19th IEEE Symposium on Computer Arithmetic (ARITH'19) Portland, Oregon, USA, June 8-10, 2009

A new binary floating-point division algorithm and its software implementation on the ST231 processor

Claude-Pierre Jeannerod^{1,2} Hervé Knochel⁴ Christophe Monat⁴ **Guillaume Revy**^{2,1} Gilles Villard^{3,2,1}

Université de Lvon² Arénaire Inria project-team (LIP, ENS Lvon)1 CNRS³

Compilation Expertise Centre (STMicroelectronics Grenoble)⁴

Context and objectives

Context

- FLIP software library
 - → http://flip.gforge.inria.fr/
 - \rightarrow support for floating-point arithmetic on integer processors
- low latency implementation of binary floating-point division
 - \rightarrow targets a VLIW integer processor of the ST200 family
- no support of subnormal numbers
 - \rightarrow input/output: $\pm 0, \pm \infty$, NaN or *normal* number

Objectives

- faster software implementation (compared to FLIP 0.3)
 - \rightarrow expose instruction-level parallelism via bivariate polynomial evaluation
- correctly rounded
 - \rightarrow rounding-to-nearest even

2/25

Notation and assumptions

• Input (x, y): two positive normal numbers

 \rightarrow precision p, extremal exponents (e_{\min}, e_{\max})

$$x = (-1)^{s_x} \cdot m_x \cdot 2^{e_x} \text{ with } \begin{cases} s_x \in \{0, 1\} \\ m_x = 1.m_{x,1} \dots m_{x,p-1} \in [1, 2) \\ e_x \in \{e_{\min}, \dots, e_{\max}\} \end{cases}$$

Computation: k-bit unsigned integers

 \rightarrow register size k

• Example for binary32 format: $(k, p, e_{max}) = (32, 24, 127)$

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Division algorithm flowchart

Definition

$$c = \begin{cases} 1 & \text{if } m_x \ge m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$$

6/25

Division algorithm flowchart

- ▶ Definition $c = \begin{cases} 1 & \text{if } m_x \ge m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$
- Range reduction

Division algorithm flowchart

- ▶ Definition $c = \begin{cases} 1 & \text{if } m_x \geq m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$
- Range reduction

How to compute the correctly rounded significand $RN_p(\ell)$?

Guillaume Revy

How to compute a correctly rounded significand ?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm

How to compute a correctly rounded significand ?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm
- Multiplicative methods (Newton-Raphson, Goldschmidt)
 - Piñeiro and Bruguera (2002) Raina's Ph.D/FLIP (2006)
 - more instruction-level parallelism exposure
 - previous implementation of division (FLIP 0.3)

How to compute a correctly rounded significand ?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm
- Multiplicative methods (Newton-Raphson, Goldschmidt)
 - Piñeiro and Bruguera (2002) Raina's Ph.D/FLIP (2006)
 - more instruction-level parallelism exposure
 - previous implementation of division (FLIP 0.3)
- Polynomial-based methods
 - Agarwal, Gustavson and Schmookler (1999)

 — univariate polynomial evaluation
 - Our approach
 - \rightarrow single bivariate polynomial evaluation

Truncated one-sided approximation

- See for example, Ercegovac and Lang (2004)
- 3 steps
 - 1. compute $v = (01.v_1 \dots v_{k-2})$ such that

 $-2^{-p} \le \ell - v < 0$ that is implied by $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$

- 2. truncate v after p fraction bits
- 3. obtain $\mathsf{RN}_p(\ell)$ after possibly adding 2^{-p}

Truncated one-sided approximation

- See for example, Ercegovac and Lang (2004)
- 3 steps
 - 1. compute $v = (01.v_1 \dots v_{k-2})$ such that

 $-2^{-p} \le \ell - v < 0$ that is implied by $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$

- 2. truncate v after p fraction bits
- 3. obtain $\mathsf{RN}_p(\ell)$ after possibly adding 2^{-p}

How to compute the one-sided approximation v?

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1},$ at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$: $\ell + 2^{-p-1} = F(s^*,t^*).$

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1},$ at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$: $\ell + 2^{-p-1} = F(s^*,t^*).$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}.$

→ a(t): univariate polynomial approximant of 1/(1+t)→ approximation entails an error ϵ_{approx}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1},$ at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$: $\ell + 2^{-p-1} = F(s^*,t^*).$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}.$

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- ightarrow approximation entails an error $\epsilon_{
 m approx}$
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

 $v = \mathcal{P}(s^*, t^*).$

 \rightarrow evaluation entails an error ϵ_{eval}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1},$ at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$: $\ell + 2^{-p-1} = F(s^*,t^*).$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}.$

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- ightarrow approximation entails an error $\epsilon_{
 m approx}$
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

 $v = \mathcal{P}(s^*, t^*).$

 \rightarrow evaluation entails an error ϵ_{eval}

How to ensure that
$$|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$$
?

