
19th IEEE Symposium on Computer Arithmetic (ARITH’19)

Portland, Oregon, USA, June 8-10, 2009

A new binary floating-point division algorithm
and its software implementation on the

ST231 processor

Claude-Pierre Jeannerod1,2 Hervé Knochel4 Christophe Monat4

Guillaume Revy2,1 Gilles Villard3,2,1

Arénaire Inria project-team (LIP, ENS Lyon)1 Université de Lyon2 CNRS3

Compilation Expertise Centre (STMicroelectronics Grenoble)4

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 1/25

Context and objectives

Context
◮ FLIP software library

→ http://flip.gforge.inria.fr/

→ support for floating-point arithmetic on integer processors

◮ low latency implementation of binary floating-point division
→ targets a VLIW integer processor of the ST200 family

◮ no support of subnormal numbers
→ input/output: ±0, ±∞, NaN or normal number

Objectives

◮ faster software implementation (compared to FLIP 0.3)
→ expose instruction-level parallelism via bivariate polynomial evaluation

◮ correctly rounded
→ rounding-to-nearest even

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 2/25

http://flip.gforge.inria.fr/

Notation and assumptions

◮ Input (x, y): two positive normal numbers

→ precision p, extremal exponents (emin, emax)

x = (−1)sx · mx · 2ex with

8

>

<

>

:

sx ∈ {0, 1}

mx = 1.mx,1 . . . mx,p−1 ∈ [1, 2)

ex ∈ {emin, . . . , emax}

◮ Computation: k-bit unsigned integers

→ register size k

◮ Example for binary32 format: (k, p, emax) = (32, 24, 127)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 3/25

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 4/25

Division via polynomial evaluation

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 5/25

Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 6/25

Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .

◮ Range reduction

x/y =
`

2mx/my · 2−c
´

× 2ex−ey−1+c

RNp(x/y) = RNp(ℓ) × 2d

ℓ = 2mx/my · 2−c

RNp(ℓ)

ℓ ∈ [1, 2)

RNp(ℓ) ∈ [1, 2)

d = ex − ey − 1 + c

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 6/25

Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .

◮ Range reduction

x/y =
`

2mx/my · 2−c
´

× 2ex−ey−1+c

RNp(x/y) = RNp(ℓ) × 2d

ℓ = 2mx/my · 2−c

RNp(ℓ)

ℓ ∈ [1, 2)

RNp(ℓ) ∈ [1, 2)

d = ex − ey − 1 + c

How to compute the correctly rounded significand RNp(ℓ) ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 6/25

Division via polynomial evaluation

How to compute a correctly rounded significand ?

◮ Iterative methods (restoring, non-restoring, ...)
◮ Oberman and Flynn (1997)

◮ minimal instruction-level parallelism exposure, sequential algorithm

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 7/25

Division via polynomial evaluation

How to compute a correctly rounded significand ?

◮ Iterative methods (restoring, non-restoring, ...)
◮ Oberman and Flynn (1997)

◮ minimal instruction-level parallelism exposure, sequential algorithm

◮ Multiplicative methods (Newton-Raphson, Goldschmidt)
◮ Piñeiro and Bruguera (2002) – Raina’s Ph.D/FLIP (2006)

◮ more instruction-level parallelism exposure

◮ previous implementation of division (FLIP 0.3)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 7/25

Division via polynomial evaluation

How to compute a correctly rounded significand ?

