
BeBOP meeting (ParLab, EECS, UC Berkeley)

Berkeley, CA, USA - March 30, 2010

Implementation of binary floating-point arithmetic
on embedded integer processors

Polynomial evaluation-based algorithms
and

certified code generation

Guillaume Revy
ParLab EECS University of California, Berkeley

Ph.D. thesis’ work done under the direction of Claude-Pierre Jeannerod and Gilles Villard
Arénaire INRIA project-team (LIP, Ens Lyon, France)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 1/44

Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 2/44

Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 2/44

Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 2/44

Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating-point arithmetic
Software implementing

Applications

FP computations

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 2/44

Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

ICache

ST231 core

DTLB
Mul

Register
file (64

registers
8 read

4 write)

Load

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

STBus

SDI ports

61 interrupts Debuglink

Peripherals
Debug

Timers
3 x

controllersupport unit 32-bit

I-side
memory
subsystem

Interrupt

register
PC and
branch

unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64-bit

registers
Control

UTLB
Mul

D-side
memory
subsystem

Store
Unit

ITLB

Instruction
buffer

floating-point arithmetic
Software implementing

Applications

FP computations

ST231

• At most 2 pipelined multiplications / cycle
• 4-issue VLIW 32-bit integer processor

• Latencies: ALU = 1 cycle / Mul = 3 cycles

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 2/44

How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for
IEEE 754 floating-point arithmetic on integer processors

Existing software for IEEE 754 floating-point arithmetic:

I Software floating-point support of GCC, Glibc and µClibc, GoFast
Floating-Point Library

I SoftFloat (→ STlib)

I FLIP (Floating-point Library for Integer Processors)

• software support for binary32 floating-point arithmetic on integer processors

• correctly-rounded addition, subtraction, multiplication, division, square root,
reciprocal, ...

• handling subnormals, and handling special inputs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 3/44

Towards the generation of fast and certified codes

Underlying problem: development “by hand”

I long and tedious, error prone

I new target? new floating-point format?

⇒ need for automation and certification

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 4/44

Towards the generation of fast and certified codes

Underlying problem: development “by hand”

I long and tedious, error prone

I new target? new floating-point format?

⇒ need for automation and certification

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 4/44

Towards the generation of fast and certified codes

Underlying problem: development “by hand”

I long and tedious, error prone

I new target? new floating-point format?

⇒ need for automation and certification

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 4/44

Towards the generation of fast and certified codes

Arénaire’s developments: hardware (FloPoCo) and software (Sollya,
Metalibm)

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, we can teach computers
to write fast and certified codes, for a given target and optimized for a

given format.

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 5/44

Towards the generation of fast and certified codes

Arénaire’s developments: hardware (FloPoCo) and software (Sollya,
Metalibm)

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, we can teach computers
to write fast and certified codes, for a given target and optimized for a

given format.

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 5/44

Basic blocks for implementing correctly-rounded operators
(X, Y)

no

Floating-point number unpacking

Normalization

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

R

Range reduction

Result sign/exponent
computation

Special output selection

yes

Special input detection
function independent

function dependent

Objectives

→ Low latency, correctly-rounded
implementations

→ ILP exposure

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 6/44

Basic blocks for implementing correctly-rounded operators
(X, Y)

no

Floating-point number unpacking

Normalization

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

R

Range reduction

Result sign/exponent
computation

Special output selection

yes

Special input detection

yes

Special output selection

Special input detection
function independent

function dependent

Objectives

→ Low latency, correctly-rounded
implementations

→ ILP exposure

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 6/44

Basic blocks for implementing correctly-rounded operators
(X, Y)

no

Floating-point number unpacking

Normalization

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

R

Range reduction

Result sign/exponent
computation

Special output selection

yes

Special input detection

yes

Special output selection

Special input detection

automated
Fully

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Uniform approach for nth roots
and their reciprocals
→ polynomial evaluation

Extension to division

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 6/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

CGPECGPE

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Efficient and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

CGPECGPE

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Efficiency of the generation
process

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 7/44

Outline of the talk

1. Design and implementation of floating-point operators
Bivariate polynomial evaluation-based approach
Implementation of correct rounding

2. Low latency parenthesization computation
Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency

3. Selection of effective evaluation parenthesizations
General framework
Automatic certification of generated C codes

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 8/44

Design and implementation of floating-point operators

Outline of the talk

1. Design and implementation of floating-point operators
Bivariate polynomial evaluation-based approach
Implementation of correct rounding

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 9/44

Design and implementation of floating-point operators

Notation and assumptions

Division C code(x, y) RN(x/y)

Input (x ,y) and output RN(x/y): normal numbers

→ no underflow nor overflow

→ precision p, extremal exponents emin, emax

x =±1.mx ,1 . . .mx ,p−1 ·2ex with ex ∈ {emin, . . . ,emax}

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 10/44

Design and implementation of floating-point operators

Notation and assumptions

Division C code(x, y) RN(x/y)

Input (x ,y) and output RN(x/y): normal numbers

→ no underflow nor overflow

→ precision p, extremal exponents emin, emax

x =±1.mx ,1 . . .mx ,p−1 ·2ex with ex ∈ {emin, . . . ,emax}

→ RoundTiesToEven
x/y RN(x/y)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 10/44

Design and implementation of floating-point operators

Notation and assumptions

Division C code(X, Y) R

Standard binary encoding: k -bit unsigned integer X encodes input x

Tx = mx,1 . . . mx,p−1

p− 1 bits

Ex = ex − emin − 1

w = k − p bits1 bit

sx

Computation: k -bit unsigned integers

→ integer and fixed-point arithmetic

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 10/44

Design and implementation of floating-point operators

Notation and assumptions

Division C code(X, Y) R??

