Techniques for the automatic debugging of
scientific floating-point programs

David H. Bailey*, James Demmel’, William Kahanf,
Guillaume Revy', and Koushik Sen'

* Berkeley Lab Computing Sciences T Parallel Computing Laboratory
Computational Research Division EECS Department
Lawrence Berkeley National Laboratory University of California, Berkeley
Berkeley, CA 94720, USA Berkeley, CA 94704-1776, USA

dhbailey@lbl.gov {demmel,wkahan,grevy,ksen}Qeecs.berkeley.edu

Abstract

Over the past several years the field of large-scale scientific applications
has been growing rapidly. Consequently the anomalies in these kinds
of application, anomalies that heretofore had a minor impact, may have
today a significant impact on the numerical results of these programs
and their implications [1]. The work presented here proposes automatic
techniques to reduce the cost of locating and remedying a wide class of
numerical nuisances arising in single and multi-threaded applications.

As examples of common anomalies, let us cite rounding errors that
can accumulate excessively all along a numerical program, conditional
branches involving floating-point comparisons that may go astray because
of the subtleties of floating-point arithmetic, anomalies due to vagaries of
programming languages, overflow, benign and catastrophic cancellation,
among others. When suspected, such anomalies can be located using
various techniques: altering rounding modes of floating-point arithmetic
hardware and observing the sensitivity of the program to those changes,
increasing the precision of the calculations on some floating-point opera-
tions (by using high or even infinite precision) and observing the impact
on the final result, modifying comparisons by adding an unobvious toler-
ance, or also using interval arithmetic, ... . These techniques vary in their
costs, scopes, and effectiveness.

Because anomalies due to roundoff are difficult to debug [2], we wish
to offer developers whose expertise does not extend to numerical error-
analysis an intelligent tool to debug floating-point programs. This tool
should help locate automatically and remedy suspected anomalies, work-
ing on source code and at runtime, to shorten debugging time and thus
improve the productivity of programmers.

Our tool embraces a set of transformations: increasing precision (by
using double instead of single precision floating-point arithmetic), chang-
ing rounding mode, flipping between two implementations of the same
computation, ... . These transformations are effected by instrumenting the
original code with CIL [3], which allows a given C code to be analysed and
transformed. Then the parts of a program that are most sensitive to this
transformation can be isolated automatically using delta-debugging [4].
This algorithm works like a binary search to determine a locally minimal



set of changes to be applied to the original code so that the returned
result remains within a given tolerance of a known and more accurate
result (higher or exact precision, ...). So far, these techniques have been
validated mainly on codes of the LAPACK ! library, especially on the
bug in subprogram dgges ? when its subroutine dlarfg was replaced by
dlarfp. Of vastly many calls upon dlarfp, which one was first to mal-
function? And for what data? Answers took days to find without the
tool, minutes with it. Only then could the misbehavior of this relatively
short subroutine dlarfp be analyzed and repaired.

References

1]

David H. Bailey. Resolving Numerical Anomalies in Scientific Computation.
2008. Available at
http://crd.1lbl.gov/~dhbailey/dhbpapers/numerical-bugs.pdf.

William Kahan. How Futile are Mindless Assessments of Roundoff in
Floating-point Computation? 2006. Available at
http://wuw.eecs.berkeley.edu/~wkahan/Mindless.pdf.

George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C pro-
grams. In Proceedings of Conference on Compiler Construction, 2002.

Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 28(2):183-200,
2002.

Keywords: scientific floating-point program, automatic debugging, code trans-
formation, delta-debugging algorithm.

ILinear Algebra PACKage - Available at http://www.netlib.org/lapack.
2See http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783 for details.



