Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

ParLab EECS University of California, Berkeley

Ph.D. thesis' work done under the direction of Claude-Pierre Jeannerod and Gilles Villard Arénaire INRIA project-team (LIP, Ens Lyon, France)

Motivation

■ Embedded systems are ubiquitous

- microprocessors dedicated to one or a few specific tasks
- satisfy constraints: area, energy consumption, conception cost

Motivation

■ Embedded systems are ubiquitous

- microprocessors dedicated to one or a few specific tasks
- satisfy constraints: area, energy consumption, conception cost

■ Some embedded systems do not have any FPU (floating-point unit)

Motivation

■ Embedded systems are ubiquitous

- microprocessors dedicated to one or a few specific tasks
- satisfy constraints: area, energy consumption, conception cost

■ Some embedded systems do not have any FPU (floating-point unit)

■ Highly used in audio and video applications

- demanding on floating-point computations

Motivation

■ Embedded systems are ubiquitous

- microprocessors dedicated to one or a few specific tasks
- satisfy constraints: area, energy consumption, conception cost

■ Some embedded systems do not have any FPU (floating-point unit)

■ Highly used in audio and video applications

- demanding on floating-point computations

Motivation

■ Embedded systems are ubiquitous

- microprocessors dedicated to one or a few specific tasks
- satisfy constraints: area, energy consumption, conception cost

■ Some embedded systems do not have any FPU (floating-point unit)

■ Highly used in audio and video applications

- demanding on floating-point computations

How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for IEEE 754 floating-point arithmetic on integer processors

■ Existing software for IEEE 754 floating-point arithmetic:

- Software floating-point support of GCC, Glibc and μ Clibc, GoFast Floating-Point Library
- SoftFloat (\rightarrow STlib)
- FLIP (Floating-point Library for Integer Processors)
- software support for binary32 floating-point arithmetic on integer processors
- correctly-rounded addition, subtraction, multiplication, division, square root, reciprocal, ...
- handling subnormals, and handling special inputs

Towards the generation of fast and certified codes

■ Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?

Towards the generation of fast and certified codes

■ Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?
\Rightarrow need for automation and certification

Towards the generation of fast and certified codes

■ Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?
\Rightarrow need for automation and certification
- Current challenge: tools and methodologies for the automatic generation of efficient and certified programs
- optimized for a given format, for the target architecture

Towards the generation of fast and certified codes

■ Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)

■ Spiral project: hardware and software code generation for DSP algorithms
Can we teach computers to write fast libraries?

Towards the generation of fast and certified codes

■ Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)

■ Spiral project: hardware and software code generation for DSP algorithms
Can we teach computers to write fast libraries?

■ Our tool: CGPE (Code Generation for Polynomial Evaluation) In the particular case of polynomial evaluation, we can teach computers to write fast and certified codes, for a given target and optimized for a given format.

Basic blocks for implementing correctly-rounded operators

Basic blocks for implementing correctly-rounded operators

Basic blocks for implementing correctly-rounded operators

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes


```
- Accuracy of approximant and C code
```


Flowchart for generating efficient and certified C codes

- Accuracy of approximant and C code
- Low evaluation latency on ST231, ILP exposure

Flowchart for generating efficient and certified C codes

- Accuracy of approximant and C code
- Sollya

■ Low evaluation latency on ST231, ILP exposure

Flowchart for generating efficient and certified C codes

- Accuracy of approximant and C code
- Sollya
- interval arithmetic (MPFI), Gappa
- Low evaluation latency on ST231, ILP exposure

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes

- Accuracy of approximant and C code
- Sollya
- interval arithmetic (MPFI), Gappa
- Low evaluation latency on ST231, ILP exposure
- ?
- Efficiency of the generation process

Outline of the talk

1. Design and implementation of floating-point operators

Bivariate polynomial evaluation-based approach
Implementation of correct rounding
2. Low latency parenthesization computation

Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency
3. Selection of effective evaluation parenthesizations

General framework
Automatic certification of generated C codes
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs

Outline of the talk

1. Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach Implementation of correct rounding
2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs

