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We show that spin S Heisenberg spin chains with an additional three-body interaction of the form

ðSi�1 � SiÞðSi � Siþ1Þ þ H:c: possess fully dimerized ground states if the ratio of the three-body interaction

to the bilinear one is equal to 1=½4SðSþ 1Þ � 2�. This result generalizes the Majumdar-Ghosh point of the

J1 � J2 chain, to which the present model reduces for S ¼ 1=2. For S ¼ 1, we use the density matrix

renormalization group method to show that the transition between the Haldane and the dimerized phases is

continuous with a central charge c ¼ 3=2. Finally, we show that such a three-body interaction appears

naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the

dimerization of actual antiferromagnetic chains.
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Introduction.—Over the years, exact results have proved
to be extremely useful in quantum and statistical physics
[1,2]. In quantum magnetism, the Bethe ansatz solution of
the spin-1=2 Heisenberg chain [3] has led to the first proof
that the spectrum is gapless [4], and its extensions, e.g., to
the S ¼ 1 chain with bilinear and biquadratic interactions
(BLBQ) with equal [5–7] or opposite [8,9] amplitudes,
have helped a lot to clarify the physics of that model. In
quantum frustrated magnetism [10], cases where an exact
expression for the ground state wave function can be
obtained have also played a very important role. For in-
stance, for the spin-1 Heisenberg chain, the exact ground
state of the Affleck-Kennedy-Lieb-Tasaki point [11] has
been a milestone in the confirmation of Haldane’s predic-
tion that the spectrum of integer-S spin chains is gapped
[12]. For spin-1=2 magnets, the first example of a gapped
spectrum goes back to the Majumdar-Ghosh [13] (MG)
point J2=J1 ¼ 1=2 of the J1-J2 model defined by the
Hamiltonian:

H J1�J2 ¼
X
i

ðJ1Si � Siþ1 þ J2Si � Siþ2Þ: (1)

At that point, the two fully dimerized states obtained as
products of singlets on consecutive dimers and defined by

jc even;oddi ¼
Y

i even;odd

jSði; iþ 1Þi; (2)

where jSði; iþ 1Þi denotes the singlet formed by the spins
at sites i and iþ 1, have been shown by Majumdar and
Ghosh to be exact ground states. Building on this result, it
has been shown that the spectrum is gapped, and that this
point is representative of an extended phase that covers the
parameter range 0:2411< J2=J1 <þ1 [14–16]. This
seminal result has been at the origin of a long series of
experimental investigations of frustrated spin-1=2 chains

which started about 20 years ago with CuGeO3 and which
remains a very active field of research [17].
Attempts at generalizing the MG point to come up with a

realistic model with fully dimerized states as exact ground
states for larger spins have failed so far. The simplest idea
is to consider the model of Eq. (1) for spins S � 1 [18]. It is
easy to convince oneself that the dimerized states of Eq. (2)
remain exact eigenstates for any spin when J2=J1 ¼ 1=2,
but for S � 1 they are no longer ground states. The prob-
lem can be traced back to the properties of a single triangle
into which the Hamiltonian of Eq. (1) can be decomposed
for J2=J1 ¼ 1=2: For S ¼ 1=2, the product of a singlet
built out of two spins times any state of the third spin is a
ground state. For S � 1, the same state has a total spin S,
and it is not the ground state, which has total spin 0 or 1=2
for integer and half-integer S, respectively.
Following Klein [19], an interesting alternative consists

in building Hamiltonians as sums of local projectors on
three spins to ensure that the product of a singlet with a
single spin state is a local ground state. The simplest
Hamiltonian of that kind takes the form [20]

H Klein ¼ �X
i

Pi;iþ1;iþ2
Stot¼S ; (3)

where Pi;iþ1;iþ2
Stot¼S is the projector on the subspace of total

spin S [21]. This projector can be written as

Pi;iþ1;iþ2
Stot¼S ¼ Y

��S

ðSi þ Siþ1 þ Siþ2Þ2 � �ð�þ 1Þ
SðSþ 1Þ � �ð�þ 1Þ ; (4)

where the product runs from 0 or 1=2 for integer or half-
integer spins to 3S. For S ¼ 1=2, this Hamiltonian reduces
to the MG point of the J1-J2 chain, but for S � 1, it is a
polynomial in scalar products of pairs of spins of degree 3S
or 3S� 1=2 for integer or half-integer spins, hence a very
complicated Hamiltonian that seems difficult to realize in
actual systems. The same remark applies to a spin-3=2
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model recently investigated by Rachel [22], whose ground
states are partially dimerized valence bond solid states, or
to the generalizations proposed by Rachel and Greiter [23]
that lead to exactly trimerized and tetramerized ground
states for S ¼ 1 and S ¼ 3=2 models, respectively.