Standard binary encoding: k -bit unsigned integer X encodes input x

Tx = mx,1 . . . mx,p−1

p− 1 bits

Ex = ex − emin − 1

w = k − p bits1 bit

sx

Computation: k -bit unsigned integers

→ integer and fixed-point arithmetic

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 10/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division
Express the exact result r = x/y as:

r = ` ·2d ⇒ RN(x/y) = RN(`) ·2d

with
` ∈ [1,2) and d ∈ {emin, . . . ,emax}

Definition

c = 1 if mx ≥my , and c = 0 otherwise

Range reduction

x/y =
(
21−c ·mx/my

)︸ ︷︷ ︸
:= ` ∈ [1,2)

· 2d with d = ex −ey −1+ c

How to compute the correctly-rounded significand RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 11/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division
Express the exact result r = x/y as:

r = ` ·2d ⇒ RN(x/y) = RN(`) ·2d

with
` ∈ [1,2) and d ∈ {emin, . . . ,emax}

Definition

c = 1 if mx ≥my , and c = 0 otherwise

Range reduction

x/y =
(
21−c ·mx/my

)︸ ︷︷ ︸
:= ` ∈ [1,2)

· 2d with d = ex −ey −1+ c

How to compute the correctly-rounded significand RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 11/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division
Express the exact result r = x/y as:

r = ` ·2d ⇒ RN(x/y) = RN(`) ·2d

with
` ∈ [1,2) and d ∈ {emin, . . . ,emax}

Definition

c = 1 if mx ≥my , and c = 0 otherwise

Range reduction

x/y =
(
21−c ·mx/my

)︸ ︷︷ ︸
:= ` ∈ [1,2)

· 2d with d = ex −ey −1+ c

How to compute the correctly-rounded significand RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 11/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division
Express the exact result r = x/y as:

r = ` ·2d ⇒ RN(x/y) = RN(`) ·2d

with
` ∈ [1,2) and d ∈ {emin, . . . ,emax}

Definition

c = 1 if mx ≥my , and c = 0 otherwise

Range reduction

x/y =
(
21−c ·mx/my

)︸ ︷︷ ︸
:= ` ∈ [1,2)

· 2d with d = ex −ey −1+ c

How to compute the correctly-rounded significand RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 11/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

Iterative methods: restoring, non-restoring, SRT, ...

I Oberman and Flynn (1997)

I minimal ILP exposure, sequential algorithm

Multiplicative methods: Newton-Raphson, Goldschmidt

I Piñeiro and Bruguera (2002) – Raina’s Ph.D., FLIP 0.3 (2006)

I exploit available multipliers, more ILP exposure

Polynomial-based methods

I Agarwal, Gustavson and Schmookler (1999)
→ univariate polynomial evaluation

I Our approach
→ bivariate polynomial evaluation: maximal ILP exposure

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 12/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

Iterative methods: restoring, non-restoring, SRT, ...

I Oberman and Flynn (1997)

I minimal ILP exposure, sequential algorithm

Multiplicative methods: Newton-Raphson, Goldschmidt

I Piñeiro and Bruguera (2002) – Raina’s Ph.D., FLIP 0.3 (2006)

I exploit available multipliers, more ILP exposure

Polynomial-based methods

I Agarwal, Gustavson and Schmookler (1999)
→ univariate polynomial evaluation

I Our approach
→ bivariate polynomial evaluation: maximal ILP exposure

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 12/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

Iterative methods: restoring, non-restoring, SRT, ...

I Oberman and Flynn (1997)

I minimal ILP exposure, sequential algorithm

Multiplicative methods: Newton-Raphson, Goldschmidt

I Piñeiro and Bruguera (2002) – Raina’s Ph.D., FLIP 0.3 (2006)

I exploit available multipliers, more ILP exposure

Polynomial-based methods

I Agarwal, Gustavson and Schmookler (1999)
→ univariate polynomial evaluation

I Our approach
→ bivariate polynomial evaluation: maximal ILP exposure

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 12/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Correct rounding via truncated one-sided approximation

How to compute RN(`), with ` = 21−c ·mx/my ?

Three steps for correct rounding computation

1. compute v = 1.v1 . . .vk−2 such that −2−p ≤ `− v < 0

→ implied by |(`+2−p−1)− v |< 2−p−1

→ bivariate polynomial evaluation

2. compute u as the truncation of v after p fraction bits

3. determine RN(`) after possibly adding 2−p

How to compute the one-sided approximation v and then deduce RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 13/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Correct rounding via truncated one-sided approximation

How to compute RN(`), with ` = 21−c ·mx/my ?