Notation and assumptions

■ Input (x, y) and output $\mathrm{RN}(x / y)$: normal numbers
\rightarrow no underflow nor overflow
\rightarrow precision p, extremal exponents $e_{\text {min }}, e_{\text {max }}$

$$
x= \pm 1 . m_{x, 1} \ldots m_{x, p-1} \cdot 2^{e_{x}} \quad \text { with } \quad e_{x} \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

Notation and assumptions

■ Input (x, y) and output $\mathrm{RN}(x / y)$: normal numbers
\rightarrow no underflow nor overflow
\rightarrow precision p, extremal exponents $e_{\text {min }}, e_{\text {max }}$

$$
x= \pm 1 . m_{x, 1} \ldots m_{x, p-1} \cdot 2^{e_{x}} \quad \text { with } \quad e_{x} \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

\rightarrow RoundTiesToEven

Notation and assumptions

■ Standard binary encoding: k-bit unsigned integer X encodes input x

■ Computation: k-bit unsigned integers
\rightarrow integer and fixed-point arithmetic

Notation and assumptions

■ Standard binary encoding: k-bit unsigned integer X encodes input x

■ Computation: k-bit unsigned integers
\rightarrow integer and fixed-point arithmetic

Range reduction of division

■ Express the exact result $r=x / y$ as:

$$
r=\ell \cdot 2^{d} \Rightarrow \mathrm{RN}(x / y)=\mathrm{RN}(\ell) \cdot 2^{d}
$$

with

$$
\ell \in[1,2) \text { and } d \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

Range reduction of division

■ Express the exact result $r=x / y$ as:

$$
r=\ell \cdot 2^{d} \Rightarrow \operatorname{RN}(x / y)=\mathrm{RN}(\ell) \cdot 2^{d}
$$

with

$$
\ell \in[1,2) \quad \text { and } \quad d \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

- Definition

$$
c=1 \quad \text { if } \quad m_{x} \geq m_{y}, \quad \text { and } \quad c=0 \quad \text { otherwise }
$$

Range reduction of division

■ Express the exact result $r=x / y$ as:

$$
r=\ell \cdot 2^{d} \Rightarrow \mathrm{RN}(x / y)=\mathrm{RN}(\ell) \cdot 2^{d}
$$

with

$$
\ell \in[1,2) \text { and } d \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

- Definition

$$
c=1 \quad \text { if } \quad m_{x} \geq m_{y}, \quad \text { and } \quad c=0 \text { otherwise }
$$

- Range reduction

$$
x / y=\underbrace{\left(2^{1-c} \cdot m_{x} / m_{y}\right)}_{:=\ell \in[1,2)} \cdot 2^{d} \text { with } d=e_{x}-e_{y}-1+c
$$

Range reduction of division

■ Express the exact result $r=x / y$ as:

$$
r=\ell \cdot 2^{d} \Rightarrow \mathrm{RN}(x / y)=\mathrm{RN}(\ell) \cdot 2^{d}
$$

with

$$
\ell \in[1,2) \quad \text { and } \quad d \in\left\{e_{\min }, \ldots, e_{\max }\right\}
$$

- Definition

$$
c=1 \quad \text { if } \quad m_{x} \geq m_{y}, \quad \text { and } \quad c=0 \text { otherwise }
$$

■ Range reduction

$$
x / y=\underbrace{\left(2^{1-c} \cdot m_{x} / m_{y}\right)}_{:=\ell \in[1,2)} \cdot 2^{d} \text { with } d=e_{x}-e_{y}-1+c
$$

How to compute the correctly-rounded significand $\mathrm{RN}(\ell)$?