In this Letter, we propose another generalization to
arbitrary S of the spin-1=2 J1-J2 model defined by the
Hamiltonian,

H ¼ X
i

ðJ1Si � Siþ1 þ J3½ðSi�1 � SiÞðSi � Siþ1Þ þ H:c:�Þ;

(5)

with J1 > 0. The number of sites N is assumed to be
even, and we concentrate on periodic boundary conditions
[24]. As we shall see, this Hamiltonian possesses, for any
value of S, the equivalent of a MG point when J3=J1 ¼
1=½4SðSþ 1Þ � 2�, at which the states of Eq. (2) are exact
ground states, and it is realistic in the sense that it appears
to the next-to-leading order in the 1=U expansion of the
two-band Hubbard model that leads to the S ¼ 1
Heisenberg model.

For S ¼ 1=2, it is easy to check that the Hamiltonian
of Eq. (5) reduces to that of Eq. (1) with J2 ¼ J3=2. For
S � 1, the three-spin interaction does not reduce to a next-
nearest neighbor two-spin interaction, and the proof that
the states of Eq. (2) are exact eigenstates is not a trivial
extension of the MG proof.

As in the S ¼ 1=2 case, let us first determine under
which condition the states of Eq. (2) might be exact eigen-
states of Eq. (5). To be specific, let us consider jc oddi. For i
odd, Si � Siþ1jc oddi ¼ �SðSþ 1Þjc oddi. By contrast, for i
even, the singlets on bonds ði� 1; iÞ and (iþ 1, iþ 2) are
affected by Si � Siþ1. However, the resulting wave function
does not contain states with arbitrary spin for the pairs
ði� 1; iÞ and (iþ 1, iþ 2), but only triplets. Indeed, for
two spins S1 and S2, S

�
1 jSð1; 2Þi is a triplet for all spin

components � ¼ x; y; z. This is clear for the z component
since the SU(2) commutation relations imply that

ðS�1 þ S�2 Þ2Sz1jSð1; 2Þi ¼ 0;

ðSþ1 þ Sþ2 ÞðS�1 þ S�2 ÞSz1jSð1; 2Þi ¼ 2Sz1jSð1; 2Þi;
and by rotational symmetry, this has to be true of the other
components as well. So, for i even, one can write

Si �Siþ1jc oddi¼
X
�;�0

C�;�0 jT�ði�1; iÞijT�0 ðiþ1;iþ2Þi

�Y0
jodd

jSðj;jþ1Þi;

where the product over j is limited to j � i� 1, iþ 1, and
where the indices �, �0 ¼ 0, �1 keep track of the three
possible triplets of a pair of spins. Since the total wave
function is a singlet, all coefficients must be equal to zero
except C1;�1, C�1;1, and C0;0, which must be related by

C1;�1 ¼ C�1;1 ¼ �C0;0. Their common absolute value can

be derived with the help of Clebsch-Gordan coefficients,
but this is unimportant for our present purpose. The only
relevant fact is that, since only triplets are involved, acting
with Si�1 � Si or Siþ1 � Siþ2 on Si � Siþ1jc oddi will just
multiply it by 1� SðSþ 1Þ. This leads to

H jc oddi ¼ � J1N

2
SðSþ 1Þjc oddi þ fJ1 � ½4SðSþ 1Þ

� 2�J3g
X
i even

Si � Siþ1jc oddi: (6)

If J3=J1 ¼ 1=½4SðSþ 1Þ � 2�, the second term drops, and
jc oddi is an eigenstate of H with an energy per site
�J1SðSþ 1Þ=2. Since the Hamiltonian is translationally
invariant, this is also true for jc eveni.
To prove that these states are the ground states, let us

decompose the Hamiltonian as H ¼ J1
P

iH i with

H i¼1

2
ðSi�1 �SiþSi �Siþ1Þ

þ 1

4SðSþ1Þ�2
½ðSi�1 �SiÞðSi �Siþ1ÞþH:c:�: (7)

The spectrum of this three-spin Hamiltonian can be
worked out analytically for S ¼ 1 and numerically for
larger spin, with the result that the ground state energy
EGSðH iÞ is equal to �SðSþ 1Þ=2 (see Fig. 1). By the
variational principle, hH i�J1

