
19th IEEE Symposium on Computer Arithmetic (ARITH’19)

Portland, Oregon, USA, June 8-10, 2009

A new binary floating-point division algorithm
and its software implementation on the

ST231 processor

Claude-Pierre Jeannerod1,2 Hervé Knochel4 Christophe Monat4
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Context and objectives

Context
◮ FLIP software library

→ http://flip.gforge.inria.fr/

→ support for floating-point arithmetic on integer processors

◮ low latency implementation of binary floating-point division
→ targets a VLIW integer processor of the ST200 family

◮ no support of subnormal numbers
→ input/output: ±0, ±∞, NaN or normal number

Objectives

◮ faster software implementation (compared to FLIP 0.3)
→ expose instruction-level parallelism via bivariate polynomial evaluation

◮ correctly rounded
→ rounding-to-nearest even
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Notation and assumptions

◮ Input (x, y): two positive normal numbers

→ precision p, extremal exponents (emin, emax)

x = (−1)sx · mx · 2ex with

8

>

<

>

:

sx ∈ {0, 1}

mx = 1.mx,1 . . . mx,p−1 ∈ [1, 2)

ex ∈ {emin, . . . , emax}

◮ Computation: k-bit unsigned integers

→ register size k

◮ Example for binary32 format: (k, p, emax) = (32, 24, 127)
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Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .
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Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .

◮ Range reduction

x/y =
`

2mx/my · 2−c
´

× 2ex−ey−1+c

RNp(x/y) = RNp(ℓ) × 2d

ℓ = 2mx/my · 2−c

RNp(ℓ)

ℓ ∈ [1, 2)

RNp(ℓ) ∈ [1, 2)

d = ex − ey − 1 + c
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Division via polynomial evaluation

Division algorithm flowchart

◮ Definition
c =

(

1 if mx ≥ my ,

0 if mx < my .

◮ Range reduction

x/y =
`

2mx/my · 2−c
´

× 2ex−ey−1+c

RNp(x/y) = RNp(ℓ) × 2d

ℓ = 2mx/my · 2−c

RNp(ℓ)

ℓ ∈ [1, 2)

RNp(ℓ) ∈ [1, 2)

d = ex − ey − 1 + c

How to compute the correctly rounded significand RNp(ℓ) ?
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Division via polynomial evaluation

How to compute a correctly rounded significand ?

◮ Iterative methods (restoring, non-restoring, ...)
◮ Oberman and Flynn (1997)

◮ minimal instruction-level parallelism exposure, sequential algorithm
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Division via polynomial evaluation

How to compute a correctly rounded significand ?

◮ Iterative methods (restoring, non-restoring, ...)
◮ Oberman and Flynn (1997)

◮ minimal instruction-level parallelism exposure, sequential algorithm

◮ Multiplicative methods (Newton-Raphson, Goldschmidt)
◮ Piñeiro and Bruguera (2002) – Raina’s Ph.D/FLIP (2006)

◮ more instruction-level parallelism exposure

◮ previous implementation of division (FLIP 0.3)

◮ Polynomial-based methods
◮ Agarwal, Gustavson and Schmookler (1999)

→ univariate polynomial evaluation

◮ Our approach
→ single bivariate polynomial evaluation
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Division via polynomial evaluation

Truncated one-sided approximation

◮ See for example, Ercegovac and Lang (2004)

◮ 3 steps

1. compute v = (01.v1 . . . vk−2) such that

−2−p ≤ ℓ − v < 0 that is implied by |(ℓ + 2−p−1) − v| < 2−p−1

2. truncate v after p fraction bits

3. obtain RNp(ℓ) after possibly adding 2−p
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Truncated one-sided approximation

◮ See for example, Ercegovac and Lang (2004)

◮ 3 steps

1. compute v = (01.v1 . . . vk−2) such that

−2−p ≤ ℓ − v < 0 that is implied by |(ℓ + 2−p−1) − v| < 2−p−1

2. truncate v after p fraction bits

3. obtain RNp(ℓ) after possibly adding 2−p

How to compute the one-sided approximation v ?
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Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).
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Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider ℓ + 2−p−1 as the exact result of the function

F (s, t) = s/(1 + t) + 2−p−1,

at the points s∗ = 21−cmx and t∗ = my − 1:

ℓ + 2−p−1 = F (s∗, t∗).