Methods for computing the correctly-rounded significand

■ Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm

Methods for computing the correctly-rounded significand

■ Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm

■ Multiplicative methods: Newton-Raphson, Goldschmidt

- Piñeiro and Bruguera (2002) - Raina's Ph.D., FLIP 0.3 (2006)
- exploit available multipliers, more ILP exposure

Methods for computing the correctly-rounded significand

■ Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm

■ Multiplicative methods: Newton-Raphson, Goldschmidt

- Piñeiro and Bruguera (2002) - Raina's Ph.D., FLIP 0.3 (2006)
- exploit available multipliers, more ILP exposure

■ Polynomial-based methods

- Agarwal, Gustavson and Schmookler (1999)
\rightarrow univariate polynomial evaluation
- Our approach
\rightarrow bivariate polynomial evaluation: maximal ILP exposure

Correct rounding via truncated one-sided approximation

■ How to compute $\mathrm{RN}(\ell)$, with $\ell=2^{1-c} \cdot m_{x} / m_{y}$?

■ Three steps for correct rounding computation

1. compute $v=1 . v_{1} \ldots v_{k-2}$ such that $-2^{-p} \leq \ell-v<0$
\rightarrow implied by $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$
\rightarrow bivariate polynomial evaluation
2. compute u as the truncation of v after p fraction bits
3. determine $\mathrm{RN}(\ell)$ after possibly adding $2^{-\rho}$

Correct rounding via truncated one-sided approximation

■ How to compute $\mathrm{RN}(\ell)$, with $\ell=2^{1-c} \cdot m_{x} / m_{y}$?

■ Three steps for correct rounding computation

1. compute $v=1 . v_{1} \ldots v_{k-2}$ such that $-2^{-p} \leq \ell-v<0$
\rightarrow implied by $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$
\rightarrow bivariate polynomial evaluation
2. compute u as the truncation of v after p fraction bits
3. determine $\mathrm{RN}(\ell)$ after possibly adding 2^{-p}

How to compute the one-sided approximation v and then deduce $\operatorname{RN}(\ell)$?

One-sided approximation via bivariate polynomials

1. Consider $\ell+2^{-p-1}$ as the exact result of the function

$$
F(s, t)=s /(1+t)+2^{-p-1}
$$

at the points $s^{*}=2^{1-c} \cdot m_{x}$ and $t^{*}=m_{y}-1$

One-sided approximation via bivariate polynomials

1. Consider $\ell+2^{-p-1}$ as the exact result of the function

$$
F(s, t)=s /(1+t)+2^{-p-1}
$$

at the points $s^{*}=2^{1-c} \cdot m_{x}$ and $t^{*}=m_{y}-1$
2. Approximate $F(s, t)$ by a bivariate polynomial $P(s, t)$

$$
P(s, t)=s \cdot a(t)+2^{-p-1}
$$

$\rightarrow a(t)$: univariate polynomial approximant of $1 /(1+t)$
\rightarrow approximation error $E_{\text {approx }}$

One-sided approximation via bivariate polynomials

1. Consider $\ell+2^{-p-1}$ as the exact result of the function

$$
F(s, t)=s /(1+t)+2^{-p-1}
$$

at the points $s^{*}=2^{1-c} \cdot m_{x}$ and $t^{*}=m_{y}-1$
2. Approximate $F(s, t)$ by a bivariate polynomial $P(s, t)$

$$
P(s, t)=s \cdot a(t)+2^{-p-1}
$$

$\rightarrow a(t)$: univariate polynomial approximant of $1 /(1+t)$
\rightarrow approximation error $E_{\text {approx }}$
3. Evaluate $P(s, t)$ by a well-chosen efficient evaluation program P

$$
v=\mathcal{P}\left(s^{*}, t^{*}\right)
$$

\rightarrow evaluation error $E_{\text {eval }}$

One-sided approximation via bivariate polynomials

1. Consider $\ell+2^{-p-1}$ as the exact result of the function

$$
F(s, t)=s /(1+t)+2^{-p-1}
$$

at the points $s^{*}=2^{1-c} \cdot m_{x}$ and $t^{*}=m_{y}-1$
2. Approximate $F(s, t)$ by a bivariate polynomial $P(s, t)$

$$
P(s, t)=s \cdot a(t)+2^{-p-1}
$$

$\rightarrow a(t)$: univariate polynomial approximant of $1 /(1+t)$
\rightarrow approximation error $E_{\text {approx }}$
3. Evaluate $P(s, t)$ by a well-chosen efficient evaluation program P

$$
v=\mathscr{P}\left(s^{*}, t^{*}\right)
$$

\rightarrow evaluation error $E_{\text {eval }}$

$$
\text { How to ensure that }\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1} ?
$$

