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Magnetization nutation induced by surface effects in nanomagnets
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We investigate the magnetization dynamics of ferromagnetic nanoparticles in the atomistic approach taking
account of surface anisotropy and the spin misalignment it causes. We demonstrate that such inhomogeneous
spin configurations induce nutation in the dynamics of the particle’s magnetization. More precisely, in addition
to the ordinary precessional motion with frequency f), ~ 10 GHz, we find that the dynamics of the net magnetic
moment exhibits two more resonance peaks with frequencies f. and f, which are higher than the frequency f,:
fe =4 x f, ~ 40 GHz is related with the oscillations of the particle’s magnetic moment between the minima of
the effective potential induced by weak surface anisotropy. On the other hand, the much higher frequency f, ~
1 THz is attributed to the magnetization fluctuations at the atomic level driven by exchange interaction. We have
compared our results on nutation induced by surface effects with those rendered by the macroscopic approach
based on the Landau-Lifshitz-Gilbert equation augmented by an inertial term (proportional to the second-order
time derivative of the macroscopic moment) with a phenomenological coefficient. The good agreement between
the two models has allowed us to estimate the latter coefficient in terms of the atomistic parameters such as the
surface anisotropy constant. We have thus proposed a different origin for the magnetization nutations as being

induced by surface effects and have interpreted the corresponding resonance peaks and their frequencies.
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I. INTRODUCTION

Research on nanoscale magnetic materials benefits from
a continuing impetus owing to an increasing demand of our
modern societies for ever smaller devices with ever higher
storage densities and faster access times. These devices are
the upshot of spintronics or magnonic applications with ma-
terials exhibiting thermally stable magnetic properties, energy
efficient magnetization dynamics, and controlled fast magne-
tization switching. In the macroscopic approach, the magneti-
zation dynamics on time scales ranging from microseconds
to femtoseconds can be described by the Landau-Lifshitz-
Gilbert (LLG) equation [1-3]

dm o dm
= _ Ho — —— 1
dt " (V T dr )’ M

where H . is the effective field acting on the macroscopic
magnetic moment m carried by the nanomagnet, y the gy-
romagnetic factor, and « the phenomenological damping pa-
rameter. Equation (1) describes the relaxation of m towards
H 4 while maintaining a constant magnitude, i.e., ||m| = m,
assuming that the nanomagnet is not coupled to any heat
bath or other time-dependent external perturbation. The first
term on the right hand of Eq. (1) describes the precessional
motion of the magnetic moment m around the effective field
H .. This is well known from the classical mechanics of a
gyroscope. Indeed, if an external force tilts the rotation axis of

“roland.bastardis @univ-perp.fr
ffrancois.vernay @univ-perp.fr
‘hamid.kachkachi @univ-perp.fr

2469-9950/2018/98(16)/165444(9)

165444-1

the gyroscope away from the direction of the gravity field, the
rotation axis no longer coincides with the angular-momentum
direction. The consequence is an additional movement of the
gyroscope around the axis of the angular momentum. This
motion is called nutation. In the case of the magnetic moment
m, this additional motion (nutation) can occur if the effective
field H . becomes time dependent. Indeed, in the presence
of a time-dependent magnetic field (rf or microwave field),
there appears the fundamental effect of transient nutations
which has been widely investigated in NMR [4], EPR [5,6],
and optical resonance [7]; see also the review by Fedoruk
[8]. Magnetic or spin nutation was first predicted in Joseph-
son junctions [9-13] and was later developed using various
approaches based on first principles [14], electronic structure
theory [15-19], or in a macrospin approach where the LLG
equation (1) is extended by a second-order time derivative
[20-23].