Three steps for correct rounding computation

1. compute v = 1.v1 . . .vk−2 such that −2−p ≤ `− v < 0

→ implied by |(`+2−p−1)− v |< 2−p−1

→ bivariate polynomial evaluation

2. compute u as the truncation of v after p fraction bits

3. determine RN(`) after possibly adding 2−p

How to compute the one-sided approximation v and then deduce RN(`)?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 13/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider `+2−p−1 as the exact result of the function

F(s, t) = s/(1+ t)+2−p−1

at the points s∗ = 21−c ·mx and t∗ = my −1

2. Approximate F(s, t) by a bivariate polynomial P(s, t)

P(s, t) = s ·a(t)+2−p−1

→ a(t): univariate polynomial approximant of 1/(1+ t)

→ approximation error Eapprox

3. Evaluate P(s, t) by a well-chosen efficient evaluation program P

v = P (s∗, t∗)
→ evaluation error Eeval

How to ensure that |(`+2−p−1)− v |< 2−p−1?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 14/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider `+2−p−1 as the exact result of the function

F(s, t) = s/(1+ t)+2−p−1

at the points s∗ = 21−c ·mx and t∗ = my −1

2. Approximate F(s, t) by a bivariate polynomial P(s, t)

P(s, t) = s ·a(t)+2−p−1

→ a(t): univariate polynomial approximant of 1/(1+ t)

→ approximation error Eapprox

3. Evaluate P(s, t) by a well-chosen efficient evaluation program P

v = P (s∗, t∗)
→ evaluation error Eeval

How to ensure that |(`+2−p−1)− v |< 2−p−1?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 14/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider `+2−p−1 as the exact result of the function

F(s, t) = s/(1+ t)+2−p−1

at the points s∗ = 21−c ·mx and t∗ = my −1

2. Approximate F(s, t) by a bivariate polynomial P(s, t)

P(s, t) = s ·a(t)+2−p−1

→ a(t): univariate polynomial approximant of 1/(1+ t)

→ approximation error Eapprox

3. Evaluate P(s, t) by a well-chosen efficient evaluation program P

v = P (s∗, t∗)
→ evaluation error Eeval

How to ensure that |(`+2−p−1)− v |< 2−p−1?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 14/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider `+2−p−1 as the exact result of the function

F(s, t) = s/(1+ t)+2−p−1

at the points s∗ = 21−c ·mx and t∗ = my −1

2. Approximate F(s, t) by a bivariate polynomial P(s, t)

P(s, t) = s ·a(t)+2−p−1

→ a(t): univariate polynomial approximant of 1/(1+ t)

→ approximation error Eapprox

3. Evaluate P(s, t) by a well-chosen efficient evaluation program P

v = P (s∗, t∗)
→ evaluation error Eeval

How to ensure that |(`+2−p−1)− v |< 2−p−1?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 14/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

To ensure |(`+2−p−1)− v |< 2−p−1

it suffices to ensure that µ ·Eapprox +Eeval < 2−p−1,

since

|(`+2−p−1)− v | ≤ µ ·Eapprox +Eeval with µ = 4−23−p

This gives the following sufficient conditions

Eapprox < 2−p−1/µ ⇒ Eeval < 2−p−1−µ ·Eapprox

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 15/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

To ensure |(`+2−p−1)− v |< 2−p−1

it suffices to ensure that µ ·Eapprox +Eeval < 2−p−1,

since

|(`+2−p−1)− v | ≤ µ ·Eapprox +Eeval with µ = 4−23−p

This gives the following sufficient conditions

Eapprox < 2−p−1/µ ⇒ Eeval < 2−p−1−µ ·Eapprox

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 15/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

To ensure |(`+2−p−1)− v |< 2−p−1

it suffices to ensure that µ ·Eapprox +Eeval < 2−p−1,

since

|(`+2−p−1)− v | ≤ µ ·Eapprox +Eeval with µ = 4−23−p

This gives the following sufficient conditions

Eapprox ≤ θ with θ < 2−p−1/µ ⇒ Eeval < η = 2−p−1−µ ·θ

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 15/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Example for the binary32 division

Sufficient conditions with µ = 4−2−21

Eapprox ≤ θ with θ < 2−25/µ and Eeval < η = 2−25−µ ·θ

Approximation of 1/(1+ t) by a Remez-like polynomial of degree 10

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error Required bound

I Eapprox ≤ θ,

with θ = 3 ·2−29 ≈ 6 ·10−9

I Eeval < η,

with η≈ 7.4 ·10−9

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 16/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Example for the binary32 division

Sufficient conditions with µ = 4−2−21

Eapprox ≤ θ with θ < 2−25/µ and Eeval < η = 2−25−µ ·θ

Approximation of 1/(1+ t) by a Remez-like polynomial of degree 10

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error Required bound

I Eapprox ≤ θ,

with θ = 3 ·2−29 ≈ 6 ·10−9

I Eeval < η,

with η≈ 7.4 ·10−9

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 16/44

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Flowchart for generating efficient and certified C codes

Selection of effective parenthesizations

Eapprox ≤ θF(s,t) Eeval < η ST231 features

C code Certificate

Computation of polynomial approximant

??

