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We present analytical and numerical evidence for the validity of an effective Seff=
1
2 approach to the descrip-

tion of random field generation in S�1, and especially for S=1, dipolar spin-glass models with strong uniaxial
Ising anisotropy and subject to weak external magnetic field Bx transverse to the Ising direction. Explicitly
Bx-dependent random fields are shown to naturally emerge in the effective low-energy description of a micro-
scopic S=1 toy model. We discuss our results in relation to recent theoretical studies pertaining to the topic of
Bx-induced random fields in LiHoxY1−xF4 magnetic materials with the Ho3+ Ising moments subject to a
transverse field. We show that the Seff=

1
2 approach is able to capture both the qualitative and quantitative

aspects of the physics at small Bx, giving results that agree with those obtained using conventional second-
order perturbation theory.
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I. INTRODUCTION

In condensed matter physics systems with strongly inter-
acting quantum mechanical degrees of freedom, it is often a
challenge to explain physical phenomena from a truly first-
principles atomistic point of view. In systems where there are
high energy scales well separated from a low-energy sector,
effective low-energy theories offer the advantage of a refor-
mulation of the problem with an exponentially smaller Hil-
bert space. A well-known and topical example where such an
approach is used is in the derivation of an effective spin-only
model starting from a Hubbard model describing electrons
hopping on a lattice. It is commonly accepted that the low-
energy magnetic excitations of a Hubbard model with a large
Coulomb repulsion U are easier to investigate within an ef-
fective spin Hamiltonian.1–3 Generally speaking, the only re-
quirement to be able to derive an effective model is to have
a small parameter, which is t /U in the previous example,
where t is the nearest-neighbor hopping constant.

In many magnetic materials, the ground-state degeneracy
of the otherwise free magnetic ions can be partially lifted by
electrostatic and covalent interactions due to the surrounding
atoms—the so-called crystal field effect. In a number of situ-
ations, the energy scales associated with the spin-spin inter-
actions are much smaller than the energy gap between the
single-ion ground state and the excited crystal field states. In
such cases, one can often, as a first approximation, neglect
the high-energy states and reduce the relevant Hilbert space
to a much smaller subspace of low-energy states. In this
paper, we discuss the quantitative validity of an effective
low-energy theory description of a model of anisotropic �di-
polar� spin glass in strong single-ion anisotropy in the pres-
ence of a transverse field. The study of this model is inspired
by the phenomena displayed by the disordered LiHoxY1−xF4
Ising magnetic material when subject to an external magnetic
field Bx applied perpendicular to the Ising direction of the
Ho3+ magnetic moments.

The LiHoxY1−xF4 magnetic material exhibits many inter-
esting magnetic behaviors.4–10 The magnetic properties of

LiHoxY1−xF4 are due to the Ho3+ ions. The single-ion ground
state of Ho3+ is a doublet, while the first excited state is at an
energy of �11 K above the ground state.11,12 The most rel-
evant interactions between the magnetic Ho3+ ions are mag-
netic dipole-dipole interactions.13 Since the maximum
strength of the dipolar interactions is for nearest-neighbor
separation and is approximately 0.31 K, collective behavior
in this material occurs at temperatures less than O�1 K�,
where only the ground doublet is significantly thermally
populated. Consequently, the cooperative phenomena and the
low-temperature properties of this material in zero applied
magnetic field should be well captured by a model with ef-
fectively spin-1

2 degrees of freedom.13,14 For example, in
zero applied magnetic field, the system can be recast as a
diluted dipolar Ising model with the low-temperature phase
being either a ferromagnet or a spin glass depending on the
concentration x of magnetic ions.4,15–17 On the other hand,
for x=1 and with a magnetic field Bx applied perpendicular
to the crystallographic Ising c-axis direction, LiHoF4 has
been advocated as one of the rare physical realizations14 of
the transverse field Ising model �TFIM�.18–22 Yet it is only
relatively recently that a somewhat rigorous justification of a
TFIM description of LiHoF4 in nonzero Bx has been put
forward.13 However, over the past 20 years, and until very
recently, several experimental studies had found the behavior
of LiHoxY1−xF4 �x�1, Bx�0� paradoxical, as we now
discuss.