Magnetic nutation may also occur at the level of atomic
magnetic moments on ultrashort time scales. For instance, in
Ref. [24] it is argued that nutation is enhanced for atomic
spins with low coordination numbers and that it occurs on
a time scale of the magnetic exchange energy, i.e., a few
tens of femtoseconds. More generally this spin nutation is
caused by a nonuniform spin configuration which leads to
an inhomogeneous effective field H .4 whose magnitude and
orientation are different for different lattice sites. These spatial
inhomogeneities are a typical result of surface effects that
become very acute in nanoscale magnetic systems such as
magnetic nanoparticles. In this work we adopt this atomistic
approach and show that, for a magnetic nanoparticle regarded
as a many-spin system, a model henceforth referred to as
the many-spin problem (MSP), surface effects do induce
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nutations of the net magnetic moment of the nanoparticle.
More precisely, this approach involves at least three energy
scales, namely the core (magnetocrystalline) anisotropy, the
surface anisotropy, and exchange coupling. Consequently,
there appear at least three different frequencies: the lowest
corresponds to the ordinary precession around a fixed axis
with a constant projection of the net magnetic moment on the
latter and the other two frequencies correspond to nutations
with a time-dependent projection of m. In the limiting case
of weak surface effects, inasmuch as the spin configuration
inside of the nanomagnet can be regarded as quasicollinear,
the dynamics of the nanomagnet can be described with the
help of an effective macroscopic model for the net magnetic
moment of the nanomagnet. This model will be referred to
in the sequel as the effective one-spin problem (EOSP). More
precisely, it has been shown that a many-spin nanomagnet of a
given lattice structure and energy parameters (on-site core and
surface anisotropy, local exchange interactions) can approx-
imately be modeled by a macroscopic magnetic moment m
evolving in an effective potential [25] that comprises second
and fourth powers of the components m,, @ = x, y, z. Within
this approach we find two precession frequencies f, and f,:
fp corresponds to the precession of m around the reference z
axis with constant m, and f to the frequency of oscillations of
m between the four minima of the effective potential produced
by its quartic term. When surface or boundary effects are too
strong, the spin configuration can no longer be considered as
quasicollinear, and thereby the effective model is no longer a
good approximation, one has to take account of higher-order
fluctuations of the atomic spins. Doing so numerically, we
find an additional nutation frequency f,, which is much higher
than f), and f, as it corresponds to a movement of the atomic
spins that occurs at the time scale of the magnetic exchange
interaction.

Observation of nutation in magnetization dynamics is dif-
ficult because the effect is rather small and the corresponding
frequency is beyond the detection capabilities of standard
techniques using the magnetization resonance such as the
standard FMR or a network analyzer with varying frequency.
Nevertheless, from the high-frequency FMR (115-345 GHz)
spectra obtained for ultrafine cobalt particles, the authors of
Ref. [26] inferred low values for the transverse relaxation time
7, (two orders of magnitude smaller than the bulk value)
and suggested that this should be due to inhomogeneous
precession which possibly originates from surface spin dis-
order. Likewise, in Ref. [24] it was shown that nutation in
magnetization dynamics of nanostructures occurs at edges
and corners, with a much smaller amplitude than the usual
precession. More recently, Li et al. [27] performed HF-FMR
measurements of the effective magnetic field and showed that
there was an additional contribution which is quadratic in
frequency as obtained from the additional term d’m/dt* in
the LLG equation [20,21].

To sum up, in this work we first demonstrate that surface
effects or, more generally, noncollinear atomic spin ordering
induce nutation in the magnetization dynamics of a nano-
magnet. Second, it establishes a clear connection between
nutation within our atomistic approach and that described
by the quadratic frequency dependence of the effective field
as described within the macroscopic approach including

magnetization inertia. If we cannot provide an analytical con-
nection between the corresponding parameters, we do provide
a numerical correspondence between the phenomenological
parameter of the macroscopic approach and our atomistic
parameters, such as the surface anisotropy constant. We also
propose an intermediate macroscopic model which accounts
for all three resonance frequencies. Finally, we speculate that
the resonance peak at f., induced by surface effects, provides
a route for observing nutation in well prepared assemblies
of nanomagnets. All in all, the main objective of the present
work is to show that magnetic nutation in a nanoparticle origi-
nates from surface effects which lead to spin noncollinearities
within the nanoparticle and the latter affect the high-frequency
dynamics.

The paper is organized as follows. In Sec. II we present our
model of many-spin nanomagnets, discuss the effects of sur-
face anisotropy on the magnetization dynamics, and present
our main results showing two resonance peaks which we
attribute to two kinds of magnetization nutation. In Sec. IT A
we also discuss a particular situation where it is possible to
analytically derive the equation of motion of the net magnetic
moment of the (many-spin) nanomagnet, which makes it clear
that nutation is related with the spin fluctuations at the atomic
level. In Sec. I B we compare our results with other works
in the literature mostly based on the macroscopic approach
using the Landau-Lifshitz-Gilbert equation augmented by an
inertial term, and establish a quantitative relationship between
the corresponding sets of parameters. Finally, in Sec. III we
summarize the main results of this work and then discuss
the possibility to observe the magnetization nutations in
resonance experiments.