Computation of low latency parenthesizations

ST231 features

??

v |(` + 2−p−1)− v| < 2−p−1

truncation

u

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 17/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
Approximation u of ` with

` = 21−c ·mx/my

The exact value ` may have an infinite number of bits
→ the sticky bit cannot always be computed

midpointfloating-point

u u

` `

Compute RN(`) requires to be able to decide whether u ≥ `

→ ` cannot be a midpoint

Rounding condition: u ≥ `

u ≥ ` ⇐⇒ u ·my ≥ 21−c ·mx

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 18/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
Approximation u of ` with

` = 21−c ·mx/my

The exact value ` may have an infinite number of bits
→ the sticky bit cannot always be computed

midpointfloating-point

u u

` `

Compute RN(`) requires to be able to decide whether u ≥ `

→ ` cannot be a midpoint

Rounding condition: u ≥ `

u ≥ ` ⇐⇒ u ·my ≥ 21−c ·mx

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 18/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
Approximation u of ` with

` = 21−c ·mx/my

The exact value ` may have an infinite number of bits
→ the sticky bit cannot always be computed

midpointfloating-point

u u

` `

Compute RN(`) requires to be able to decide whether u ≥ `

→ ` cannot be a midpoint

Rounding condition: u ≥ `

u ≥ ` ⇐⇒ u ·my ≥ 21−c ·mx

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 18/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic

Rounding condition: u ·my ≥ 21−c ·mx

Approximation u and my : representable with 32 bits

u

my×

u · my

I u ·my is exactly representable with 64 bits

I 21−c ·mx is representable with 32 bits since c ∈ {0,1}

⇒ one 32×32→ 32-bit multiplication and one comparison

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 19/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic

Rounding condition: u ·my ≥ 21−c ·mx

Approximation u and my : representable with 32 bits

u

my×

u · my

21−c · mx

I u ·my is exactly representable with 64 bits
I 21−c ·mx is representable with 32 bits since c ∈ {0,1}

⇒ one 32×32→ 32-bit multiplication and one comparison

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 19/44

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic

Rounding condition: u ·my ≥ 21−c ·mx

Approximation u and my : representable with 32 bits

u

my×

u ·my

21−c ·mx

≥

I u ·my is exactly representable with 64 bits
I 21−c ·mx is representable with 32 bits since c ∈ {0,1}

⇒ one 32×32→ 32-bit multiplication and one comparison

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 19/44

Design and implementation of floating-point operators Implementation of correct rounding

Flowchart for generating efficient and certified C codes

Selection of effective parenthesizations

Eapprox ≤ θF(s,t) Eeval < η ST231 features

C code Certificate

Computation of polynomial approximant

??

Computation of low latency parenthesizations

ST231 features

??

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 20/44

Design and implementation of floating-point operators Implementation of correct rounding

Flowchart for generating efficient and certified C codes

Computation of low latency parenthesizations

Selection of effective parenthesizations

a(t)

Eapprox ≤ θF(s,t) Eeval < η ST231 features

C code Certificate

Computation of polynomial approximant

??

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 20/44

Low latency parenthesization computation

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation
Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 21/44

Low latency parenthesization computation Classical evaluation methods

Objectives

Compute an efficient parenthesization for evaluating P(s, t)

→ reduces the evaluation latency on unbounded parallelism

Evaluation program P = main part of the full software implementation

→ dominates the cost

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1964), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 22/44

Low latency parenthesization computation Classical evaluation methods

Objectives

Compute an efficient parenthesization for evaluating P(s, t)

→ reduces the evaluation latency on unbounded parallelism

Evaluation program P = main part of the full software implementation

→ dominates the cost

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1964), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 22/44

Low latency parenthesization computation Classical evaluation methods

Objectives

Compute an efficient parenthesization for evaluating P(s, t)

→ reduces the evaluation latency on unbounded parallelism

Evaluation program P = main part of the full software implementation

→ dominates the cost

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1964), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 22/44

Low latency parenthesization computation Classical evaluation methods

Objectives

Compute an efficient parenthesization for evaluating P(s, t)

→ reduces the evaluation latency on unbounded parallelism

Evaluation program P = main part of the full software implementation

→ dominates the cost

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1964), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 22/44

Low latency parenthesization computation Classical evaluation methods

Classical parenthesizations for binary32 division

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

Horner’s rule: (3+1)×11 = 44 cycles

→ no ILP exposure

Second-order Horner’s rule: 27 cycles

→ evaluation of odd and even parts independently with Horner, more ILP

Estrin’s method: 19 cycles

→ evaluation of high and low parts in parallel, even more ILP

→ distributing the multiplication by s in the evaluation of a(t)→ 16 cycles

... We can do better.