One may have naively expected that the application of a
transverse magnetic field in LiHoxY1−xF4 would allow one to
straightforwardly explore the physics of the TFIM in either a
diluted ferromagnet or a spin glass, depending on the
concentration x. However, the situation for x�1 is quite
a bit more complicated.5 For example, when Bx=0,
LiHo0.167Y0.833F4 displays a conventional spin-glass phase
transition5,16,17 with a nonlinear magnetic susceptibility �3
diverging at the spin-glass transition temperature Tg as
�3�T�� �T−Tg�−�, as in ordinary spin-glass materials.23 How-
ever, as Bx is increased from zero, �3�T� becomes steadily
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less singular and there appears to be an absence of a
Bx-induced quantum critical phase transition between a para-
magnet and a spin-glass state.5 This puzzling experimental
behavior had been tentatively interpreted as due to a first-
order transition near the T=0 quantum phase transition.5,24

However, very recent and independent theoretical
investigations25–27 have instead proposed that the micro-
scopic origin of the “quenching” of the paramagnetic to spin
glass transition as Bx is turned on is due to the generation of
random fields that destroy the spin-glass phase.

The authors of Ref. 26 used an effective Seff=
1
2 theory,

very similar to the one developed for pure LiHoF4,13 to ex-
pose how random fields develop in a microscopic model of
LiHoxY1−xF4 in nonzero Bx. In particular, Ref. 26 showed
how the nonlinear susceptibility �3 becomes progressively
less singular as Bx is increased. Also motivated by the phe-
nomena displayed by LiHoxY1−xF4, Schechter and
collaborators25,27,28 recently investigated in a series of papers
the general phenomenology of induced random fields in
LiHoxY1−xF4. To do so, they considered in Refs. 25 and 27
an easy-axis spin-S �S�1� dipolar spin-glass toy model
Hamiltonian H in presence of a nonzero Bx. By using
second-order perturbation theory, invoking the scaling drop-
let picture of Fisher and Huse for spin glasses,29 and using an
Imry-Ma type argument,30 Schechter et al.25,27 calculated the
finite energy �E required to flip the spins within a spin-glass
droplet. In their calculations, they found a limit on how large
the spin-glass correlation length � can grow as the system is
cooled from the paramagnetic phase. The behavior of the
system, and the corresponding �E, is found to be analogous
to that of a spin glass in a random magnetic field, which,
according to the droplet model, does not show a spin-glass
transition in nonzero field.31 As a result, Refs. 25 and 27
argue that no spin-glass transition can occur in a dipolar spin
glass where random off-diagonal dipolar interactions and an
applied transverse magnetic field are simultaneously at play.

The results of both Refs. 25 and 27 and Ref. 26 derive
from the notion that the applied transverse field generates
effective random fields. The average magnetization along the
direction of the applied transverse field induces the random
fields via the off-diagonal part of the dipolar interactions,
which couple the Ising ẑ component with the perpendicular x̂
and ŷ components. However, what is not clear is how the
random fields in these two calculations are related or if, in
fact, they are equivalent. In their studies, the authors of Refs.
25 and 27 argued, correctly, that consideration of a model
with large spin �S�1� is crucial in order to understand the
weak-field response of the spin-glass phase in either their toy
model H or LiHoxY1−xF4. Furthermore, exact diagonaliza-
tion results of an S=1 dipolar spin glass model with easy-
axis anisotropy provided further quantitative support to the
theoretical arguments as to the scaling behavior of �E with
both Bx and the number of spins in the system.25,27 Reference
27 also considered an effective anisotropic spin-1

2 dipolar
Ising model in a transverse field, but with the off-diagonal
dipolar interactions rescaled compared to the longitudinal
Ising coupling.26 For that model, their numerical results did
not conform with those obtained for the “bare” �high-energy�
anisotropic S=1 model.25,27 Partially on the basis of those

results, and seemingly confirming a previous suggestion,25

Ref. 27, concludes that an effective spin-1
2 model, such as

that used in Ref. 26, is not sufficient to capture the physics in
the small-Bx regime compared to the bare microscopic
�large-spin� anisotropic dipolar spin-glass model H.

Considering a perspective beyond the specific problem of
LiHoxY1−xF4, one could interpret the conclusion of Refs. 25
and 27 regarding the inadequacies of an effective spin-1

2
model to describe LiHoxY1−xF4 in Bx�0, as a counterexam-
ple of the precise quantitative usefulness of effective low-
energy theories for quantum N-body systems. It is therefore
of interest to investigate with some scrutiny the mathemati-
cal justification for an effective spin-1

2 model for
LiHoxY1−xF4 with Bx�0. This is the purpose of the present
paper. More specifically, the question that we ask here is to
what extent the explicitly manifest random fields derived in
an effective low-energy theory, as in Ref. 26, are related to
the random-field-like effects at play in perturbation theories,
as used in Refs. 25 and 27. Below we show, via a derivation
of an effective low-energy Seff=

1
2 Hamiltonian for aniso-

tropic dipolar glasses, that effective random longitudinal
fields emerge naturally in the Seff=

1
2 model. On the basis of

analytical calculations and exact diagonalizations, we high-
light the fact that an Seff=

1
2 Hamiltonian properly derived

from an S=1 high-energy toy model H, such as the one
proposed in Refs. 25 and 27 �see Eq. �1� in Sec. II�, is a
quantitatively valid and controlled approach to this problem.