Sufficient error bounds

Since by triangular inequality

$$|(\ell + 2^{-p-1}) - v| \le \mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eva}}$$

with

$$\mu = \max\{s^*\} = \max\{2^{1-c}m_x\} = (4 - 2^{3-p})$$

Sufficient error bounds

Since by triangular inequality

$$|(\ell + 2^{-p-1}) - v| \le \mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eval}}$$

with

$$\mu = \max\{s^*\} = \max\{2^{1-c}m_x\} = (4 - 2^{3-p})$$

$$\mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eval}} < 2^{-p-1}$$

Sufficient conditions can be obtained

$$\epsilon_{\mathsf{approx}} < 2^{-p-1}/\mu \quad \mathsf{and} \quad \epsilon_{\mathsf{eval}} < 2^{-p-1} - \mu \cdot \epsilon_{\mathsf{approx}}$$

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Automatic generation of an efficient evaluation program

- \blacktriangleright Evaluation program $\mathcal P$ = main part of the full software implementation
 - $\rightarrow~$ dominates the cost
- By efficient, one means an evaluation program that
 - $\rightarrow\,$ reduces the evaluation latency
 - \rightarrow reduces the number of multiplications
 - \rightarrow is accurate enough

Automatic generation of an efficient evaluation program

 \blacktriangleright Evaluation program $\mathcal P$ = main part of the full software implementation

- $\rightarrow~$ dominates the cost
- By efficient, one means an evaluation program that
 - $\rightarrow\,$ reduces the evaluation latency
 - \rightarrow reduces the number of multiplications
 - \rightarrow is accurate enough
- Target architecture : ST231
 - \rightarrow 4-issue VLIW integer processor with at most 2 mul. per cycle
 - \rightarrow latencies: addition = 1 cycle, multiplication = 3 cycles

Automatic generation of an efficient evaluation program

 \blacktriangleright Evaluation program $\mathcal P$ = main part of the full software implementation

- $\rightarrow~$ dominates the cost
- By efficient, one means an evaluation program that
 - $\rightarrow\,$ reduces the evaluation latency
 - \rightarrow reduces the number of multiplications
 - \rightarrow is accurate enough
- Target architecture : ST231
 - \rightarrow 4-issue VLIW integer processor with at most 2 mul. per cycle
 - \rightarrow latencies: addition = 1 cycle, multiplication = 3 cycles

Which evaluation program to evaluate the polynomial P(s,t)?

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

• Horner's scheme: $(3 + 1) \times 11 = 44$ cycles

 \rightarrow sequential scheme, no instruction-level parallelism exposure

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- Horner's scheme: $(3 + 1) \times 11 = 44$ cycles
 - \rightarrow sequential scheme, no instruction-level parallelism exposure
- Estrin's scheme: 20 cycles
 - \rightarrow more instruction-level parallelism
 - \rightarrow a last multiplication by s
 - \rightarrow 2 cycles save by distributing the multiplication by s in the evaluation of the univariate polynomial a(t)

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- Horner's scheme: $(3 + 1) \times 11 = 44$ cycles
 - \rightarrow sequential scheme, no instruction-level parallelism exposure
- Estrin's scheme: 20 cycles
 - \rightarrow more instruction-level parallelism
 - \rightarrow a last multiplication by s
 - $\rightarrow\,$ 2 cycles save by distributing the multiplication by s in the evaluation of the univariate polynomial a(t)

We can do much better.

- But how to explore the solution space and choose an efficient evaluation program ?
 - \rightarrow interest of automatic generation

...

Similar to Harrison, Kubaska, Story and Tang (1999)

- Assumption
 - \rightarrow unbounded parallelism
 - $\rightarrow\,$ latencies of arithmetic operators: + and $\times\,$

Similar to Harrison, Kubaska, Story and Tang (1999)

- Assumption
 - \rightarrow unbounded parallelism
 - $\rightarrow\,$ latencies of arithmetic operators: + and $\times\,$
- Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

2. generate automatically a set of evaluation trees, with height $\leq \tau$

Similar to Harrison, Kubaska, Story and Tang (1999)

- Assumption
 - \rightarrow unbounded parallelism
 - $\rightarrow\,$ latencies of arithmetic operators: + and $\times\,$
- Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

- 2. generate automatically a set of evaluation trees, with height $\leq \tau$
- \Rightarrow if no tree satisfies au then increase au and restart

Similar to Harrison, Kubaska, Story and Tang (1999)

- Assumption
 - \rightarrow unbounded parallelism
 - $\rightarrow\,$ latencies of arithmetic operators: + and $\times\,$
- Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

- 2. generate automatically a set of evaluation trees, with height $\leq \tau$
- \Rightarrow if no tree satisfies τ then increase τ and restart
- ▶ Number of evaluation trees = extremely large → several filters

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

• first target latency
$$\tau = 13$$

 \rightarrow no tree found

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- first target latency $\tau = 13$ \rightarrow no tree found
- second target latency $\tau = 14$
 - \rightarrow obtained in about 10 sec.