How to explore the solution space of parenthesizations?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 23/44

Low latency parenthesization computation Classical evaluation methods

Classical parenthesizations for binary32 division

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

Horner’s rule: (3+1)×11 = 44 cycles

→ no ILP exposure

Second-order Horner’s rule: 27 cycles

→ evaluation of odd and even parts independently with Horner, more ILP

Estrin’s method: 19 cycles

→ evaluation of high and low parts in parallel, even more ILP

→ distributing the multiplication by s in the evaluation of a(t)→ 16 cycles

... We can do better.

How to explore the solution space of parenthesizations?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 23/44

Low latency parenthesization computation Classical evaluation methods

Classical parenthesizations for binary32 division

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

Horner’s rule: (3+1)×11 = 44 cycles

→ no ILP exposure

Second-order Horner’s rule: 27 cycles

→ evaluation of odd and even parts independently with Horner, more ILP

Estrin’s method: 19 cycles

→ evaluation of high and low parts in parallel, even more ILP

→ distributing the multiplication by s in the evaluation of a(t)→ 16 cycles

... We can do better.

How to explore the solution space of parenthesizations?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 23/44

Low latency parenthesization computation Classical evaluation methods

Classical parenthesizations for binary32 division

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

Horner’s rule: (3+1)×11 = 44 cycles

→ no ILP exposure

Second-order Horner’s rule: 27 cycles

→ evaluation of odd and even parts independently with Horner, more ILP

Estrin’s method: 19 cycles

→ evaluation of high and low parts in parallel, even more ILP

→ distributing the multiplication by s in the evaluation of a(t)→ 16 cycles

... We can do better.

How to explore the solution space of parenthesizations?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 23/44

Low latency parenthesization computation Computation of all parenthesizations

Algorithm for computing all parenthesizations

a(x ,y) = ∑
0≤i≤nx

∑
0≤j≤ny

ai ,j · x i · y j with n = nx +ny , and anx ,ny 6= 0

Example
Let a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y . Then

a1,0 +a1,1 · y is a valid expression, while a1,0 · x +a1,1 · x is not.

Exhaustive algorithm: iterative process
→ step k = computation of all the valid expressions of total degree k

3 building rules for computing all parenthesizations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 24/44

Low latency parenthesization computation Computation of all parenthesizations

Algorithm for computing all parenthesizations

a(x ,y) = ∑
0≤i≤nx

∑
0≤j≤ny

ai ,j · x i · y j with n = nx +ny , and anx ,ny 6= 0

Example
Let a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y . Then

a1,0 +a1,1 · y is a valid expression, while a1,0 · x +a1,1 · x is not.

Exhaustive algorithm: iterative process
→ step k = computation of all the valid expressions of total degree k

3 building rules for computing all parenthesizations

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 24/44

Low latency parenthesization computation Computation of all parenthesizations

Number of parenthesizations

nx = 1 nx = 2 nx = 3 nx = 4 nx = 5 nx = 6

ny = 0 1 7 163 11602 2334244 1304066578

ny = 1 51 67467 1133220387 207905478247998 · · · · · ·
ny = 2 67467 106191222651 10139277122276921118 · · · · · · · · ·

Number of generated parenthesizations for evaluating a bivariate polynomial

Timings for parenthesization computation
→ for univariate polynomial of degree 5 ≈ 1h on a 2.4 GHz core

→ for bivariate polynomial of degree (2,1) ≈ 30s

→ for P(s, t) of degree (3,1) ≈ 7s (88384 schemes)

Optimization for univariate polynomial and P(s, t)
→ univariate polynomial of degree 5 ≈ 4min

→ for P(s, t) of degree (3,1) ≈ 2s (88384 schemes)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 25/44

Low latency parenthesization computation Computation of all parenthesizations

Number of parenthesizations

10

100

1000

10000

100000

1e+06

10 12 14 16 18 20

N
um

be
r

of
de

gr
ee

-5
pa

re
nt

he
si

za
ti

on
s

Latency on unbounded parallelism (# cycles)

→ minimal latency for univariate polynomial of degree 5: 10 cycles
(36 schemes)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 25/44

Low latency parenthesization computation Computation of all parenthesizations

Number of parenthesizations

10

100

1000

10000

100000

1e+06

10 12 14 16 18 20

N
um

be
r

of
de

gr
ee

-5
pa

re
nt

he
si

za
ti

on
s

Latency on unbounded parallelism (# cycles)

→ minimal latency for univariate polynomial of degree 5: 10 cycles
(36 schemes)

How to compute only parenthesizations of low latency?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 25/44

Low latency parenthesization computation Towards low evaluation latency

Determination of a target latency

Target latency = minimal cost for evaluating

a0,0 +anx ,ny · xnx yny

I if no scheme satisfies τ then increase τ and restart

Static target latency τstatic

I as general as evaluating a0,0 + xnx +ny +1

τstatic = A+M×dlog2(nx +ny +1)e

Dynamic target latency τdynamic

I cost of operator on anx ,ny and delay on intederminates
I dynamic programming

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 26/44

Low latency parenthesization computation Towards low evaluation latency

Determination of a target latency

Target latency = minimal cost for evaluating

a0,0 +anx ,ny · xnx yny

I if no scheme satisfies τ then increase τ and restart

Static target latency τstatic

I as general as evaluating a0,0 + xnx +ny +1

τstatic = A+M×dlog2(nx +ny +1)e

Dynamic target latency τdynamic

I cost of operator on anx ,ny and delay on intederminates
I dynamic programming

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 26/44

Low latency parenthesization computation Towards low evaluation latency

Determination of a target latency

Target latency = minimal cost for evaluating

a0,0 +anx ,ny · xnx yny

I if no scheme satisfies τ then increase τ and restart

Static target latency τstatic

I as general as evaluating a0,0 + xnx +ny +1

τstatic = A+M×dlog2(nx +ny +1)e

Dynamic target latency τdynamic

I cost of operator on anx ,ny and delay on intederminates
I dynamic programming

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 26/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