The paper is organized as follows. We discuss in Sec. II
an anisotropic spin-S dipolar Hamiltonian as a simplified
model displaying some of the key physics of the
LiHoxY1−xF4 material in a transverse field. We then show in
Sec. III how to derive from it an effective Seff=

1
2 Hamil-

tonian to lowest order. We present in Sec. IV results from
exact diagonalization calculations that compare the S=1 and
the Seff=

1
2 models, and which directly confirm the quantita-

tive validity of the effective Hamiltonian approach. Section
V concludes the paper.

II. ANISOTROPIC SPIN HAMILTONIAN

The Ho3+ ion is characterized by a very large hyperfine
interaction between the electronic and nuclear moments, and
the effects of this strong interaction plays an important role
in a number of Ho3+-based magnetic materials.8,12,14,33,34 In
particular, in LiHoF4, it leads to a significant increase of the
zero-temperature critical transverse field for the dipolar fer-
romagnet to quantum paramagnet transition.13,14 It also plays
an important role in setting the relevant critical transverse
magnetic field scale in dilute LiHoxY1−xF4.35 In this paper,
however, we are specifically interested in the general phe-
nomenology of random fields along the Ising spin directions
generated by a small applied transverse field rather than ob-
taining a precise quantitative description of LiHoxY1−xF4. In
this specific context, we therefore neglect the role of hyper-
fine interactions. Also neglecting the hyperfine interactions,
Schechter et al.25,27 proposed a generic anisotropic spin-S toy
model Hamiltonian with long-range dipolar interactions
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H = − D�
i

��Si
z�2 − S2� − �

i�j
�1

2
Vij

zzSi
zSj

z + Vij
zxSi

zSj
x� − Bx�

i

Si
x.

�1�

This Hamiltonian is a simplified model that preserves the
basic characteristics of the proposed microscopic
Hamiltonian13,26 for LiHoxY1−xF4. In the absence of an ex-
ternal field, individual Ho3+ spins have an Ising-like ground-
state doublet with a large energy gap between the lowest
excited state and the ground doublet. Also, for S=1, the ex-
cited state of the model in Eq. �1� is a singlet, as for Ho3+ in
LiHoxY1−xF4.11,12 Here, i , j are the positions of the randomly
positioned magnetic moments. Vij

	
 denotes the random long-
range dipolar interaction between the spins, where Vij

zz stands
for the Ising interaction and Vij

zx stands for the off-diagonal
interaction �Vij

	
=Vij

	 for dipolar interactions�. D�0 is the

anisotropy constant mimicking the crystal field. For Bx=0,
the ground state �GS� of a single spin is doubly degenerate
with Sz= �S. The corresponding states of the doublet are
denoted 	S
 and 	−S
. The first excited states have Sz

= � �S−1� and energy 0��2S−1�D with respect to the
ground-state doublet and with the corresponding states de-
noted as 	� �S−1�
. Ignoring momentarily the Vij

	
 interac-
tions, the Zeeman term −Bx�iSi

x lifts the GS degeneracy of
the 	�S
 ground doublet, resulting in two new lowest-energy
states 	��Bx�
 and 	��Bx�
, with corresponding energies
E��Bx� and E��Bx�, and with an energy gap

��Bx� = E��Bx� − E��Bx� �2�

between them. For Bx�0, to leading order in perturbation
theory, the gap ��Bx� is proportional to �Bx�2S.36

Invoking the spin-glass droplet scaling picture of Fisher
and Huse,29 and using an Imry-Ma30 type argument, one can
calculate the energy required to flip a spin-glass droplet of
size L containing N�Ld spins, with d the number of space
dimensions �here d=3�. This energy cost is due to the per-
turbative quantum term H��−�i�jVij

zxSi
zSj

x−Bx�iSi
x, which

does not commute with the classical term H� =−D�i��Si
z�2

−S2�− 1
2�i�jVij

zzSi
zSj

z. Considering first only H�, and invoking
the droplet picture of only two distinct ground states,29 	�S

and 	�̃S
 denote the collective �doubly degenerate� Ising
spin-glass ground states of the system. These two ground
states are related by the global Si

z→−Si
z symmetry, where

each spin is in either its 	+S
 state or its 	−S
 state. As dis-
cussed in Refs. 25 and 27, nonzero H� lifts the ground-state
degeneracy, as we now review in order to make contact with
the results presented below in Secs. III and IV.