◮ Iterative methods (restoring, non-restoring, ...)
◮ Oberman and Flynn (1997)

◮ minimal instruction-level parallelism exposure, sequential algorithm

◮ Multiplicative methods (Newton-Raphson, Goldschmidt)
◮ Piñeiro and Bruguera (2002) – Raina’s Ph.D/FLIP (2006)

◮ more instruction-level parallelism exposure

◮ previous implementation of division (FLIP 0.3)

◮ Polynomial-based methods
◮ Agarwal, Gustavson and Schmookler (1999)

→ univariate polynomial evaluation

◮ Our approach
→ single bivariate polynomial evaluation

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 7/25

Division via polynomial evaluation

Truncated one-sided approximation

◮ See for example, Ercegovac and Lang (2004)

◮ 3 steps

1. compute v = (01.v1 . . . vk−2) such that

−2−p ≤ ℓ − v < 0 that is implied by |(ℓ + 2−p−1) − v| < 2−p−1

2. truncate v after p fraction bits

3. obtain RNp(ℓ) after possibly adding 2−p

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 8/25

Division via polynomial evaluation

Truncated one-sided approximation

◮ See for example, Ercegovac and Lang (2004)

◮ 3 steps

1. compute v = (01.v1 . . . vk−2) such that

−2−p ≤ ℓ − v < 0 that is implied by |(ℓ + 2−p−1) − v| < 2−p−1

2. truncate v after p fraction bits

3. obtain RNp(ℓ) after possibly adding 2−p

How to compute the one-sided approximation v ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 8/25

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 9/25

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).

2. Approximate F (s, t) by a bivariate polynomial P (s, t)

P (s, t) = s · a(t) + 2−p−1.

→ a(t): univariate polynomial approximant of 1/(1 + t)

→ approximation entails an error ǫapprox

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 9/25

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).

2. Approximate F (s, t) by a bivariate polynomial P (s, t)

P (s, t) = s · a(t) + 2−p−1.

→ a(t): univariate polynomial approximant of 1/(1 + t)

→ approximation entails an error ǫapprox

3. Evaluate P (s, t) by a well-chosen efficient evaluation program P

v = P(s∗, t∗).

→ evaluation entails an error ǫeval

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 9/25

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).

2. Approximate F (s, t) by a bivariate polynomial P (s, t)

P (s, t) = s · a(t) + 2−p−1.

→ a(t): univariate polynomial approximant of 1/(1 + t)

→ approximation entails an error ǫapprox

3. Evaluate P (s, t) by a well-chosen efficient evaluation program P

v = P(s∗, t∗).

→ evaluation entails an error ǫeval

How to ensure that |(ℓ + 2−p−1) − v| < 2−p−1 ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 9/25

Division via polynomial evaluation

Sufficient error bounds

◮ Since by triangular inequality

|(ℓ + 2−p−1) − v| ≤ µ · ǫapprox + ǫeval

with
µ = max{s∗} = max{21−cmx} = (4 − 23−p)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 10/25

Division via polynomial evaluation

Sufficient error bounds

◮ Since by triangular inequality

|(ℓ + 2−p−1) − v| ≤ µ · ǫapprox + ǫeval

with
µ = max{s∗} = max{21−cmx} = (4 − 23−p)

◮ One has to ensure
µ · ǫapprox + ǫeval < 2−p−1

◮ Sufficient conditions can be obtained

ǫapprox < 2−p−1/µ and ǫeval < 2−p−1 − µ · ǫapprox

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 10/25

Generation of an efficient evaluation program

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 11/25

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

◮ Evaluation program P = main part of the full software implementation
→ dominates the cost

◮ By efficient, one means an evaluation program that

→ reduces the evaluation latency

→ reduces the number of multiplications

→ is accurate enough

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 12/25

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

◮ Evaluation program P = main part of the full software implementation
→ dominates the cost

◮ By efficient, one means an evaluation program that

→ reduces the evaluation latency

→ reduces the number of multiplications

→ is accurate enough

◮ Target architecture : ST231

→ 4-issue VLIW integer processor with at most 2 mul. per cycle

→ latencies: addition = 1 cycle, multiplication = 3 cycles

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 12/25

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

◮ Evaluation program P = main part of the full software implementation
→ dominates the cost

◮ By efficient, one means an evaluation program that

→ reduces the evaluation latency

→ reduces the number of multiplications

→ is accurate enough

◮ Target architecture : ST231

→ 4-issue VLIW integer processor with at most 2 mul. per cycle

→ latencies: addition = 1 cycle, multiplication = 3 cycles

Which evaluation program to evaluate the polynomial P (s, t) ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 12/25

Generation of an efficient evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 13/25

Generation of an efficient evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure

◮ Estrin’s scheme: 20 cycles

→ more instruction-level parallelism

→ a last multiplication by s

→ 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 13/25

Generation of an efficient evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure

◮ Estrin’s scheme: 20 cycles

→ more instruction-level parallelism

→ a last multiplication by s

→ 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)

◮ ...