P
iEGSðH iÞ¼�NJ1SðSþ

1Þ=2, a lower bound saturated by jc oddi and jc eveni. This
completes the proof that they are ground states of the
Hamiltonian of Eq. (5) when J3=J1 ¼ 1=½4SðSþ 1Þ � 2�.
Finally, it is plausible that these are the only ground

states since the only ground states of H i are the wave
functions with a singlet jSði� 1; iÞi or jSði; iþ 1Þi, and the
only common eigenstates are given by jc oddi and jc eveni.
However, a mathematically rigorous proof that these are
the only ground states for infinite systems would require an
analysis similar to that of Ref. [11] for the MG point of the
spin-1=2 J1-J2 model.
Vicinity of the MG point for S ¼ 1.—We now concen-

trate on the S ¼ 1 model. At the Heisenberg point J3 ¼ 0,
the system is in the Haldane phase, which is gapped but not

FIG. 1 (color online). Spectrum of the Hamiltonian H i

[Eq. (7)] on three adjacent sites of the chain as a function
of SðSþ 1Þ. The solid (green) line indicates the energy of
the dimerized eigenstate on this three-site system,
E ¼ �SðSþ 1Þ=2.
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dimerized. Therefore, a phase transition has to appear
between the MG point J3=J1 ¼ 1=6 and the Heisenberg
point. Let us investigate the nature of this transition
numerically using the density matrix renormalization
group method (DMRG) [25,26].

The natural order parameter of this transition is the
dimerization operator defined by d ¼ jhSi � Siþ1 � Si �
Si�1ij where ði; iþ 1Þ is the central bond. Results for sizes
up to 250 sites [27] are shown in Fig. 2. At the MG point, d
is exactly equal to 2 for all sizes. The dimerization devel-
ops around J3=J1 ¼ 0:11 in a way typical of a continuous
transition. Assuming this to be the case, we have per-
formed a finite-size scaling in the vicinity of the critical
point, and we have identified the point where the dimeri-
zation decays to zero algebraically. This occurs at J3=J1 ¼
0:111ð1Þ (middle panel of the inset of Fig. 2).

This is further corroborated by our results for the corre-
lation length, which we have obtained by fitting the ex-
ponential decay of the spin-spin correlation function with

x�1=2 expð�x=�Þ. The results up to 250 sites shown in
Fig. 3 are consistent with a divergence at J3=J1 � 0:11.
At the MG point, the correlation vanishes rigorously for all
sizes. Together with the results for the dimerization, we
therefore conclude that the transition is located at J3=J1 �
0:111. In the Supplemental Material [28], we also report on
a scaling analysis of the fidelity susceptibility [29] that
agrees with this estimate.

Let us now try to further characterize the universality
class of this phase transition. To this end, we have com-
puted the central charge c from the block entropy of the
system, S‘ ¼ �Tr%‘ ln%‘, with %‘ the reduced density
matrix of a subsystem of size ‘. For a gapless system,

S‘ ¼ c

3
ln

�
L

�
sin

�
�‘

L

��
þ gPBC; (8)

in the presence of periodic boundary conditions, so that
the central charge c is obtained by fitting the numerical
results to Eq. (8) [30]. Results for 50, 80, and 100 sites
[31] are shown in Fig. 4. They point rather convincingly to

c ¼ 3=2. This suggests that the transition might be in the
SUð2Þk¼2 Wess-Zumino-Witten-Novikov (WZWN) uni-
versality class [32], as the Takhtajan-Babujian point of
the S ¼ 1 BLBQ chain, at which a transition from a
gapped Haldane phase to a gapped dimerized phase takes
place [8,9].
To further test this conclusion, we have attempted to

determine the scaling dimensions at the critical point
which determine the exponents of the algebraic decay of
the spin and quadrupolar correlation functions [33,34]

CSði; jÞ � hSziSzji 	 ð�1Þi�jði� jÞð�1=4��Þ=ð2�2Þ;

CQði; jÞ � h12ðSþi Þ2ðS�j Þ2 þ H:c:i 	 ði� jÞ�2�=�2
:

(9)