The lowest-energy excited states �above the otherwise two

degenerate 	�S
 and 	�̃S
 ground states� are 	��S−1�
k 
 and

	�̃�S−1�
k 
 states, in which the kth spin has its Sz quantum value

changed from +S to +�S−1� or from −S to −�S−1�. Using
standard second-order degenerate perturbation theory,37 and
considering only excitations to the �intermediate excited�
	��S−1�
 and 	�̃�S−1�

k 
 states, the fluctuation-induced energy

difference between 	�S
 and 	�̃S
 is

�E = �H�S,�S
− H�̃S,�̃S

�2 + 4	H�S,�̃S
	2, �3�

where

H�S,�S
= −

1

0
�

k

���S	H�	��S−1�
k 
�2,

H�̃S,�̃S
= −

1

0
�

k

���̃S	H�	�̃�S−1�
k 
�2,

and

H�S,�̃S
= −

1

0
�

k

��S	H�	��S−1�
k 
���S−1�

k 	H�	�̃S


+ ��S	H�	�̃�S−1�
k 
��̃�S−1�

k 	H�	�̃S
 ,

where we have taken the ground-state energy to be zero.

Since ��S	H�	�̃�S−1�
k 
= ��S

˜ 	H�	��S−1�
k 
=0, we have H�S,�̃S

=0. Subtracting H�̃S,�̃S
from H�S,�S

, only the odd terms in Bx

remain, with the even terms in Bx canceling each other out.
Finally, to lowest order in Bx, we get

�E = 2S
Bx

0
�
i�j

Vij
xz��s	Si

z	�s
 . �4�

Taking the largest Vij
xz with a typical value V�, the typical

energy gained by flipping a droplet of N�Ld spins is, to
leading order in Bx,

�	�E	
 �
S2BxV�

N

0
, �5�

indicating that the total energy gain increases with Bx lin-
early to leading order, as first found in Refs. 25 and 27.

This decrease in energy is to be compared with the energy
cost due to the formation of a spin-glass droplet.29 This en-
ergy cost scales with the linear size L of the droplet, L
=N1/3, as �S2V�L�d, where V� is the typical value of the
largest Vij

zz, which one typically expects to be of the same
order as V�. Comparing the energy gain �	�E	
 of Eq. �5�
with the energy cost for droplet formation, Refs. 25 and 27
find a finite correlation length �, identified with L, which, for
small Bx, scales as

� � � 0V�

BxV�

�1/�3/2−�d�

. �6�

Based on an argument by Fisher and Huse,29 �d� �d−1� /2 or
�d�3 /2 here. Hence, turning on Bx leads to a reduction of
the correlation length ��Bx�, inhibiting its divergence, which
occurs when Bx=0. In other words, the presence of the ap-
plied transverse Bx leads, via the presence of the off-diagonal
Vij

xz spin-spin interactions, to a destruction of the spin-glass
phase with a typical spin-glass correlation length � decreas-
ing as Bx increases. References 25 and 27 argue that this is
the mechanism via which the nonlinear magnetic susceptibil-
ity �3 no longer diverges in LiHoxY1−xF4 as Bx is increased
from zero.5,38
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III. EFFECTIVE SPIN-1
2 DESCRIPTION

In the previous section we reviewed the arguments of
Refs. 25 and 27 which lead to the key result of Eq. �4�. We
now proceed to show that a reformulation of the microscopic
spin Hamiltonian, Eq. �1�, in terms of an effective Seff=

1
2

model, leads identically to Eq. �4� in the limit of small Bx /D.
First, we focus on a situation where the temperature con-

sidered is low compared to 0, and project the spin S opera-
tors onto the two-dimensional subspace formed by the two
lowest-energy eigenstates 	��Bx�
 and 	��Bx�
. Following
Refs. 13 and 26, we define an Ising subspace 	↑
 and 	↓
 by
performing a rotation

