H L; sð Þ;
I 05 ¼ 2H L; sð Þ � U L; sð Þ; I15 ¼ s

d U L; sð Þ þ L
d B�1 L; sð Þ
�

�B�1 L;�sð Þ	 and I25 ¼ HðL; sÞ þ UðL; sÞ, with BðL;6sÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðL6sÞ2=d2

q
and HðL;sÞ¼BðL;sÞ�2Bð0;sÞþBðL;�sÞ;

UðL;sÞ¼B�1ðL;sÞ�2B�1ð0;sÞþB�1ðL;�sÞ.
Note that n is a function of the materials saturation mag-

netization k and the chains’ separation d. However, in the
FIG. 1. Two coupled chains of identical magnetic nanoparticles in a trans-

verse magnetic field H.
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results shown later, the DI intensity will be tuned by varying

either d or n directly. Therefore, the total energy of the sys-

tem of two (shifted) chains reads

E ¼
X
i¼1;2

ð�2h �mi � km2
x;iÞ þ nm1 � ~Dm2: (4)

Note that, for convenience, the DI coefficient n has been

defined with a dependence on the chains’ separation as 1/d.

However, the whole DI term of E behaves as 1/d3, as usual,

owing to the dependence on d of the integrals appearing in

the matrix elements of the DI tensor ~D. In addition, the

particular form of these matrix elements is a result of the

specific shape of the elements (here the chains). Therefore,

the DI energy found here with the tensor in Eq. (3) take

account of the size and shape of chains, in addition to their

separation.

B. Magnetic state of an isolated chain

Before proceeding further we would like to comment on

the validity of the model used here for the magnetic state of

the isolated chains (of nanoparticles) or nanowires. More

precisely, we assume that each chain is a single domain

cylinder (or a prolate spheroid) with uniform magnetization

pointing along the chain’s axis due to the large shape anisot-

ropy. The magnetostatic interaction between the two chains

is dealt with using a general approach for computing the

demagnetizing tensor for uniformly magnetized elements of

finite-size and arbitrary shape. This approach extends the

so-called point-dipole approximation which consists in

replacing the magnetic elements (here the chains) by point

dipoles. In fact, this assumption fails for finite-size elements

with a too small separation between them and this is why

one has to extend the magnetostatic interaction by including

adequate geometrical factors,11–13 as is done in Eqs. (3)

and (4).

There is a huge number of studies on arrays of ferromag-

netic nanowires owing to their promising applications in

high-frequency devices. They have been extensively studied

both experimentally and theoretically18–35 with variable

length and width. The theoretical work is mainly based on the

numerical approach of micromagnetics or semi-analytical

approaches for solving the extended magnetostatic model. In

all of these works, the magnetization is considered as uniform

even in the largest nanowires (or rather microwires) of an as-

pect ratio within the range of fabrication techniques. For

example, in Ref. 27, nanowires of radius R and length L were

studied and even for R/L of order 10�4 the magnetization

within the nanowires was assumed to be uniform. It was then

shown that the extended model of magnetostatic interactions

reproduces very well the experimental results, see, for

instance, Fig. 3 of Ref. 27. The same conclusion regarding

the validity of this model was reached in other works compar-

ing theory to the results of other experiments.23,26,36 In partic-

ular, in Refs. 36 and 37, FMR experiments on arrays of

nanowires were performed and their results were favorably

compared to the extended magnetostatic model. In these

works, the assembly of nanowires was treated as being

organized into two groups having their uniform magnetiza-

tion pointing up and down.

In the present study, the aspect ratio of the chains is

R/L¼ 0.05. In addition, the effective anisotropy is dominated

by the magnetostatic (shape) anisotropy with an easy axis

along the chain and a constant Keff ’ 1:6� 106 J m�3. These

specifications put on the safe side the assumption of uniform

magnetization with an easy direction along the chain’s axis.

In other words, the chains are magnetically saturated along

their axes. This is obviously more so in the case of an exter-

nal magnetic field applied along the chains. In the present

study, the direction of the magnetic field is varied with

respect to the chains’ axes. In order to ensure that the assump-

tion of uniform magnetization still applies even in the most

unfavorable situation of a field applied perpendicular to the

chains’ axis, we have performed numerical calculations

for (isolated) chains of 10 spherical nanoparticles along the

z-axis, as shown in the inset of Fig. 2. The nanoparticles con-

stituting each chain have a diameter D¼ 20 nm and an (effec-

tive) easy anisotropy axis along the chain. Within the chain,

the nanoparticles interact with each other via the long-range

DI with strength nintra ¼ l0

4p

� �
p
6

M2
s =Keff , which evaluates to

nintra ’ 0:17 for iron (Ms ¼ 1:7� 106 A m�1). In Fig. 2, we

plot the deviation angle of the individual magnetic moments

of the nanoparticles within the chain as a function of their

position in the chain.