(
a0,0 +a1,0 · x +a0,1 · y

)
+
(

a1,1 · x · y
)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

((
a0,0 +a1,0 · x

)
+a0,1 · y

)
+
(

a1,1 · x · y
)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

(
a0,0 +

(
a1,0 · x +a0,1 · y

))
+
(

a1,1 · x · y
)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

(
a0,0 +a1,0 · x

)
+
(

a0,1 · y +a1,1 · x · y
)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

a0,0 +
(

a1,0 · x +a0,1 · y +a1,1 · x · y
)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations
Example
Let a(x ,y) be a degree-2 bivariate polynomial

a(x ,y) = a0,0 +a1,0 · x +a0,1 · y +a1,1 · x · y .

⇒ find a best splitting of the polynomial→ low latency

Level 1

a(x, y)

a0,0

a′′(x, y)if support ≤max

exhaustive search

a(x, y)

a′′(x, y)

a′(x, y)

keep

Level 2

if support > max

a′(x, y) a′(x, y)

a′2(x, y)a′1(x, y)
a′2(x, y)

a′1(x, y)

a(x, y)

a′(x, y)

anx,nyx
nxyny

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 27/44

Low latency parenthesization computation Towards low evaluation latency

Efficient evaluation parenthesization generation

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

First target latency τ = 13
→ no parenthesization found

Second target latency τ = 14
→ obtained in about 10 sec.

Classical methods
I Horner: 44 cycles,
I Estrin: 19 cycles,
I Estrin by distributing s: 16 cycles

13
12
11
10
9
8
7
6
5
4
3
2
1
0

2−25

s

a0

a1

s

t t

a2

t a3

a4

t a5

a6

t a7

a8

t a9

a10

14

t

v

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 28/44

Low latency parenthesization computation Towards low evaluation latency

Efficient evaluation parenthesization generation

P(s, t) = 2−25 + s · ∑
0≤i≤10

ai · t i

First target latency τ = 13
→ no parenthesization found

Second target latency τ = 14
→ obtained in about 10 sec.

Classical methods
I Horner: 44 cycles,
I Estrin: 19 cycles,
I Estrin by distributing s: 16 cycles

13
12
11
10
9
8
7
6
5
4
3
2
1
0

2−25

s

a0

a1

s

t t

a2

t a3

a4

t a5

a6

t a7

a8

t a9

a10

14

t

v

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 28/44

Low latency parenthesization computation Towards low evaluation latency

Flowchart for generating efficient and certified C codes

Computation of low latency parenthesizations

Selection of effective parenthesizations

a(t)

Eapprox ≤ θF(s,t) Eeval < η ST231 features

C code Certificate

Computation of polynomial approximant

??

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 29/44

Low latency parenthesization computation Towards low evaluation latency

Flowchart for generating efficient and certified C codes

Computation of low latency parenthesizations

Selection of effective parenthesizations

a(t)

Eapprox ≤ θF(s,t) Eeval < η ST231 features

C code Certificate

Computation of polynomial approximant

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 29/44

Selection of effective evaluation parenthesizations

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations
General framework
Automatic certification of generated C codes

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 30/44

Selection of effective evaluation parenthesizations General framework

Selection of effective parenthesizations

1. Arithmetic Operator Choice

I all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

I constraints of architecture: cost of operators, instructions bundling, ...
I delays on indeterminates

3. Certification of generated C code

I straightline polynomial evaluation program
I “certified C code”: we can bound the evaluation error in integer arithmetic

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 31/44

Selection of effective evaluation parenthesizations General framework

Selection of effective parenthesizations

1. Arithmetic Operator Choice

I all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

I constraints of architecture: cost of operators, instructions bundling, ...
I delays on indeterminates

3. Certification of generated C code

I straightline polynomial evaluation program
I “certified C code”: we can bound the evaluation error in integer arithmetic

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 31/44

Selection of effective evaluation parenthesizations General framework

Selection of effective parenthesizations

1. Arithmetic Operator Choice

I all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

I constraints of architecture: cost of operators, instructions bundling, ...
I delays on indeterminates

3. Certification of generated C code

I straightline polynomial evaluation program
I “certified C code”: we can bound the evaluation error in integer arithmetic

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 31/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Sufficient conditions with µ = 4−2−21