2. Approximate F (s, t) by a bivariate polynomial P (s, t)

P (s, t) = s · a(t) + 2−p−1.

→ a(t): univariate polynomial approximant of 1/(1 + t)

→ approximation entails an error ǫapprox

3. Evaluate P (s, t) by a well-chosen efficient evaluation program P

v = P(s∗, t∗).

→ evaluation entails an error ǫeval

How to ensure that |(ℓ + 2−p−1) − v| < 2−p−1 ?
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Division via polynomial evaluation

Sufficient error bounds

◮ Since by triangular inequality

|(ℓ + 2−p−1) − v| ≤ µ · ǫapprox + ǫeval

with
µ = max{s∗} = max{21−cmx} = (4 − 23−p)
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Division via polynomial evaluation

Sufficient error bounds

◮ Since by triangular inequality

|(ℓ + 2−p−1) − v| ≤ µ · ǫapprox + ǫeval

with
µ = max{s∗} = max{21−cmx} = (4 − 23−p)

◮ One has to ensure
µ · ǫapprox + ǫeval < 2−p−1

◮ Sufficient conditions can be obtained

ǫapprox < 2−p−1/µ and ǫeval < 2−p−1 − µ · ǫapprox
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Generation of an efficient evaluation program
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Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

◮ Evaluation program P = main part of the full software implementation
→ dominates the cost

◮ By efficient, one means an evaluation program that

→ reduces the evaluation latency

→ reduces the number of multiplications

→ is accurate enough
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Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

◮ Evaluation program P = main part of the full software implementation
→ dominates the cost

◮ By efficient, one means an evaluation program that

→ reduces the evaluation latency

→ reduces the number of multiplications

→ is accurate enough

◮ Target architecture : ST231

→ 4-issue VLIW integer processor with at most 2 mul. per cycle

→ latencies: addition = 1 cycle, multiplication = 3 cycles

Which evaluation program to evaluate the polynomial P (s, t) ?

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 12/25



Generation of an efficient evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure
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Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure

◮ Estrin’s scheme: 20 cycles

→ more instruction-level parallelism

→ a last multiplication by s

→ 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)
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Generation of an efficient evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ Horner’s scheme: (3 + 1) × 11 = 44 cycles

→ sequential scheme, no instruction-level parallelism exposure

◮ Estrin’s scheme: 20 cycles

→ more instruction-level parallelism

→ a last multiplication by s

→ 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)

◮ ...

We can do much better.

◮ But how to explore the solution space and choose an efficient evaluation
program ?
→ interest of automatic generation
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Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×
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Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

◮ Two sub-steps

1. determine a target latency τ

ie. τ = 3 × ⌈log2(deg(P ))⌉ + 1

2. generate automatically a set of evaluation trees, with height ≤ τ
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Generation of an efficient evaluation program

Efficient evaluation tree generation

◮ Similar to Harrison, Kubaska, Story and Tang (1999)

◮ Assumption

→ unbounded parallelism

→ latencies of arithmetic operators: + and ×

◮ Two sub-steps

1. determine a target latency τ

ie. τ = 3 × ⌈log2(deg(P ))⌉ + 1

2. generate automatically a set of evaluation trees, with height ≤ τ

⇒ if no tree satisfies τ then increase τ and restart

◮ Number of evaluation trees = extremely large → several filters
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Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found
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Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found

◮ second target latency τ = 14
→ obtained in about 10 sec.
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Generation of an efficient evaluation program

Efficient evaluation tree generation

P (s, t) = 2−p−1 + s ·
10

X

i=0

ait
i

◮ first target latency τ = 13
→ no tree found

◮ second target latency τ = 14
→ obtained in about 10 sec.