We can do much better.

◮ But how to explore the solution space and choose an efficient evaluation
program ?
→ interest of automatic generation

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 13/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 14/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

◮ Two sub-steps

1. determine a target latency τ

ie. τ = 3 × ⌈log2(deg(P))⌉ + 1

2. generate automatically a set of evaluation trees, with height ≤ τ

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 14/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

◮ Two sub-steps

1. determine a target latency τ

ie. τ = 3 × ⌈log2(deg(P))⌉ + 1

2. generate automatically a set of evaluation trees, with height ≤ τ

⇒ if no tree satisfies τ then increase τ and restart

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 14/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

◮ Two sub-steps

1. determine a target latency τ

ie. τ = 3 × ⌈log2(deg(P))⌉ + 1

2. generate automatically a set of evaluation trees, with height ≤ τ

⇒ if no tree satisfies τ then increase τ and restart

◮ Number of evaluation trees = extremely large → several filters

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 14/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 15/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found

◮ second target latency τ = 14
→ obtained in about 10 sec.

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2−p−1

s

a0

a1

s

t t

a2

t a3

a4

t a5

a6

t a7

a8

t a9

a10

14

t

v

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 15/25

Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found

◮ second target latency τ = 14
→ obtained in about 10 sec.

◮ distribute the multiplication by s

→ otherwise: 18 cycles

◮ too difficult to find such tree by hand

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2−p−1

s

a0

a1

s

t t

a2

t a3

a4

t a5

a6

t a7

a8

t a9

a10

14

t

v

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 15/25

Generation of an efficient evaluation program

Arithmetic operator choice

◮ Polynomial coefficients implemented in absolute value

◮ All intermediate values have constant sign

⇒ not store the sign: more accuracy

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 16/25

Generation of an efficient evaluation program

Arithmetic operator choice

◮ Polynomial coefficients implemented in absolute value

◮ All intermediate values have constant sign

⇒ not store the sign: more accuracy

◮ Label evaluation trees by appropriate arithmetic operator: + or −

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 16/25

Generation of an efficient evaluation program

Arithmetic operator choice

◮ Polynomial coefficients implemented in absolute value

◮ All intermediate values have constant sign

⇒ not store the sign: more accuracy

◮ Label evaluation trees by appropriate arithmetic operator: + or −

◮ If the sign of an intermediate value changes when the input varies then
the evaluation tree is rejected

⇒ implementation with certified interval arithmetic (MPFI)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 16/25

Generation of an efficient evaluation program

Practical scheduling checking

◮ Schedule the evaluation trees on a simplified model of a real target
architecture
→ operator costs, nb. issues, constraints on operators

→ no syllables constraint

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 17/25

Generation of an efficient evaluation program

Practical scheduling checking

◮ Schedule the evaluation trees on a simplified model of a real target
architecture
→ operator costs, nb. issues, constraints on operators

→ no syllables constraint

◮ Check if no increase of latency in practice compared to the latency on
unbounded parallelism

⇒ if practical latency > theoretical latency then the evaluation tree is rejected