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- first target latency $\tau = 13$ \rightarrow no tree found
- second target latency τ = 14 → obtained in about 10 sec.
- distribute the multiplication by s
 - \rightarrow otherwise: 18 cycles
- too difficult to find such tree by hand

Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - \Rightarrow not store the sign: more accuracy

Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - \Rightarrow not store the sign: more accuracy
- Label evaluation trees by appropriate arithmetic operator: + or -

Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - \Rightarrow not store the sign: more accuracy
- Label evaluation trees by appropriate arithmetic operator: + or -
- If the sign of an intermediate value changes when the input varies then the evaluation tree is rejected
 - ⇒ implementation with certified interval arithmetic (MPFI)

Practical scheduling checking

- Schedule the evaluation trees on a simplified model of a real target architecture
 - $\rightarrow\,$ operator costs, nb. issues, constraints on operators
 - \rightarrow no syllables constraint

Practical scheduling checking

- Schedule the evaluation trees on a simplified model of a real target architecture
 - \rightarrow operator costs, nb. issues, constraints on operators
 - \rightarrow no syllables constraint
- Check if no increase of latency in practice compared to the latency on unbounded parallelism
 - \Rightarrow if practical latency > theoretical latency then the evaluation tree is rejected
 - \Rightarrow implementation using naive list scheduling algorithm is enough

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

► Approximation of 1/(1 + t) by truncated Remez' polynomial of degree 10

► Approximation of 1/(1 + t) by truncated Remez' polynomial of degree 10

Deduction of the evaluation error bound from
elsiphered elsiph

$$\epsilon_{\rm eval} < 2^{-25} - (4 - 2^{-21}) \cdot 2^{-27.41...} \approx 2^{-26.9999...} \approx 7.4 \text{ e-}9.$$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied

ie. $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied

ie. $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied

ie. $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

- 1. determine an interval \mathcal{I} around this point
- 2. compute ϵ_{approx} over \mathcal{I}
- 3. determine an evaluation error bound η

^{4.} check if $\epsilon_{\text{eval}} < \eta$?

Evaluation program validation strategy

Find a splitting of the input interval into n subinterval(s) T⁽ⁱ⁾, and check that

$$\mu \cdot \epsilon_{\rm approx}^{(i)} + \epsilon_{\rm eval}^{(i)} < 2^{-p-1}$$

on each subinterval.

Evaluation program validation strategy

Find a splitting of the input interval into n subinterval(s) T⁽ⁱ⁾, and check that

$$\mu \cdot \epsilon_{\text{approx}}^{(i)} + \epsilon_{\text{eval}}^{(i)} < 2^{-p-1}$$

on each subinterval.

- Implementation of the splitting by dichotomy
 - for each $T^{(i)}$
 - 1. compute a certified approximation error bound $\epsilon_{approx}^{(i)}$
 - 2. determine an evaluation error bound $\epsilon_{\text{eval}}^{(i)}$
 - 3. check this bound
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
 - implemented using Sollya (steps 1 and 2) and Gappa (step 3)

Evaluation program validation strategy

► Find a splitting of the input interval into n subinterval(s) T⁽ⁱ⁾, and check that

$$\mu \cdot \epsilon_{\text{approx}}^{(i)} + \epsilon_{\text{eval}}^{(i)} < 2^{-p-1}$$

on each subinterval.

- Implementation of the splitting by dichotomy
 - for each $T^{(i)}$
 - 1. compute a certified approximation error bound $\epsilon_{approx}^{(i)}$
 - 2. determine an evaluation error bound $\epsilon_{\text{eval}}^{(i)}$
 - 3. check this bound
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
 - implemented using Sollya (steps 1 and 2) and Gappa (step 3)
- Example of binary32 implementation
 - \rightarrow launched on a 64 processor grid
 - \rightarrow 36127 subintervals found in several hours (\approx 5h.)

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Experimental results

Performances on ST231

	Nb. of instructions	Latency (# cycles)	IPC	Code size (bytes)
rounding to nearest	86	27	3.18	416

- speed-up by a factor of about 1.78 in rounding to nearest compared to the previous implementation (48 cycles)
 - optimized implementation
 - efficient ST200 compiler (st200cc)
- high IPC value: confirms the parallel nature of our approach

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

25/25

Concluding remarks

Contributions

- New approach for the implementation of binary floating-point division
 - \rightarrow bivariate polynomial-based algorithm
 - $\rightarrow\,$ automatic generation and validation of efficient evaluation program
 - \rightarrow implementation targeted ST231 VLIW integer processor
- Speed-up by a factor of about 1.78 in rounding to nearest compared to the previous implementation

Since then

- Extension to subnormal numbers support
 - \rightarrow implementation in 31 cycles: 4 extra cycles
- Implementation of other functions

	Latency (# cycles)	IPC	Code size (bytes)	Speed-up
square root	21	2.47	276	2.38
reciprocal	22	2.59	336	1.75
reciprocal square root	29	2.24	368	2.27