II. MODEL AND HYPOTHESIS

We consider a nanomagnet with A/ atomic spins s; on a
simple cubic lattice described by the (classical) Hamiltonian

(Isill = 1)
1
H:_EZJijSi.sj_h.
2%

where h = u,H, 1, is the magnetic moment associated with
the atomic spin, H is the magnetic field, J;; is the exchange
interaction (that may be different for core-surface, surface-
surface, and core-core links), and H,,; is the anisotropy
energy at site #, a function of s; satisfying the symmetry of
the problem. More precisely, Han,; is the energy of on-site
anisotropy which is here taken as uniaxial for core spins and
of Néel’s type for surface spins [28], i.e.,

—KL-(S,' : ez)27
F3KY jenn (5i - €))7,

where e;; is the unit vector connecting the nearest neighbors
at sites i and j and K. > 0 and K > O are respectively the
core and surface anisotropy constants.
The spin dynamics is described by the Landau-Lifshitz
equation (LLE) for the atomic spin s;
dSi

— =8 X hegp — a8 X (8; X Regr i), 4
dt

I € core,
i € surface,

Han,i = { (3)
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with the (normalized) local effective field ks ; acting on s;
being defined by heg; = —6H/8s;; T is the reduced time
defined by

T= L, 5)
Ts
where t, = u,/(yJ) is a characteristic time of the system’s
dynamics. By way of example, for cobalt / = 8 meV leading
to 7y = 70 fs. Henceforth, we will only use the dimensionless
time 7. In these units, her; = o Hesr.i/J .

Equation (4) is a system of 2V coupled equations for the
spins s;, i = {1, ..., N}. In this work, it is solved using itera-
tive optimized second-order methods using Heun’s algorithm.

The particle’s net magnetic moment is defined as

1 N
sozjvlz:;si. (6)

Next, we introduce the unit vector of s

1
NS

As discussed in the Introduction, because of surface effects
or spatial inhomogeneities of the effective field (mainly due to
the fact that the anisotropy constant and the easy axis depend
on the lattice site), the spin configuration is not uniform for
an arbitrary set of energy parameters. As a consequence, the
vectors §; are not all parallel to each other and as such we may
define their deviation from the direction m as [29]

1
50

m=—sg, So= (7

si=m-sp)m+y,,
where we have introduced the vector
¥, =5, —(m-s;)m.

It can be easily checked that ¥; is perpendicular to s;, i.e.,
¥, -si =0 =19, - m and satisfies Zf\il ¥; = 0. This means
that the transverse vector ¥; contains the Fourier components
with k £ 0 and describes spin waves in the nanomagnet.
Whereas in the standard spin wave theory s is a constant
corresponding to the ground-state orientation, here it is treated
as a time-dependent variable.

Note that using the condition ||s;|| = 1, we may write

si=mv1 — W? + ¥;. Now, in the realistic case, K, < J,
the deviations of s; from the homogeneous state m are small
and one can adopt the following approximation:

si~m(l—1y?) + ¢, =m+ s,
where
8si = —i¥im+ v, ®)

Then, we define the magnetization deficit due to surface
anisotropy as follows:

Am=——>"m-8s;. )

Using Eq. (8) and Z{L ¥; = 0 we obtain

1 1
Am:mlzlﬁiz:l—NlZ(m-si):l—SO- (10)

In what follows, we will show that the magnetization
nutations are a consequence of the magnetization deficit Am
(which is due to the transverse spin fluctuations ¥;) with
respect to so. In order to study nutation, we compute Am(t)
or the components m,(7), with @ = x, y, z. In the sequel, we
will mainly study the latter as their behavior clearly illustrates
the precession and nutation phenomena. In the next section
we present a sample of our results obtained for a cube-shaped
nanomagnet described by the Hamiltonian (2) together with
the anisotropy model in Eq. (3).

A. Magnetization nutation induced by surface anisotropy

In order to clearly illustrate the central result of this
work, namely that spin noncollinearities, induced by surface
anisotropy, lead to nutation in the magnetization dynamics
of a nanomagnet, we consider a simple shape, e.g., a cube.
Today, nanocubes (of iron or cobalt) are routinely investigated
in experiments since their synthesis has become fairly well
controlled [30-35]. Here we consider a nanocube of ' = 729
spins located on the vertices of a simple cubic lattice (i.e.,
Ny = N, = N, =9). This choice has the main advantage that
the number of core spins (N, = 343) is comparable to that of
surface spins (N = 386), a configuration suitable for study-
ing the role of surface effects versus core properties. Then, we
compute the time evolution of the net magnetic moment m by
solving the system of equations (4), using Egs. (6) and (7).
We start from the initial state s;(t = 0) = (1/2, 1/2, l/ﬁ),
which corresponds to all spins tilted to the same angle with
respect to the z axis of the laboratory frame.

Let us first consider the case of a nanocube with anisotropy
energy defined in Eq. (3), i.e., uniaxial for core spins and of
Néel’s type for surface ones. A surface spin is defined as the
spin whose coordination number is smaller than in the core
(here six on a simple cubic lattice). For simplicity, we set all
exchange couplings equal to a reference value J everywhere
in the core, on the surface and at the interface between
them, i.e., Joc = Jos = Jss = J. All energy constants are then
measured in units of J, so that J = 1 and k. = K./J = 0.01,
ks = K./J =0.1. These are typical values extracted from
experiments on cobalt and iron nanoparticles [36-38]. In this
calculation, the external magnetic field and damping are both
set to zero.

