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Abstract

Over the past several years the field of large-scale scientific applications
has been growing rapidly. Consequently the anomalies in these kinds
of application, anomalies that heretofore had a minor impact, may have
today a significant impact on the numerical results of these programs
and their implications [1]. The work presented here proposes automatic
techniques to reduce the cost of locating and remedying a wide class of
numerical nuisances arising in single and multi-threaded applications.

As examples of common anomalies, let us cite rounding errors that
can accumulate excessively all along a numerical program, conditional
branches involving floating-point comparisons that may go astray because
of the subtleties of floating-point arithmetic, anomalies due to vagaries of
programming languages, overflow, benign and catastrophic cancellation,
among others. When suspected, such anomalies can be located using
various techniques: altering rounding modes of floating-point arithmetic
hardware and observing the sensitivity of the program to those changes,
increasing the precision of the calculations on some floating-point opera-
tions (by using high or even infinite precision) and observing the impact
on the final result, modifying comparisons by adding an unobvious toler-
ance, or also using interval arithmetic, ... . These techniques vary in their
costs, scopes, and effectiveness.

Because anomalies due to roundoff are difficult to debug [2], we wish
to offer developers whose expertise does not extend to numerical error-
analysis an intelligent tool to debug floating-point programs. This tool
should help locate automatically and remedy suspected anomalies, work-
ing on source code and at runtime, to shorten debugging time and thus
improve the productivity of programmers.

Our tool embraces a set of transformations: increasing precision (by
using double instead of single precision floating-point arithmetic), chang-
ing rounding mode, flipping between two implementations of the same
computation, ... . These transformations are effected by instrumenting the
original code with CIL [3], which allows a given C code to be analysed and
transformed. Then the parts of a program that are most sensitive to this
transformation can be isolated automatically using delta-debugging [4].
This algorithm works like a binary search to determine a locally minimal



set of changes to be applied to the original code so that the returned
result remains within a given tolerance of a known and more accurate
result (higher or exact precision, ...). So far, these techniques have been
validated mainly on codes of the LAPACK ! library, especially on the
bug in subprogram dgges ? when its subroutine dlarfg was replaced by
dlarfp. Of vastly many calls upon dlarfp, which one was first to mal-
function? And for what data? Answers took days to find without the
tool, minutes with it. Only then could the misbehavior of this relatively
short subroutine dlarfp be analyzed and repaired.
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