It is clearly seen that even in a transverse magnetic field

the magnetic moments within the chain tilt towards the field

direction in unison apart from a small number of them

located at and near the chain’s ends. However, the relative

deviation of these boundary moments is rather small. Similar

results were obtained from micromagnetic calculations in

Ref. 34. This result is due to the fact that, within the chain,

the dipolar interactions favor the (super)ferromagnetic state

as they induce an extra anisotropy along the chain. More

precisely, they renormalize the anisotropy as k ! keff;DI. The

FIG. 2. Deviation angle h of the magnetization of each nanoparticle as a

function of its position in the chain. Inset: single chain setup consisting of

10 nanoparticles forming a chain along the z-axis with transverse external

field h, the deviation angle h is shown in blue for the 6th nanoparticle of the

chain.
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idea underlying this renormalization can be illustrated by

considering a chain of N free nanoparticles with a uniaxial

anisotropy k and a transverse external field h, in the absence

of DI. The deviation angle at equilibrium is then given by

sin heq;Free ¼ h=k. For low-to-intermediate magnetic fields,

the deviation angle remains small, such that sin heq;Free

’ heq;Free. In this case, after switching on the DI, the devia-

tion angle can be self-consistently determined to first order

in nintra. Indeed, it can be shown that it is given by hðriÞ
¼ h=keff;DIðriÞ, where keff;DI depends only weakly on the

position ri within the chain since keff;DI ’ k½1þ 3nintraIðriÞ	.
The lattice sum IðriÞ stems from the intra-chain DI between

a particle and all the other ones within the chain (i.e., those

on its left and its right), namely,

I rið Þ ¼
Xi�1

j¼1

1

ri � rjð Þ3
þ
XN

j¼iþ1

1

rj � rið Þ3
: (5)

The symmetry of the expression above translates into the

symmetry of the deviation angle depicted in Fig. 2. We note

in passing that for a chain of 10 spherical nanoparticles, we

obtain the effective anisotropy keff;DI ’ 2k, which exceeds

the largest value of the magnetic field used in Fig. 2.

To sum up, these additional calculations do confirm that

the magnetization within a (isolated) chain may be reason-

ably regarded as uniform even in a transverse magnetic field.

On the other hand, for the magnetostatic interaction between

the two chains, we have developed an extended model with a

new magnetostatic tensor [see Eq. (3)] that takes into account

the finite size and shape of the interacting nano-elements.

In the following, we present and discuss our results for

the system of two coupled chains as described above.

III. RESULTS

A. FMR characteristics

The FMR characteristics, namely, the resonance fre-

quency and resonance field, are computed as follows. For a

given system configuration (including anisotropy, applied

field, and spatial configuration of the two chain), we first

determine the equilibrium state of the system, i.e., the spatial

orientation of the two (macroscopic) magnetic moments of

the chains. Then, we linearize the Landau-Lifshitz equation

around this state leading to an eigenvalue problem for the

system. Upon solving the latter for a given applied magnetic

field (with given amplitude and direction), we obtain the var-

ious eigenfrequencies of the excitation modes of the coupled

two chains. Next, for a fixed frequency, we solve the eigen-

value problem for the applied magnetic field and this renders

the resonance field.

Now, we proceed to compute the resonance frequency

xres and the flipping field hf of the system whose total energy

is given in Eq. (4). We first compute the resonance frequency

for the case of zero shift (s¼ 0) between the two chains as

this leads to tractable analytical expressions. For the general

case, xres and hf will be computed numerically, respectively,

as a function of the field amplitude h and the field direction

ðhh;uhÞ.