	↑
 =
1
2

�	�
 + exp�i��	�
� ,

	↓
 =
1
2

�	�
 − exp�i��	�
� . �7�

The phase � is chosen such that the matrix elements of the
operator Sz within the new �Ising� subspace are real and di-
agonal. In this case, we can define Si

z=Czz�i
z. This allows us

to recast H in Eq. �1� in terms of an effective spin-1
2 Hamil-

tonian Heff that involves the �	 Pauli matrices.13 In this pro-
jected subspace, a transverse field �= 1

2��Bx� acts on the ef-
fective �i

x spin. The projected Si
	 �	=x ,y ,z� operator may be

written as

Si
	 = �


=1


=3

C	
�Bx��i

 + C	0�Bx�1 . �8�

The C	
 and � dependence on Bx can be obtained by exact
diagonalization13,26 of the noninteracting part of H �i.e.,
Vij

	
=0� in Eq. �1�.
For zero transverse field, Bx=0, the only nonzero C	


coefficient is Czz�0�=S, giving a classical �effective� low-
energy dipolar Ising model

HIsing = −
1

2
S2�

i�j

Vij
zz�i

z� j
z. �9�

Turning on Bx, the coefficients Cx0 and Cxx increase with Bx,
while Czz shows a slight decrease with increasing Bx, as
shown in Fig. 1. Thus, by substituting Si

z with Czz�Bx��i
z and

Si
x with Cxx�Bx��i

x+Cx0�Bx�1 in Eq. �1�, the effective spin-1
2

Hamiltonian is

Heff = −
1

2
Czz

2 �Bx��
i�j

Vij
zz�i

z� j
z − Czz�Bx��Cxx�Bx��

i�j

Vij
zx�i

z� j
x

− Cx0�Bx��
i�j

Vij
zx�i

z� −
1

2
��Bx��

i

�i
x. �10�

As can be seen, the projection of the Vij
zxSi

zSj
x term in Eq. �1�

results in an induced random bilinear coupling, proportional
to �i

z� j
x, and a longitudinal random field interaction, propor-

tional to �i
z, for Bx�0. For low enough transverse field Bx,

the Ising dipolar interaction �proportional to Vij
zz� is the domi-

nant term.

Having derived the effective Hamiltonian, we now repeat
the calculation of �E within this effective Seff=

1
2 framework

by again bringing in the spin-glass droplet picture.29 For Bx

=0, we denote by 	�
 the ground state of the Seff=
1
2 system

where 	�
 is a specific realization of the ↑ and ↓ �effective�
Ising spins configuration.39 For Bx=0, because of time-

reversal symmetry, the time-reversed state 	�̃
, which is ob-
tained by flipping all the spins of 	�
, is a ground state of the
system as well. We thus have a ground-state doublet in the
droplet picture for the effective spin model. Carrying on a
similar discussion as in the previous section and as in Refs.
25 and 27, at low enough Bx within a droplet picture, the
symmetry is broken due the presence of the induced random
fields in Eq. �10�. The energy cost to flip the spins over a
droplet is

�E � ��̃	Heff	�̃
 − ��	Heff	�
 ,

which, to lowest order in Bx, gives

�E � 2CzzCx0�
i�j

Vij
xz��	�i

z	�
 . �11�

Although we have an exact analytical expression for the C	


coefficients as a function of Bx �which is available for S
�3 /2�, in order to compare with Eq. �4� above and with
Refs. 25 and 27, we consider the Bx dependence of C	
 to
leading order in Bx /D. Using standard degenerate perturba-
tion theory, for S�1 and up to second order in Bx,

40 the 	↑

and 	↓
 defined in Eq. �7� are given by

	↑
 = �1 −
Bx

2

40
2S�	S
 +

Bx

0
S

2
	S − 1
 ,
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B
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FIG. 1. �Color online� Evolution of �, Czz, Cx0, and Cxx as
functions of the external transverse field Bx for S=1. � is the energy
gap between the two lowest states ��
 and ��
 in absence of inter-
actions �Vij

	
=0�. Czz, Cx0, and Cxx are the nonzero coefficients used
to map the matrix elements of the S=1 spin operator within the
low-energy manifold spanned by 	�
 and 	�
 to that of an effective
Seff=

1
2 operator.
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	↓
 = �1 −
Bx

2

40
2S�	− S
 +

Bx

0
S

2
	− S + 1
 , �12�

recalling that 0= �2S−1�D. Returning to Eq. �8�, from
which the C	
 are obtained �Czz= 1