Solving the LLE (4) renders the components of m(t) de-
fined in Eq. (7). These are shown in Fig. 1. In the lower panel,
my(t) and m,(t) show the usual precessional movement of
m(7) around the z axis. The corresponding frequency for the
parameters given above is f, = 14 GHz. If m(t) were to
exhibit only this precession, its component m,(t) would be
a constant with a constant tilt angle between m(7) and the z
axis. However, as can be seen in the upper panel, it is clearly
not the case. Indeed, we see a double modulation of m_(t)
in time; there are two oscillations: (i) one with frequency
fe =4 x f, =56 GHz and an amplitude that is an order of
magnitude smaller than precession and (ii) another oscillation
with the much higher frequency f, = 1.1 THz and an ampli-
tude two orders of magnitude smaller than precession. These
oscillations are further illustrated in Fig. 2.

Let us now discuss the origin of these oscillations. As
discussed in the Introduction, in the case of not-too-strong
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Reduced magnetic moment
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FIG. 1. Time evolution of the average magnetization components
(my, my, m;) for a nanomagnet of N'=9 x 9 x 9 =729 spins
with uniaxial anisotropy in the core and Néel surface anisotropy on
the surface.

surface effects, the MSP may be mapped onto an EOSP
[25,39-41] for the net magnetic moment m of the particle
evolving in an effective potential containing a quadratic and
a quartic term in the components of m. This work has recently
been extended to cube-shaped magnets [42]. So for a nano-
magnet within the EOSP approach the equation of motion
reads

il—';' =m x [2kym_e, — 4ky(mle; + mley +mle)]. (11)
Here z = 6 is the coordination number and k, = k. N./N.
For a sphere k4 = /cks2 /zJ, where « is a surface integral [25],
and for a cube we have k; = (1 — 0.7/N1/3 )4kf/zJ [42].
The components m,(7) rendered by Eq. (11) exhibit two
resonance peaks corresponding to (i) the ordinary precession
with frequency f, and (ii) the oscillation with frequency f.
between the minima of the effective potential induced by the
term in k4. The latter is due to the fact that the effective
magnetic moment has now to explore a potential-energy sur-
face that comprises four saddle points because of the cubic
anisotropy (with constant k4). Therefore, m, visits a minimum
each time m passes over one of these saddle points, and
this occurs with the frequency f. = 4 x f, = 56 GHz. Thus

FIG. 2. Illustration of the nutation of the macrospin s in the
presence of damping (o # 0). We have used nonzero damping for
later reference.

0.8 \ \

Reduced magnetic moment

e m(0)(1+Am)

0 5 t(ps)ﬁ

FIG. 3. Time evolution of the net magnetic moment compared
with that of the magnetization deficit. The exchange parameters
are homogeneous (J = J.; = J; = 1); both surface and core spins
have a uniaxial anisotropy along the z axis with surface anisotropy
ks = 0.1 and core anisotropy k. = 0.01.

fe¢ 1s a consequence of the first correction stemming from
(relatively weak) surface effects.

In the case of larger values of k; and thereby stronger
spin noncollinearities, it is no longer possible to map the
many-spin particle onto an effective particle. One then has to
fully deal with the spin fluctuations. As a consequence it is no
longer an easy matter to derive an equation of motion similar
to Eq. (11) in the general case. Nevertheless, in Ref. [29]
two relatively simpler configurations of anisotropy were stud-
ied, namely a uniform uniaxial anisotropy (with the same
constant and orientation) or a random anisotropy (with the
same constant and random orientation). It was then possible
to derive a system of (coupled) equations for m(¢) and ¥;(t)
containing higher-order terms in ¥,(¢); see Egs. (21) and
(26) in Ref. [29]. In the present situation with a nonuniform
anisotropy configuration, these higher-order contributions are
responsible for the nutation movement with frequency f,,
as they lead to a net magnetization deficit; see Eq. (10) and
Fig. 3 where the plot of Am shows such a movement. More
precisely, these fluctuations of the atomic spins lead to a pre-
cession of the latter around their local effective field h.g ; that
evolves in time due to exchange interaction. Unfortunately, in
this complex situation it is a rather difficult task to derive an
explicit expression for ks ; and thereby an analog of Eq. (11).
However, we may consider a simpler model of a nanomagnet
with a uniaxial anisotropy having the easy axis along e, for all
sites, but with a constant that is different in the core from that
on the surface, i.e., e; || e;, k. # k. Therefore, instead of the
model in Eq. (3) we consider the following one:

_kc(si : ez)z’
—ks(s; - €,)?,

i € core,

i € surface. (12)

Han,i = {

This configuration is quite plausible especially in elon-
gated nanomagnets such as nanorods [43] and nanowires [44]
where the magnetostatic energy is strong enough to induce
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an effective uniaxial anisotropy along the major axis of the
nanomagnet.