For the non-shifted chains, the analytical calculation of

xresðhÞ is done for the setup with hh ¼ 0;uh ¼ 0. In the pres-

ent case, the two anisotropy axes and the applied magnetic

field are all in the zx plane, and as such, the magnetic moments

also lie in the same plane, i.e., we have miðhi;ui ¼ 0Þ.
In the absence of anisotropy and applied field, the DI

favors a ferromagnetic order of the two magnetic moments

along the dimer’s bond, i.e., along the z axis. If the effective

uniaxial anisotropy is added with easy axis along the chains,

the two magnetic moments order anti-ferromagnetically

along the x axis. Finally, when the magnetic field is applied

along the z axis, the two magnetic moments are tilted to an

oblique angle that depends on (h, n), i.e., a canted anti-

ferromagnetic state. Upon analyzing the energy stationary

points, it turns out that there are two field regimes separated

by the critical value hc ¼ k½1� ~nðd2 þ aÞ	, where a ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
, d ¼ L=d, and ~n ¼ n=ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
Þ. More pre-

cisely, the polar angles of the two magnetic moments are

h1 ¼ �h2 ¼ hðmÞ with cos hðmÞ ¼ h=hc for h � hc (and

hðmÞ ¼ 0 otherwise). This result obviously coincides with

that obtained in Ref. 13, Eq. (37) after a rotation of the frame

axes and noting that for point dipoles d ¼ L=d becomes

small and that the quantity
l0

4p

� �
kLð Þ2=d3 is the DI coefficient

in Ref. 13.

For h � hc, we obtain the following analytical expres-

sions for the resonance frequencies of the binding (B) and

anti-binding (AB) modes:

~xB ¼ ð2kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðh=hcÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhc=kÞ½1� ð2aþ d2Þ~n	

q
;

~xAB ¼ ð2kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðd2 � aÞ~n	 � ðh2=h2

cÞ½1þ ðd2 þ aÞ~n	
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2~n

q
: (6)

Here, ~x is the dimensionless frequency defined by

~x � x=xa, where xa ¼ cHa with Ha being the anisotropy

field given by Ha ¼ 2Keff=Ms. For the material parameters

FIG. 3. Resonance frequencies of the binding (red) and anti-binding (green)

modes for non shifted chains, for different n.
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given earlier, our reference frequency is then �a ¼ xa=2p
’ 52 GHz.

For noninteracting chains, one recovers the well known

result of two degenerate modes with the frequency ~xB

¼ ~xAB ¼ ð2kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðh=kÞ2

q
� ~xð0Þ. By inspection of Eq.

(6), we see that for small n and h, the frequency of the anti-

binding mode is higher than that of the binding mode

because it corresponds to an out-of-phase precession of the

magnetic moments as seen in Fig. 3.

For h> hc, the resonance frequencies are given by

~x0B ¼ 2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a~n

h

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hc=h

p
;

~x0AB ¼ 2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aþ 2d2ð Þ~n

h

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hc þ 2a~n

h

s
:

(7)

In Fig. 3, we observe a shift (downwards) of the critical

field hc at which (only) the binding modes vanishes as the

intensity of the DI increases. This is obviously recovered

by the expression hc of the critical field given above. The

reason for this effect is that the energy minimum, with

cos hðmÞ ¼ h=hc, is a result of the competition between the

anisotropy and the combined effect of the applied field and

the DI. Thus, when the latter becomes stronger, a weaker

field is needed to overcome the effect of the anisotropy.

In Fig. 4, we show the effect on the frequency of the

anti-binding mode of a shift of the chains with respect to

each other along their axes. These results show that for a

given shift between the two chains, there appears a jump in

the resonance frequency of the anti-binding mode—that of

the binding mode also exhibits such a jump (but less pro-

nounced) for the same value of the hf (Inset in Fig. 4). This

jump can be understood as follows. For very small fields,

the equilibrium state is an anti-ferromagnetic ordering of the

two magnetic moments along the anisotropy axes. As the

field is increased, there is a transition into a ferromagnetic

state in an oblique direction with respect to the applied field.

It is this transition that is responsible for the abrupt change

in the resonance frequency. A further increase of the mag-

netic field leads to the saturation state and thereby to the as-

ymptote in the form of a straight line (h
 hc). As the shift of

the two chains increases, the field at which this jump occurs

(we call it the spin-flop field hf) decreases. Indeed, as the

shift is increased, the dimer’s bond tilts towards the chain

axes and thereby the two magnetic moments tend to order

along the anisotropy easy axes. In this case, the ferromag-

netic order is more favorable and this is why the field

amplitude required to trigger the transition from the anti-

ferromagnetic to ferromagnetic order is smaller. The system

then rotates towards the direction of the applied field as

a single (larger) magnetic moment. For a large shift, the

system is in a ferromagnetic order already at zero fiel;, see

the green curve in Fig. 4.