2 ��↑	Sz	↑ 
− �↓	Sz	↓ 
� and
Cx0= 1

2 ��↑	Sx	↑ 
+ �↓	Sx	↓ 
��, we use Eq. �12� to find Czz

�S�1−Bx
2 /20

2�, Cx0�SBx /0, Cxx� �Bx�2S−1 �Cxx�Bx /0

for S=1�, while �� �Bx�2S.36 Substituting those Bx dependen-
cies back in Eq. �11� and keeping terms to lowest order in Bx,
the dependence of the energy cost �E is

�E � 2S2 Bx

0
�
i�j

Vij
xz��	�i

z	�
 . �13�

Referring to Eq. �12�, we have ��	Si
z	�
�S��	�i

z	�
 to ze-
roth order in Bx. Hence, we find that the energy cost obtained
in the Seff=

1
2 picture is identical to the energy cost given by

Eq. �4� obtained via second-order perturbation theory and
previously reported in Refs. 25 and 27. Thus, Eq. �13� leads
to the same rms energy cost for flipping a droplet, given by
Eq. �5�, and the same Bx dependence of the spin-glass corre-
lation length � in Eq. �6�. Hence, we have shown that a
formally derived effective Seff=1 /2 Hamiltonian does cap-
ture quantitatively the low-energy physics of the full S
Hamiltonian at low transverse fields. While the argument
above was constructed for the toy model of Eq. �1�, one
could proceed identically for the full-blown microscopic
Hamiltonian of LiHoxY1−xF4. Indeed, this is the underlying
program carried in Ref. 26.

IV. NUMERICAL RESULTS

In the same spirit as Refs. 25 and 27, we have performed
numerical calculations to back up our perturbative approach.
This allows us to investigate to what extent our proposed
low-energy effective spin-1

2 model is a good description of
the full anisotropic Hamiltonian �1� as well as determine the
range of transverse field over which the above analytical
small-Bx results are valid. In this section we present results
from exact diagonalizations on finite-size clusters with open
boundary conditions.41 In order to compare the present ap-
proach with the previous investigations done by Schechter et
al.,25,27 we work at the same constant dipole concentration
x=18.75%.

LiHoF4 is a compound with space group C4h
6 �I41 /a� with

lattice parameters a=b=5.175 Å, c=10.75 Å, and with four
Ho3+ ions per unit cell positioned at �0,0 ,1 /2�,
�0,1 /2,3 /4�, �1 /2,1 /2,0�, and �1 /2,0 ,1 /4�.43 For
LiHoxY1−xF4, a dilution of x=18.75% is realized by distrib-
uting randomly N magnetic moments �holmium Ho3+ ions�
in a sample of 16N /3 possible sites. We have chosen samples
of size �2a ,2b ,cN /3�, where N is a multiple of 3. Thus,
changing the number N of magnetic ions means changing the
size of the sample in the z direction in order to keep a con-
stant dilution.

In Eq. �1�, the dipolar interaction is written as Vij
	
, which

takes, with the negative coefficient convention used in Eq.
�1�, the explicit form

Vij
	
 =

	B
2

rij
3 �3rij

	rij



rij
2 − �	
� , �14�

where rij is the distance between the ions at positions i and j,
and 	 ,
=x ,y ,z. The dipolar interaction Vzz is of the order
	B

2 /a3�4.49�10−3 K, whereas the on-site anisotropy is
taken as D=10 K. In the following, we investigate the be-
havior of the gap �E between the ground state and first ex-
cited state as a function of the applied transverse field Bx.
Since we are mainly interested in checking the relations �4�,
�5�, and �13�, we present our results in terms of renormalized
parameters ��E /DN ,Bx /D�.

To perform a first check of the validity of our approach,
we choose a small cluster with a fixed random distribution of
N=9 spins and compute the renormalized gap �E / �DN� for
both models �i.e., S=1, Eq. �1�, and Seff=

1
2 , Eq. �10�� as a

function of the reduced transverse magnetic field Bx /D. The
results are shown in Fig. 2. In zero transverse field the
ground state is degenerate and its energetics are governed by
the Ising interaction Vzz. The application of a transverse field
Bx lifts the degeneracy. The splitting energy between the
ground state and the first excited state corresponds to excita-
tion energy �E between the ground state and the excited state
with spins flipped. For sufficiently small Bx, the most impor-
tant interaction remains Vzz, and the gap �E is found to be
proportional to Bx /D �inset of Fig. 2�, as suggested by the
arguments leading to Eqs. �4� and �13�. Upon increasing
Bx /D to a sufficiently large value, the transverse field even-
tually becomes stronger than the dipolar interactions. At that
point, the perturbative low-Bx regime44 is no longer valid and
the gap �E is no longer proportional to Bx. However, Fig. 2
shows that, even for high transverse fields, we observe an
almost exact agreement between the numerical results for the
S=1 model and the effective Seff=

1
2 description.