Eapprox ≤ θ with θ < 2−25/µ and Eeval < η = 2−25−µ ·θ

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error Required bound

I Eapprox ≤ θ,

with θ = 3 ·2−29 ≈ 6 ·10−9

I Eeval < η,

with η≈ 7.4 ·10−9

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 32/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Case 1: mx ≥my → condition satisfied
Case 2: mx < my → condition not satisfied: Eeval ≥ η

s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0.965 0.97 0.975 0.98 0.985 0.99 0.995

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error
Required bound 2−25/(4− 2−21) ≈ 8 · 10−9

Approximation error bound θ = 3 · 2−29 ≈ 6 · 10−9

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 33/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Case 1: mx ≥my → condition satisfied
Case 2: mx < my → condition not satisfied: Eeval ≥ η

s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0.965 0.97 0.975 0.98 0.985 0.99 0.995

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error
Required bound 2−25/(4− 2−21) ≈ 8 · 10−9

Approximation error bound θ = 3 · 2−29 ≈ 6 · 10−9

1. determine an interval I around this point

2. compute Eapprox over I
3. determine an evaluation error bound η

4. check if Eeval < η?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 33/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Case 1: mx ≥my → condition satisfied
Case 2: mx < my → condition not satisfied: Eeval ≥ η

s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0.965 0.97 0.975 0.98 0.985 0.99 0.995

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error
Required bound 2−25/(4− 2−21) ≈ 8 · 10−9

Approximation error bound θ = 3 · 2−29 ≈ 6 · 10−9

1. determine an interval I around this point

2. compute Eapprox over I
3. determine an evaluation error bound η

4. check if Eeval < η?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 33/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Sufficient conditions for each subinterval, with µ = 4−2−21

E(i)
approx ≤ θ

(i) with θ
(i) < 2−25/µ and E(i)

eval < η
(i) = 2−25−µ ·θ(i)

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error Required bound

E(i)
approx ≤ θ(i)

E(i)
eval < η(i)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 34/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Sufficient conditions for each subinterval, with µ = 4−2−21

E(i)
approx ≤ θ

(i) with θ
(i) < 2−25/µ and E(i)

eval < η
(i) = 2−25−µ ·θ(i)

-8e-09

-6e-09

-4e-09

-2e-09

0

2e-09

4e-09

6e-09

8e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
ap

pr
ox

im
at

io
n

er
ro

r

t

Approximation error Required bound

I E(i)
approx ≤ θ(i)

I E(i)
eval < η(i)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 34/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy

Implementation of the splitting by dichotomy

I for each T (i)

1. compute a certified approximation error bound θ(i)

Sollya

2. determine an evaluation error bound η(i)

Sollya

3. check this bound: E(i)
eval < η(i)

Gappa

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

Example of binary32 implementation

→ launched on a 64 processor grid

→ 36127 subintervals found in several hours (≈ 5h.)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 35/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy

Implementation of the splitting by dichotomy

I for each T (i)

1. compute a certified approximation error bound θ(i)

Sollya

2. determine an evaluation error bound η(i)

Sollya

3. check this bound: E(i)
eval < η(i)

Gappa

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

Example of binary32 implementation

→ launched on a 64 processor grid

→ 36127 subintervals found in several hours (≈ 5h.)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 35/44

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy

Implementation of the splitting by dichotomy

I for each T (i)

1. compute a certified approximation error bound θ(i)

Sollya

2. determine an evaluation error bound η(i)

Sollya

3. check this bound: E(i)
eval < η(i)

Gappa

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

Example of binary32 implementation

→ launched on a 64 processor grid

→ 36127 subintervals found in several hours (≈ 5h.)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 35/44

Numerical results

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 36/44

Numerical results

Performances of FLIP on ST231

0

20

40

60

80

100

120

140

160

180

add
sub

mul
div

sqrt

L
at

en
cy

(#
cy

cl
es

)

Floating-point operators

FLIP 1.0
FLIP 0.3

STlib

0

20

40

60

80

100

add
sub

mul
div

sqrt

Sp
ed

d-
up

(%
)

Floating-point operators

FLIP 1.0 vs STlib
FLIP 1.0 vs FLIP 0.3

Performances on ST231, in RoundTiesToEven

⇒ Speed-up between 20 and 50 %

Implementations of other operators

x−1 x−1/2 x1/3 x−1/3 x−1/4

25 29 34 40 42

Performances on ST231, in RoundTiesToEven (in number of cycles)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 37/44

Numerical results

Performances of FLIP on ST231

0

20

40

60

80

100

120

140

160

180

add
sub

mul
div

sqrt

L
at

en
cy

(#
cy

cl
es

)

Floating-point operators

FLIP 1.0
FLIP 0.3

STlib

0

20

40

60

80

100

add
sub

mul
div

sqrt

Sp
ed

d-
up

(%
)

Floating-point operators

FLIP 1.0 vs STlib
FLIP 1.0 vs FLIP 0.3

Performances on ST231, in RoundTiesToEven

⇒ Speed-up between 20 and 50 %

Implementations of other operators

x−1 x−1/2 x1/3 x−1/3 x−1/4

25 29 34 40 42

Performances on ST231, in RoundTiesToEven (in number of cycles)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 37/44