For a magnetic field applied in the z direction (hh¼ 0),

the black curve in Fig. 5 clearly illustrates the decrease in

the field hf as a function of the chain shift s. As soon as the

applied magnetic field is tilted with respect to the z direction

(hh 6¼ 0), the field hf at which the transition between the two

ordered states occurs reduces significantly. This evolution is

clearly seen in Fig. 5, where we compare the evolution of the

direction of the two magnetic moments for hh¼ 0� and 10�.
First, as we go vertically through the hf curve, at a given shift

s, we observe the switching of one of the two magnetic

moments: the x-component of the moments switches from

an anti-ferromagnetic to a ferromagnetic order. Second, as

we increase s, we see that the canting angle of the “anti-

ferromagnetic” order, in the phase with h < hf , becomes

larger ending up in a nearly complete anti-ferromagnetic

order along the anisotropy axis. Finally, as discussed above,

beyond some critical value of the shift, which depends on L
and d, there is only one phase corresponding to the ferromag-

netic order. The maximum critical shift s0 corresponding to

hf¼ 0 (e.g., in Fig. 5 s0 � 129 nm) can be easily predicted as

FIG. 4. Resonance frequency ~xAB for shifted chains. The inset shows the

binding and anti-binding modes for s¼ 50 nm.

FIG. 5. Flipping magnetic field hf marking the “spin flop” transition as a

function of the chains’ shift, for two field directions and for n¼ 0.02. For

hh¼ 0�, the magnetic moments are drawn in blue for various shifts below

and above the “spin-flop” transition.
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a function of L and d. Indeed, if one considers ferromagnetic

and anti-ferromagnetic states fully polarized along x on

either side of this point, the DI energies of these states should

be the same at the transition. Hence, s0 is the root of the

equation UðL; s0Þ ¼ 0, which implies that the interaction

coefficient gint vanishes (i.e., DI ! 0). As we intuitively

expect, s0 increases as d or L increases.

Finally, in FMR experiments, one routinely obtains the

resonance field as a function of the direction of the applied

magnetic field. The corresponding data are efficient means

for characterizing the system with regard to the easy/hard

magnetization directions. So, it is worthwhile to compute

this observable for our system and to investigate the effect of

a chain’s relative shift. Accordingly, we have (numerically)

computed the resonance field as a function of the applied

field polar angle hh upon varying the spatial shift and inter-

chains separation (or DI strength). The results are shown in

Fig. 6. It can be seen that the resonance field exhibits the

usual overall behavior as a function of the applied field

direction, as the latter rotates from the anisotropy easy axis

to the hard axis.5 On the other hand, in the present study, the

resonance field shows a weak dependence on the spatial shift

s, whereas its dependence on the inter-chains’ separation d
follows the expected behavior. More precisely, for small

angles hh, the applied field competes with the DI and this

leads to higher resonance fields for higher DI strengths (or

smaller separation d).

IV. CONCLUSIONS

We have computed the FMR characteristics of a system

of two coupled chains, taking into account their separation

and relative shift. The DI has been dealt with taking into

consideration their finite size and shape. We have found that

the shift of the two chains along their axes has a significant

effect on the resonance frequency. More precisely, as the

magnitude of the magnetic field is increased the system goes

through a “spin-flop” transition from an anti-ferromagnetic

order to a ferromagnetic order before reaching the high-field

branch of the resonance frequency. The field that marks this

transition decreases with an increasing shift of the chains

and depends on the systems specifications such as the length

of the chains, their separation, and the orientation of

the magnetic field. This field defines magnetic regions of

importance for magnetic recording media made of 1D

nanoelements.

We have also computed the resonance field as a function

of the magnetic field direction for varying inter-chain separa-

tion and spatial shift. The resonance field is what routinely

measured in FMR measurements with a rotating applied

magnetic field and allows for characterizing the system with

regard to its physical parameters. In the present study, this

could be useful for characterizing, inter alia, the magneto-

static interaction between the chains.

Finally, the present study, restricted to a dimer, allows

one to fully investigate the critical shift as a function of the

applied field (which mimics the write/read process), and sets

the stage for further investigation involving dimer assem-

blies. The latter could in principle be tackled numerically

using the present approach by summing over pairs with the

effective DI derived here.
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