Interestingly, for a specific realization of disorder, in Fig.
2, we note a local maximum in �E around Bx /D�0.0024,
followed by a local minimum, before �E starts diverging
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FIG. 2. �Color online� Comparison between the S=1 and Seff

=1 /2 models for a given sample �e.g., realization of disorder� of
N=9 spins: gap �E / �DN� as a function of the transverse field
Bx /D. �E is the energy gap between the two lowest-energy states of
the system in presence of both dipolar interactions Vij

	
 and the
transverse magnetic field Bx. The inset shows the small-Bx /D re-
gime for the same sample.
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with increasing Bx. We investigated the origin of this behav-
ior and found that it can be understood as arising from the Bx

dependence of Czz��1− 1
2 �Bx /0�2� vs Cx0�Bx /0, both for

small Bx /D. The dependence of �E on Bx is controlled not
only by the C	
 parameters, but also by a prefactor coming
from the dipolar interactions, which is proportional to rij

z rij
x .

Obviously, if this prefactor is of relevance to the existence of
the above maximum/minimum features, the random distribu-
tion of the magnetic ions in the sample must play a crucial
role in the position �and even the existence� of this local
maximum or minimum feature. If one takes an extreme case
in which all the magnetic ions are aligned on a line along the
ẑ direction, the resultant interaction is 0, and there is no dip
in the curve. To confirm this scenario we show in Fig. 3
�E / �DN� as a function of the transverse field Bx for 20
different disorder configurations for N=6. One sees that the
majority of curves do not show these local maximum and
minimum features and, as shown by the inset of Fig. 3, the
average of �E over those 20 realizations of disorder reveals
no such maximum-minimum structure.

Having demonstrated the one-to-one correspondence be-
tween the S=1 and the effective Seff=

1
2 model for various

�specific� realizations of disorder, we now proceed to check
the scaling with system size for �	�E	
 predicted by Eq. �5�
for the S=1 model, and also check that it agrees with that for
the effective Seff=

1
2 model. The results for both models are

shown in Fig. 4. The average gap �	�E	
 was computed over
1000 samples which, for each system size of N spins, we
renormalize as �	�E	
 / �DN�, and plot for both models �S
=1 and Seff=

1
2 � as a function of the transverse field Bx. As

predicted by Eq. �5� and previously found in Ref. 25, our
numerical results displayed in Fig. 4 reveal a regime for
which the spin S=1 model �closed symbols� obeys
�	�E	
 /DN�Bx /D scaling.

One can see that at higher Bx the scaling relation for dif-
ferent system size N, as well as the proportionality of the gap
�	�E	
 with Bx, starts to break down. As explained above in
the context of Fig. 2, this comes from the fact that the trans-
verse field term in the Hamiltonian is larger than the dipolar
interaction Vij

zz. Thus the droplet picture is no longer valid,
and the scaling and proportionality relations in Eq. �5� are no
longer satisfied. We also show in Fig. 4 the results for the
effective Seff=

1
2 model �open symbols�, demonstrating the

agreement with the results for the S=1 model, even when the
�E /N�Bx /D regime breaks down. This confirms the cor-
rectness of the conclusion based on Eq. �13� when compared
with Eq. �4�, and that �E is the same for both the S=1 and
the Seff=1 /2 models.

V. CONCLUSION

We have shown how to rigorously derive an effective
spin-1

2 Hamiltonian to describe the problem of induced ran-
dom fields in a spin-glass model with strong single-ion Ising
anisotropy and subject to a transverse magnetic field. We
discussed the relation of this model with the physics of the
LiHoxY1−xF4 material in a magnetic field transverse to the
Ho3+ Ising spins.5 We have shown, both analytically and nu-
merically, that the use of such a model gives results in full
quantitative agreement with previously reported perturbation
theory calculations on a “large” spin-S toy model with strong
anisotropy.25,27,28 However, the large hyperfine interactions
present in the real LiHoxY1−xF4, and which have been ig-
nored here, must ultimately be considered in order to obtain
a good quantitative understanding of the low-temperature
regime.35

The approach of Refs. 25 and 27 proceeds via Rayleigh-
Schrödinger perturbation theory, while the approach in Ref.
26 and presented in Sec. III above relies on the effective
Hamiltonian approach. To low order in the quantum H�

term, the two approaches have been shown to give identical
results. However, the emergence of induced random fields is
perhaps more apparent in the spin-1