For the SUð2Þk¼2 WZWN transition, � ¼ ffiffiffiffi
�

p
, i.e., the

correlation functions decay with exponents 3=4 and 2,
respectively. A fit to the DMRG data at J3=J1 ¼ 0:111
leads to exponents 0.72 and 1.83 for the corresponding
correlation functions (see the inset of Fig. 3), in reasonable
agreement with the field theory prediction. Furthermore,
the finite-size scaling of the correlation length at the criti-
cal point is linear to a very good accuracy, which indicates
that � ¼ 1. Finally, at the critical point we find d / L�0:47,
implying �=� ’ 0:47, hence � ’ 0:47 since � ¼ 1. In a
related model, Nersesyan and Tsvelik [35] have predicted
that the dimerization order parameter can be described
as the product of four Ising fields. Three of them are
ordered in the dimerized phase, one is disordered, and
they are all critical at the transition point. Since the Ising
exponent � is equal to 1=8, we expect the product of four
critical Ising fields to scale with exponent� ¼ 1=2. Again,
the numerical estimate is in reasonable agreement with this
prediction [36].
We therefore safely conclude that the MG point is

representative of an extended phase which is separated
from the Haldane phase by a continuous phase transition
at J3=J1 ’ 0:111, and which extends to large values of J3,
as in the S ¼ 1=2 case [16]. The results are summarized in
the phase diagram of Fig. 5.
Discussion.—Finally, let us discuss the implications of

the present results for actual spin chains. For simplicity,

FIG. 2 (color online). Dimerization as a function of J3=J1 for
different system sizes up to L ¼ 250 sites in the vicinity of the
phase transition J3=J1 � 0:11. The insets show the size depen-
dence at J3=J1 ¼ 0:1, 0.111, and 0.12, respectively.

FIG. 3 (color online). Correlation length as a function of J3=J1
for different system sizes. Inset: Spin and quadrupolar correla-
tion functions of Eq. (9) at the critical point J3=J1 ¼ 0:111.
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we concentrate on spin-1 chains [37]. Starting from a two-
orbital Hubbard model with repulsion U and Hund’s rule
coupling, a strong-coupling expansion leads, to second
order in the hopping integrals, to the S ¼ 1 Heisenberg
model with bilinear coupling J1. At fourth order, three
extra terms appear: the three-body interaction J3 of
Eq. (5), a next-nearest neighbor bilinear coupling J2, as
in Eq. (1), and a biquadratic interaction JbiqðSi � Siþ1Þ2 (see
Supplemental Material [28]). The nature of the phase
induced by these terms will depend on the microscopic
parameters, but a reasonable case in favor of a spontaneous
dimerization in a realistic parameter range can be articu-
lated around four points: (1) The J3 coupling generated
by the fourth-order perturbation theory is essentially
always positive. (2) The critical ratio for dimerization
J3=J1 ¼ 0:111 is quite small and can be reached for rea-
sonable values of U. (3) The biquadratic interaction may
be positive or negative. If it is negative, it favors dimeri-
zation. If it is positive, it is typically of the same order as
J3, and preliminary results show that it should be signifi-
cantly larger than J3 to suppress dimerization. (4) To fourth
order, the next-nearest neighbor interaction is essentially
ferromagnetic, and this would compete with dimerization.
However, in actual antiferromagnets, it is, in fact, more
likely to be antiferromagnetic due to the residual direct
superexchange, hence, to be compatible with dimerization.
So, we believe that the dimerization mechanism described
by the model of Eq. (5) is a realistic potential source of
dimerization in actual antiferromagnetic spin chains. We
also note that for systems of ultracold alkaline earth
atoms on optical lattices, higher order perturbation theory
leads to the three-body term of Eq. (5) as well [38,39].
In actual systems, this dimerization should be observable
provided that the interchain coupling and the temperature
are both smaller than an energy scale of the order of
the gap, a reasonable condition since the gap at the
Majumdar-Ghosh point is expected to be a significant
fraction of J1 (see Supplemental Material for a detailed
discussion [28]).

Conclusions.—We have shown that it is possible to
generalize the spin-1=2 J1-J2 model to larger spins in

such a way that a Majumdar-Ghosh point, where dimerized
states are exact ground states, is still present without
making the model unrealistically complicated. For spin 1,
the additional interaction is a three-site term that appears
naturally at fourth order in a 1=U expansion of a two-band
Hubbard model, and we have also shown that the MG point
is representative of an extended dimerized phase separated
from the Haldane phase by a continuous transition in the
SUð2Þk¼2 WZWN universality class. We hope that this new
model will motivate the search for experimental realiza-
tions in quantum magnets and cold atoms.
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