Then, it is possible to derive a system of equations for
m and ¥; (to second order in ¥;). The equation for ¥; is
cumbersome and thus omitted here as it is not necessary to
the discussion that follows. That of m reads

d 2
M~ mx jvzki(mz‘i“ﬂz.i —my;)e.

2
1 j
w2 () e

2
—mx Zk,-[(:m)2 +m . (13)

+m x %Xi:ki

First, setting ¥, =0 above we obtain dm/dt =m x
/%[ > (2ki)m e, = m x 2kem e, which describes the pre-
cession of m around the effective field kg with
_ Neke + Nik;
= G .
This clearly shows that nutation disappears in the absence
of the spin fluctuations ;. Furthermore, projection on the z
axis of Eq. (13) yields the relation dm./dt ~ m.d(Am)/dz,

where Am is the magnetization deficit defined in Eqgs. (9) and
(10). Upon integrating over time we obtain (to lowest order in

v

hey = 2keiem e, ket (14)

m(7) = m;(0)[1 + Am(7)]. as)

This expression shows that m,(t) and Am(7) have the same
frequency, as confirmed by the green dots in the inset of Fig. 3.

Therefore, this simplified model emphasizes the appear-
ance of two relevant frequencies: the low-frequency of the
ordinary precession and the higher frequency of nutation
related with spin fluctuations at the atomic level driven by the
exchange coupling. These two frequencies clearly show up in
Fig. 1 (blue wiggles in m ). Furthermore, in Eq. (13) we also
see that the spin fluctuations ¥; are directly coupled to the
anisotropy parameters k;, and this implies that the nutation’s
magnitude is not only related to the ratio of surface-to-core
spin number, but also to the value of the anisotropy constants.
Note, however, that the connection between Eq. (13) and
Eq. (11) is not a direct one, and one has to eliminate the fast
variables ¥;, e.g., by integration or by making use of their
equations of motion in a perturbative way.

Finally, we have systematically varied the physical pa-
rameters (J;;, k;) and studied the effect on nutation and
the frequencies f,, f., and f,. First, we confirm that in
the absence of surface anisotropy (e.g., the same uniaxial
anisotropy k. for all spins), no nutation has been observed.
This is a direct consequence of the fact that, in this specific
case, there is no magnetic inhomogeneity in the particle that
can lead to a nonuniform effective field. Second, we find
that the precession frequency f, mainly depends on k. since
all spins are parallel to each other forming a macrospin that
precesses in the effective uniform field. In general, this would
also include the shape anisotropy and the dc magnetic field.
On the other hand, the frequency f, strongly depends on the
exchange coupling as can be seen in Table 1.

TABLEI. Precession and nutation frequencies for fixed values of
the exchange couplings J = J.; = J; = 1 (top) and for fixed values
of core and surface anisotropies k. = 0.005 and k; = 0.01 (bottom).

Precession frequency Nutation frequency

ke o f, (GHz) f, (THz)

0.001 0.001 32 0

0.001 0.01 19 ~1

0.001 0.05 86 ~1

0.001 0.1 170 ~1

0.005 0.01 25 ~1

0.005 0.05 93 ~]

0.005 0.1 180 ~1

0.01 0.1 185 ~1

7 J Precession frequency Nutation frequency
© ’ f» (GHz) fu (THz)

2 2 25 1.5

1 2 25 1.25

1 1 25 1

1 0.5 25 0.75

1 0.1 25 0.25

0.5 0.5 25 0.7

We have checked that the observed magnetic nutation
features also occur in cube-shaped particles of different size
(20 x 20 x 20 or 30 x 30 x 30). We have obtained qualita-
tively the same oscillating behavior. A more detailed system-
atic and quantitative analysis of this data is being carried out
and will be published later as it is beyond the scope of the
present paper.

We have also performed these calculations for a spherical
nanomagnet which has a different distribution of coordination
numbers than in a cube. The results are qualitatively the same
but the nutation frequency f; is higher.