Conclusions

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 38/44

Conclusions Conclusions

Conclusions

Design and implementation of floating-point operators
I uniform approach for correctly-rounded roots and their reciprocals
I extension to correctly-rounded division

I polynomial evaluation-based method, very high ILP exposure

⇒ new, much faster version of FLIP

Code generation for efficient and certified polynomial evaluation
I methodologies and tools for automating polynomial evaluation

implementation
I heuristics and techniques for generating quickly efficient and certified C

codes

⇒ CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 39/44

Conclusions Conclusions

Conclusions

Design and implementation of floating-point operators
I uniform approach for correctly-rounded roots and their reciprocals
I extension to correctly-rounded division

I polynomial evaluation-based method, very high ILP exposure

⇒ new, much faster version of FLIP

Code generation for efficient and certified polynomial evaluation
I methodologies and tools for automating polynomial evaluation

implementation
I heuristics and techniques for generating quickly efficient and certified C

codes

⇒ CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 39/44

Conclusions Conclusions

Conclusions

Design and implementation of floating-point operators
I uniform approach for correctly-rounded roots and their reciprocals
I extension to correctly-rounded division

I polynomial evaluation-based method, very high ILP exposure

⇒ new, much faster version of FLIP

Code generation for efficient and certified polynomial evaluation
I methodologies and tools for automating polynomial evaluation

implementation
I heuristics and techniques for generating quickly efficient and certified C

codes

⇒ CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 39/44

And now in ParLab: Debugging of floating-point programs

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 40/44

And now in ParLab: Debugging of floating-point programs

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

What are the usual anomalies?

I rounding error accumulations
I conditional branches involving floating-point comparisons

→ may fail due to the subtleties of floating-point arithmetic

I difficulties of programming languages
→ Fortran: constants converted in full double precision accuracy if written with

the dX notation

I overflows, resolution of ill-conditioned problems
→ returned result may be completely wrong

I benign / catastrophic cancellation, ...

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 41/44

And now in ParLab: Debugging of floating-point programs

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

How to detect these usual anomalies?
I altering rounding mode of floating-point arithmetic hardware

→ may not be used for remedying problems

I extending precision of floating-point computation
→ run time may increase significantly (due to the use of software interface)

I using interval arithmetic
→ produces a certificate, but run time cost is the greatest

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 41/44

And now in ParLab: Debugging of floating-point programs

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

How to detect these usual anomalies?
I altering rounding mode of floating-point arithmetic hardware

→ may not be used for remedying problems

I extending precision of floating-point computation
→ run time may increase significantly (due to the use of software interface)

I using interval arithmetic
→ produces a certificate, but run time cost is the greatest

How to detect quickly the most sensitive part of a C program?

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 41/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
float b = 1.0f;
float c = a + b;
float d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
double a = 1e15f;
double b = 1.0f;
float c = a + b;
float d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
float b = 1.0f;
double c = a + b;
double d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
double a = 1e15f;
float b = 1.0f;
float c = a + b;
float d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
double b = 1.0f;
float c = a + b;
float d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
float b = 1.0f;
double c = a + b;
float d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
float b = 1.0f;
float c = a + b;
double d = c - a; // d = 0.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
double b = 1.0f;
double c = a + b;
double d = c - a; // d = 1.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Detection using delta-debugging

Principle: find a minimal set of changes on a C code, so that the returned
result remains at a given threshold of a known and more accurate result
(exact, double precision, ...)

→ implementation by binary search

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
double b = 1.0f;
double c = a + b;
float d = c - a; // d = 1.0

printf("The value of d is: %1.19e\n", d);

return 0;
}

What is the value of d?
I Using binary32 floating-point

arithmetic

→ d = 0.0

I Using binary64 floating-point
arithmetic

→ d = 1.0

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 42/44

And now in ParLab: Debugging of floating-point programs

Current work

Delta-debugging

I how to determine initial set of changes?
I implementation of other transformations

Implementation of an exception handler

I may be useful for building initial set of delta-debugging algorithm

Detection of infinite loops, ...

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 43/44

And now in ParLab: Debugging of floating-point programs

BeBOP meeting (ParLab, EECS, UC Berkeley)

Berkeley, CA, USA - March 30, 2010

Implementation of binary floating-point arithmetic
on embedded integer processors

Polynomial evaluation-based algorithms
and

certified code generation

Guillaume Revy
ParLab EECS University of California, Berkeley

Ph.D. thesis’ work done under the direction of Claude-Pierre Jeannerod and Gilles Villard
Arénaire INRIA project-team (LIP, Ens Lyon, France)

Guillaume Revy – March 30, 2010 Implementation of binary floating-point arithmetic on embedded integer processors 44/44

	BeBOP meeting, March 30, 2010
	Design and implementation of floating-point operators
	Bivariate polynomial evaluation-based approach
	Implementation of correct rounding

	Low latency parenthesization computation
	Classical evaluation methods
	Computation of all parenthesizations
	Towards low evaluation latency

	Selection of effective evaluation parenthesizations
	General framework
	Automatic certification of generated C codes

	Numerical results
	Conclusions
	

	And now in ParLab: Debugging of floating-point programs