2 effective model ap-
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FIG. 3. �Color online� Random variations of the disorder con-
figurations for an N=6 spin system for 20 realizations of disorder.
Gap �E / �DN� as a function of the transverse field Bx /D. Depend-
ing on the disorder configuration, the curves exhibit a local maxi-
mum and a local minimum. The thin �black� curve in the main panel
shows the minimum-maximum structure of �E vs Bx for a specific
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proach. The C	
 coefficients needed to construct the effec-
tive Hamiltonian are easily calculated, providing the ability
to investigate the evolution of �E and � with Bx beyond the
linear term and to arbitrarily high order in Bx. Such high-
order perturbation theory would be more cumbersome to
construct when proceeding via a direct Rayleigh-Schrödinger
perturbation scheme. In this context, the crucial step con-
necting the perturbation theory method and the effective
Seff=

1
2 approach is in the determination of the Bx dependence

of the C	
 transformation parameters in Eq. �8�. It is the
neglect of this Bx dependence of the spin interactions in the
Seff=

1
2 model that leads to the different results for the Seff

= 1
2 and S=1 models investigated in Ref. 27, and which led

their authors to argue for the quantitative inadequacies of the
Seff=

1
2 approach. Per se, the numerical results for the Seff

= 1
2 and S=1 models reported in Ref. 27 are correct. Indeed,

there is no problem in finding a different Bx dependence of
the disorder average 	�E	 if one is not interested in making a
formal connection between the S=1 and the Seff=

1
2 model.

However, in a study aiming at calculating physical quantities
defined in the high-energy sector, one may want, as we do in
Ref. 26 and in the present paper, to formally relate the “mi-
croscopic” �bare� high-energy model to the effective low-
energy description.

We note that, in a general case where the Vij
zx spin-spin

interactions are not much smaller than D, higher-order per-
turbation theory calculations must be carried out to derive an
effective Hamiltonian. The physical result would be that vir-
tual transitions to the excited states lead to an admixing of
those states with the low-energy sector. This effect was re-
cently discussed in Ref. 45, where it was shown that such
effective interaction-induced quantum mechanical effects are
seemingly negligible for LiHoxY1−xF4. This makes it difficult
to justify the idea of quantum mechanical entanglement to
explain the peculiar behavior of the very dilute LiHoxY1−xF4
�x=0.045� as advocated in Ref. 7. However, as a counterex-
ample and for a different magnetic rare-earth system, we
note that it was recently found that such interaction-induced
admixing can dramatically change the low-energy physics.46

With the contributions of Refs. 25–28 and 35 and the
clarification presented herein, it may be that the behavior of
dilute LiHoxY1−xF4 in a transverse field, in both the random
ferromagnetic and spin-glass regimes, is now somewhat un-

derstood. This impression would seem to be further corrobo-
rated by recent experimental studies, which provide evidence
for the manifestation of induced random fields for
LiHoxY1−xF4 with x=0.44 and Bx�0.9,47 Yet there are many
questions still open regarding the physics of this material for
x�20%: Is there a dipolar spin glass phase over a reason-
ably wide range of dipole moment concentration, either
theoretically7,48,49 or experimentally?4,7,17,50 What are the
physical objects giving rise to the peculiar coherent dynam-
ics at low temperature for samples with low Ho3+ concentra-
tion �see Refs. 6 and 10�? Even for pure LiHoF4, what is the
microscopic explanation for the discrepancy between experi-
mental results and Monte Carlo simulations for the tempera-
ture vs transverse-field phase diagram for small Bx near the
classical paramagnetic phase boundary?13,42 Are the phenom-
ena found in zero and nonzero Bx for LiHoxY1−xF4 also ob-
servable in other Ising systems which possess either Kramers
or non-Kramers rare-earth magnetic ions?22 How do similar
diluted dipolar Ising systems, with hyperfine interactions of
much lesser importance than for Ho3+ ions,33–35 behave at
low temperatures? While it is interesting that LiHoxY1−xF4 in
a transverse field becomes a rare, if not the first physical
realization of a random-field Ising model in a ferromagnetic
setting,9,26,28,32,47 it would seem that this is a small part of the
challenges offered by this material, with apparently more left
to understand than has so far been understood.

Note added in proof. Recently, experimental results on the
putative spin glass transition in LiHoxY1−xF4 and exploring
the competing effects of quantum entanglement and random
fields in this material, both induced by a transverse field,
were reported by C. Ancona-Torres et al.51
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