B. Comparison with the macroscopic approach
to magnetization nutation

As discussed in the Introduction, magnetization nutation
has been studied by many authors within the macroscopic
approach based on Eq. (1) augmented by an inertial term pro-
portional to the second time derivative of the (macroscopic)
magnetic moment m:

2

i—?:mx[heﬁ—amxheff—g%], (16)
where the coefficient 8 is often taken proportional to the
damping parameter o and to a phenomenological relaxation
time 7; related with, e.g., the dynamics of the angular mo-
mentum, which is on the order of a femtosecond. In Ref. [14],
it was shown that the inertial damping results from high-order
contributions to the spin-orbit coupling effect and is related
to the Gilbert damping through the magnetic susceptibility
tensor. In the sequel, we shall use the notation g = /7, and
this macroscopic model, with the equation of motion (16)
and phenomenological parameter 3, will be referred to as the
inertial one-spin problem (I0SP).

Solving the equation above, in the presence of dc and
ac magnetic fields, i.e., ket = hye + hye, Olive et al. [21]
observed two resonance peaks, the first of which corresponds
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to the ordinary large-amplitude precession at frequency f,
and a second resonance peak, at a much higher frequency
f» with smaller amplitude, that was attributed to the nutation
dynamics. A number of other authors made similar observa-
tions by also investigating the IOSP model [16,20,24,27]. In
Ref. [21] it was suggested that wpyaion = 277, = 1/8.

Let us summarize the situation. On one hand, we have
the EOSP model (applicable when surface effects are not
too strong) in which the dynamics of the net magnetic
moment is described by the equation of motion (11). The
solution to the latter only exhibits two resonance peaks with
frequencies f), and f.. On the other hand, we have the IOSP
model where the equation of motion is given by (16) (with the
phenomenological parameter 5) whose solution only provides
the two resonance peaks with frequencies f), and f,,. Now, the
MSP approach, when treated in its full generality, provides us
with a self-consistent scheme in which all three frequencies
appear in a natural manner. In particular, it shows how
nutation with the high-frequency f,, sets in, in the presence of
surface effects which induce noncollinear spin configurations
and generate high-frequency and small-amplitude spin-wave
excitations. See, for example, a thorough study of spin-wave
excitations in a nanocube in Ref. [45]. However, within the
MSP approach, the derivation of the equation of motion
for the net magnetic moment m (and the spin-wave vectors
¥;) is too cumbersome, if not intractable. This issue will
be investigated in the future. Nevertheless, in the case of a
spherical nanomagnet, a Helmholtz equation was derived
for the vectors ¥; in Ref. [41], see Eq. (8) therein, which is
nothing other than the propagation equation for the spin waves
described by ¥;. Now, using the expansion s; >~ m + ¥;, we
may infer that the exchange contribution J As; is proportional
to the second time derivative of m and, as such, the coefficient
B o 1/J and thereby wpyption X J. The exact relation will be
investigated in a future work.

Nevertheless, there is a specific situation in which we
can establish a clear connection between the MSP approach
and the IOSP model. This is the case of weak surface

— S
0.73~ \ i \f‘ X A l\ AV, —
SR M/ﬂ N SN T
0.71 :,/ \\‘_I \\ \\'\ml /'I \m‘/ .

=)
9

e
=

0.2

Reduced magnetic moment

-0.2

0.4

-0.6

0 10 20 30 40 50

1 1
()Ot (ps) 70

effects or, equivalently, a quasicollinear spin configuration.
Indeed, under this condition, we may combine the EOSP
and IOSP models and write an equation of motion whose
solution renders all three frequencies, f,, f., and f,. More
precisely, we start from Eq. (11) with the effective field
hege = 2kym e, — 41{4(m§eZ + m%,ey + miex) and add a term
similar to that in Eq. (16) with coefficient B, leading to the
following equation of motion:

d
T = m x [2lamce; — 4y (mle; +mie, +mle,)]
~ d?
m X g "

where again we have k, = k. N./N and for a cube
ka=(1— 0.7/./\/1/3)4k3/zJ, and j = B/t,. Henceforth,
this model will be referred to as the inertial effective one-spin
problem (IEOSP).

Compared with Eq. (16), the field h.y has been replaced
in Eq. (17) by the effective field produced by the combined
uniaxial and cubic anisotropies, induced by relatively weak
surface effects. Of course, we could also include an external
magnetic field and a demagnetizing field in the EOSP equa-
tion. The advantage of the IEOSP model is twofold: (i) it
renders the three resonance peaks at the frequencies f,, fe,
and f, and (ii) it allows us to establish a clear connection
between the phenomenological parameter 3 and the atomistic
physical parameters of the MSP approach, such as the surface
anisotropy constant k.