◮ distribute the multiplication by s

→ otherwise: 18 cycles

◮ too difficult to find such tree by hand
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Generation of an efficient evaluation program

Arithmetic operator choice

◮ Polynomial coefficients implemented in absolute value

◮ All intermediate values have constant sign

⇒ not store the sign: more accuracy
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Generation of an efficient evaluation program

Arithmetic operator choice

◮ Polynomial coefficients implemented in absolute value

◮ All intermediate values have constant sign

⇒ not store the sign: more accuracy

◮ Label evaluation trees by appropriate arithmetic operator: + or −

◮ If the sign of an intermediate value changes when the input varies then
the evaluation tree is rejected

⇒ implementation with certified interval arithmetic (MPFI)

Guillaume Revy A new binary floating-point division algorithm and its software implementation on the ST231 processor 16/25



Generation of an efficient evaluation program

Practical scheduling checking

◮ Schedule the evaluation trees on a simplified model of a real target
architecture
→ operator costs, nb. issues, constraints on operators

→ no syllables constraint
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Generation of an efficient evaluation program

Practical scheduling checking

◮ Schedule the evaluation trees on a simplified model of a real target
architecture
→ operator costs, nb. issues, constraints on operators

→ no syllables constraint

◮ Check if no increase of latency in practice compared to the latency on
unbounded parallelism

⇒ if practical latency > theoretical latency then the evaluation tree is rejected

⇒ implementation using naive list scheduling algorithm is enough
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Validation of the generated evaluation program
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Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10
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ǫapprox ≤ 2−27.41... ≈ 6.0 e-9 < 2−25/(4 − 2−21) ≈ 7.4 e-9
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Example for the binary32 implementation: (k, p) = (32, 24)

◮ Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10
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ǫapprox ≤ 2−27.41... ≈ 6.0 e-9 < 2−25/(4 − 2−21) ≈ 7.4 e-9

◮ Deduction of the evaluation error bound from ǫapprox

ǫeval < 2−25 − (4 − 2−21) · 2−27.41... ≈ 2−26.9999... ≈ 7.4 e-9.
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Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied

ie. s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375
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◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied
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Validation of the generated evaluation program

Example for the binary32 implementation: (k, p) = (32, 24)

◮ Case 1: mx ≥ my → condition satisfied
◮ Case 2: mx < my → condition not satisfied

ie. s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375
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t = my − 1

A
pp

ro
xi

m
at

io
n

er
ro

r

1. determine an interval
I around this point

2. compute ǫapprox over I

3. determine an
evaluation error bound
η

4. check if ǫeval < η ?
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Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.
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Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.

◮ Implementation of the splitting by dichotomy

◮ for each T (i)

1. compute a certified approximation error bound ǫ
(i)
approx

2. determine an evaluation error bound ǫ
(i)

eval

3. check this bound

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

◮ implemented using Sollya (steps 1 and 2) and Gappa (step 3)
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Validation of the generated evaluation program

Evaluation program validation strategy

◮ Find a splitting of the input interval into n subinterval(s) T (i), and check
that

µ · ǫ(i)approx + ǫ
(i)
eval < 2−p−1

on each subinterval.

◮ Implementation of the splitting by dichotomy

◮ for each T (i)

1. compute a certified approximation error bound ǫ
(i)
approx

2. determine an evaluation error bound ǫ
(i)

eval

3. check this bound

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

◮ implemented using Sollya (steps 1 and 2) and Gappa (step 3)

◮ Example of binary32 implementation
→ launched on a 64 processor grid

→ 36127 subintervals found in several hours (≈ 5h.)
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Experimental results

Experimental results

Performances on ST231

Nb. of instructions Latency (# cycles) IPC Code size (bytes)

rounding to nearest 86 27 3.18 416

◮ speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation (48 cycles)

◮ optimized implementation
◮ efficient ST200 compiler (st200cc)

◮ high IPC value: confirms the parallel nature of our approach
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Concluding remarks
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Concluding remarks

Concluding remarks

Contributions
◮ New approach for the implementation of binary floating-point division

→ bivariate polynomial-based algorithm

→ automatic generation and validation of efficient evaluation program

→ implementation targeted ST231 VLIW integer processor

◮ Speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation

Since then
◮ Extension to subnormal numbers support

→ implementation in 31 cycles: 4 extra cycles

◮ Implementation of other functions

Latency (# cycles) IPC Code size (bytes) Speed-up

square root 21 2.47 276 2.38

reciprocal 22 2.59 336 1.75

reciprocal square root 29 2.24 368 2.27
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