⇒ implementation using naive list scheduling algorithm is enough

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 17/25

Validation of the generated evaluation program

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 18/25

Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10

−6e−09

−4e−09

−2e−09

 0

 2e−09

 4e−09

 6e−09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Approximation error

t = my − 1

A
pp

ro
xi

m
at

io
n

er
ro

r

ǫapprox ≤ 2−27.41... ≈ 6.0 e-9 < 2−25/(4 − 2−21) ≈ 7.4 e-9

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 19/25

Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10

−6e−09

−4e−09

−2e−09

 0

 2e−09

 4e−09

 6e−09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Approximation error

t = my − 1

A
pp

ro
xi

m
at

io
n

er
ro

r

ǫapprox ≤ 2−27.41... ≈ 6.0 e-9 < 2−25/(4 − 2−21) ≈ 7.4 e-9

◮ Deduction of the evaluation error bound from ǫapprox

ǫeval < 2−25 − (4 − 2−21) · 2−27.41... ≈ 2−26.9999... ≈ 7.4 e-9.

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 19/25

Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied

ie. s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

 0

 1e−09

 2e−09

 3e−09

 4e−09

 5e−09

 6e−09

 7e−09

 8e−09

 0.97 0.975 0.98 0.985 0.99 0.995

t = my − 1

A
bs

ol
ut

e
ev

al
ua

tio
n

er
ro

r

Absolute evaluation error
Evaluation error bound

2−26.9988

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 20/25

Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied

ie. s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

 0

 1e−09

 2e−09

 3e−09

 4e−09

 5e−09

 6e−09

 7e−09

 8e−09

 0.97 0.975 0.98 0.985 0.99 0.995

t = my − 1

A
bs

ol
ut

e
ev

al
ua

tio
n

er
ro

r

Absolute evaluation error
Evaluation error bound 1. determine an interval

I around this point

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 20/25

Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied

ie. s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

−6e−09

−4e−09

−2e−09

 0

 2e−09

 4e−09

 6e−09

 0.97 0.975 0.98 0.985 0.99 0.995

Approximation error

t = my − 1

A
pp

ro
xi

m
at

io
n

er
ro

r

1. determine an interval
I around this point

2. compute ǫapprox over I

3. determine an
evaluation error bound
η

4. check if ǫeval < η ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 20/25

Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 21/25

Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.

◮ Implementation of the splitting by dichotomy

◮ for each T (i)

1. compute a certified approximation error bound ǫ
(i)
approx

2. determine an evaluation error bound ǫ
(i)

eval

3. check this bound

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

◮ implemented using Sollya (steps 1 and 2) and Gappa (step 3)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 21/25

Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.

◮ Implementation of the splitting by dichotomy

◮ for each T (i)

1. compute a certified approximation error bound ǫ
(i)
approx

2. determine an evaluation error bound ǫ
(i)

eval

3. check this bound

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

◮ implemented using Sollya (steps 1 and 2) and Gappa (step 3)

◮ Example of binary32 implementation
→ launched on a 64 processor grid

→ 36127 subintervals found in several hours (≈ 5h.)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 21/25

Experimental results

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 22/25

Experimental results

Experimental results

Performances on ST231

Nb. of instructions Latency (# cycles) IPC Code size (bytes)

rounding to nearest 86 27 3.18 416

◮ speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation (48 cycles)

◮ optimized implementation
◮ efficient ST200 compiler (st200cc)

◮ high IPC value: confirms the parallel nature of our approach

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 23/25

Concluding remarks

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 24/25

Concluding remarks

Concluding remarks

Contributions
◮ New approach for the implementation of binary floating-point division

→ bivariate polynomial-based algorithm

→ automatic generation and validation of efficient evaluation program

→ implementation targeted ST231 VLIW integer processor

◮ Speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation

Since then
◮ Extension to subnormal numbers support

→ implementation in 31 cycles: 4 extra cycles

◮ Implementation of other functions

Latency (# cycles) IPC Code size (bytes) Speed-up

square root 21 2.47 276 2.38

reciprocal 22 2.59 336 1.75

reciprocal square root 29 2.24 368 2.27

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 25/25

	
	Division via polynomial evaluation
	Generation of an efficient evaluation program
	Validation of the generated evaluation program
	Experimental results
	Concluding remarks