For solving Eq. (17) one needs to set the initial velocity
for m. For Néel’s anisotropy, the system exhibits several
different velocities, depending on the spin position in the
structure (edge, corner, face, or core). In this case, one would
have to set up a global constraint by imposing an initial
velocity for the net magnetic moment (6). In practice, we
have found it sufficient to use the average velocity m(t = 0) =
>~ $i(t = 0)/N. The solution of Eq. (17) is plotted (in dots)
in Fig. 4 (left).
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FIG. 4. Time evolution of the components of the macroscopic magnetic moment m (dots) and the net magnetic moment (lines) for MSP. On
the left, for Néel surface anisotropy, the MSP results are compared to the IEOSP model (17) and on the right, for uniaxial anisotropy, they are
compared to the IOSP model (16). The inset shows a magnification of the m(#) component with a typical period ~0.9 ps (@nyation = 7 THZ).
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In Fig. 4 we show the results from the MSP, IOSP, and
IEOSP models. The parameters for the MSP calculations are
the same as in Fig. 1, i.e., k. = 0.001, k; = 0.01. On the left,
we compare the MSP approach to the IEOSP model Eq. (17)
with k = 0.00475, k4 = 0.0011, B = 2.25. On the right, the
MSP approach is compared to the IOSP model (16) with
the effective field given in Eq. (14) and parameters kg =
0.00576, B = 2.2. Note that instead of using the expression
for ke in Eq. (14) one might perform a fitting to the MSP
curves. Doing so, we find a slight discrepancy in kg (here
0.00585) as well as in the initial velocities my(t = 0), a =
x,y,z. This is most likely due to the fact that the velocity
average does not exactly account for the spin noncollinear-
ities. All in all, the results from the MSP approach are in
very good agreement with those rendered by the macroscopic
model, either IOSP or IEOSP, upon using the corresponding
effective field for the given anisotropy configuration in MSP,
namely (12) or (3), respectively. In Fig. 4 (left), the MSP
approach with the anisotropy model (3) is in good agreement
with the IEOSP model with a given parameter 8. Both models
exhibit the three frequencies f),, f., and f,. Regarding the
nutation with frequency f,, there is a slight discrepancy in
amplitude between the two models. As mentioned above,
this is attributed to the average over the initial velocities.
In Fig. 4 (right) we see that, for MSP with the anisotropy
model (12), the IOSP model (16) with the effective field (14)
recovers the two resonance peaks with f, and f,. We draw
the attention of the reader to the difference in time scale and
amplitude for the z component. Indeed, the oscillations of the
z component on the right are to be identified with the wiggles
of the same component on the left panel. In Ref. [21] the
authors argued that wpyiion = 1/8. Here, from Fig. 4 (right)
we extract 8 >~ 1.43 x 10~13 s, which should be compared to
Bty ~ 1.5 x 10713 s, showing a good agreement.

Finally, the major difference between the results on the left
and right panels is related with the frequency f.. This implies
that the model with uniaxial anisotropy, same easy axis but
different constants in the core and the surface, cannot account
for this frequency. This confirms the fact that the latter is
related with the inhomogeneity of the on-site anisotropy easy
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direction and thereby with the cubic effective anisotropy as a
first correction to surface effects.

In general, the relation between f and the frequency f,,
within the MSP approach, is difficult to derive analytically
since B depends on the atomic parameters. Nevertheless, we
have tried to establish a quantitative correspondence between
the phenomenological parameter 8 and the microscopic pa-
rameters such as kg, k. or the effective parameters k;, k4 that
appear in Eq. (11). Accordingly, in Fig. 5 we plot 1/ as the
result of the best fit between the MSP and IEOSP models. On
the right panel of Fig. 5, this is done for the uniform uniaxial
anisotropy model (12) and on the left panel for the anisotropy
model in Eq. (3). These results show that 1/ is nearly linear
in k; and that the value of the phenomenological parameter
B involved in the IEOSP model can be estimated for a given
value of the surface anisotropy constant k;, which is an input
parameter of the MSP approach.

Finally, we have investigated the effect of damping with
parameter « [see Eq. (4)] within the MSP approach. The
results are shown in Fig. 6 for the magnetization deficit.
Together with the 3D picture in Fig. 2, this indicates how the
spin fluctuations and thereby Am decays in time towards zero.
This result is obviously in agreement with those of Fig. 1(b) in
Ref. [21]. We would like to emphasize, though, that the IOSP
approach in its actual formulation cannot account for the mag-
netization nutation in the absence of damping because the
coefficient 8 appearing in Eq. (16) before the inertial term
d?m/dt* is proportional to damping and thus vanishes when
the latter does. This is one of the major discrepancies with
the MSP approach since the latter does produce magnetization
nutation even in the absence of such a damping (o« = 0). How-
ever, within the MSP approach the surface-induced nutation
is due to local spin fluctuations and is thus affected by the
spin-spin correlations or multimagnon processes which cause
damping effects and relaxation of the magnetization deficit.
But in the absence of a coupling of the spin subsystem to
the lattice, referred to in Ref. [46] as the direction relaxation,
these damping effects are not dealt with in this work and this
is why when we set o = 0 the time evolution of m, or Am is
undamped, but does exhibit nutation.

017 k 2
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FIG. 5. Left: k4/k, and 1/8 against k,. Right: ke and 1/ against k.

165444-7



R. BASTARDIS, F. VERNAY, AND H. KACHKACHI

PHYSICAL REVIEW B 98, 165444 (2018)

Am

0.0015 =

0.001 —

0.0005 =

0 10 20 30 40 50 6‘0 t(ps) 70

FIG. 6. Time evolution of the magnetization deficit, showing the
damping effect. Same parameters as in Fig. 1 with a damping value
of @ = 0.01.

III. CONCLUSION AND PERSPECTIVES

We have proposed an atomistic approach for studying the
effects of surface anisotropy and investigating nutation in
the magnetization dynamics in ferromagnetic nanoparticles.
We have then shown that because of these effects, which
induce spin noncolinearities leading to nonuniform local ef-
fective fields, the magnetization dynamics exhibits several
resonance peaks. In addition to the ordinary precessional
motion with frequency f, ~ 10 GHz, we have shown that
the dynamics of the net magnetic moment exhibits two more
resonance peaks with frequencies f, and f,, which are higher
than the FMR frequency. Indeed, f. =4 x f, ~ 40 GHz is
related with the oscillations of the particle’s magnetic moment
between the minima of the effective potential induced by
weak surface anisotropy. On the other hand, the much higher
frequency f, ~ 1 THz is attributed to the magnetization fluc-
tuations at the atomic level driven by exchange coupling
which becomes relevant in the presence of strong nonuniform
spin configurations.

We have compared our results on nutation induced by sur-
face effects with those rendered by the macroscopic approach
based on the Landau-Lifshitz-Gilbert equation augmented by
an inertial term (proportional to the second-order time deriva-
tive of the macroscopic moment) with a phenomenological
coefficient. The good agreement between the two models
makes it possible to estimate this coefficient in terms of the
atomistic parameters such as the surface anisotropy constant.
In brief, the atomistic approach provides an origin for the
magnetization nutations and a global and a self-consistent
picture that renders all three frequencies.

In the case of not-too-strong surface effects, an effective
model renders two frequencies f, and f,. On the other hand,
the Landau-Lifshitz-Gilbert equation with an inertial term
only renders the frequencies f), and f,. Now, in the case of
arbitrary surface effects, it is a rather difficult task to derive an
effective equation of motion for the magnetization dynamics.
As such, we have proposed an intermediate model that starts
from the effective model established for weak surface effects
and added magnetization inertia through the term proportional
to the second-order time derivative of the magnetization.
Then, we have shown that this macroscopic model is in very
good agreement with the atomistic approach and renders all
resonance peaks and their frequencies. This establishes a clear
quantitative connection between the phenomenological pa-
rameters of the macroscopic approach to the atomistic energy
parameters.

Our final word is devoted to the possibility of experimen-
tal observation of nutation in magnetization dynamics. First
of all, establishing the fact that surface effects do induce
magnetization nutation may provide us with an additional
means for observing the latter. Indeed, surface effects on
ferromagnetic resonance in nanoparticles have been studied
for a few decades now. For example, the authors of Ref. [26]
reported on high-frequency FMR (115-345 GHz) spectra for
ultrafine cobalt particles and inferred rather small values of the
transverse relaxation time t,, which suggests that this should
be due to an inhomogeneous precession caused by (relatively
weak) surface spin disorder. There are several other pub-
lications on FMR measurements on magnetic nanoparticles
[47-52]. However, these measurements can only capture the
two frequencies f, and f.. Nevertheless, the observation of
the frequency f,, which is on the order of tens of GHz, should
be an easy matter using a network analyzer with variable
frequency covering this range. Doing so would clearly prove
the existence of the first nutation motion induced by spin
disorder as a consequence of surface anisotropy. A variant
of the FMR spectroscopy, called magnetic resonance force
microscopy [53-55], yields a highly sensitive local probe
of the magnetization dynamics and consists in mechanically
detecting the change in the longitudinal fluctuations of the
magnetization, i.e., Am,. This would be particularly suited
for detecting the fluctuations in m, seen in Figs. 1 and 4, if not
for the mismatch in the frequency range. Now, the frequency
fn is rather in the optical range and we wonder whether the
corresponding oscillations could be detected by coupling the
magnetization of the nanoparticle to a plasmonic nanoparticle
of gold or silver, thus making use of the magnetoplasmonic
coupling evidenced in many hybrid nanostructures [56-58].
Graphene plasmons is another promising route for detection
of THz radiation [59].
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