Sufficient error bounds

$■$ To ensure $\quad\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$
it suffices to ensure that $\mu \cdot E_{\text {approx }}+E_{\text {eval }}<2^{-p-1}$,
since

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq \mu \cdot E_{\text {approx }}+E_{\text {eval }} \quad \text { with } \quad \mu=4-2^{3-p}
$$

Sufficient error bounds

\square To ensure $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$
it suffices to ensure that $\mu \cdot E_{\text {approx }}+E_{\text {eval }}<2^{-p-1}$,
since

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq \mu \cdot E_{\text {approx }}+E_{\text {eval }} \quad \text { with } \quad \mu=4-2^{3-p}
$$

- This gives the following sufficient conditions

$$
E_{\text {approx }}<2^{-p-1} / \mu \quad \Rightarrow \quad E_{\text {eval }}<2^{-p-1}-\mu \cdot E_{\text {approx }}
$$

Sufficient error bounds

\square To ensure $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$
it suffices to ensure that $\mu \cdot E_{\text {approx }}+E_{\text {eval }}<2^{-p-1}$,
since

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq \mu \cdot E_{\text {approx }}+E_{\text {eval }} \quad \text { with } \quad \mu=4-2^{3-p}
$$

■ This gives the following sufficient conditions

$$
E_{\text {approx }} \leq \theta \quad \text { with } \theta<2^{-p-1} / \mu \quad \Rightarrow \quad E_{\text {eval }}<\eta=2^{-p-1}-\mu \cdot \theta
$$

Example for the binary32 division

■ Sufficient conditions with $\mu=4-2^{-21}$

$$
E_{\text {approx }} \leq \theta \quad \text { with } \quad \theta<2^{-25} / \mu \quad \text { and } \quad E_{\text {eval }}<\eta=2^{-25}-\mu \cdot \theta
$$

Example for the binary32 division

■ Sufficient conditions with $\mu=4-2^{-21}$

$$
E_{\text {approx }} \leq \theta \quad \text { with } \quad \theta<2^{-25} / \mu \quad \text { and } \quad E_{\text {eval }}<\eta=2^{-25}-\mu \cdot \theta
$$

■ Approximation of $1 /(1+t)$ by a Remez-like polynomial of degree 10

Flowchart for generating efficient and certified C codes

Rounding condition: definition

- Approximation u of ℓ with

$$
\ell=2^{1-c} \cdot m_{x} / m_{y}
$$

- The exact value ℓ may have an infinite number of bits
\rightarrow the sticky bit cannot always be computed

Rounding condition: definition

- Approximation u of ℓ with

$$
\ell=2^{1-c} \cdot m_{x} / m_{y}
$$

■ The exact value ℓ may have an infinite number of bits
\rightarrow the sticky bit cannot always be computed

- Compute $\mathrm{RN}(\ell)$ requires to be able to decide whether $u \geq \ell$
$\rightarrow \ell$ cannot be a midpoint

Rounding condition: definition

- Approximation u of ℓ with

$$
\ell=2^{1-c} \cdot m_{x} / m_{y}
$$

■ The exact value ℓ may have an infinite number of bits
\rightarrow the sticky bit cannot always be computed

- Compute $\mathrm{RN}(\ell)$ requires to be able to decide whether $u \geq \ell$
$\rightarrow \ell$ cannot be a midpoint
■ Rounding condition: $u \geq \ell$

$$
u \geq \ell \quad \Longleftrightarrow u \cdot m_{y} \geq 2^{1-c} \cdot m_{x}
$$

Rounding condition: implementation in integer arithmetic

- Rounding condition: $u \cdot m_{y} \geq 2^{1-c} \cdot m_{x}$
- Approximation u and m_{y} : representable with 32 bits

- $u \cdot m_{y}$ is exactly representable with 64 bits

Rounding condition: implementation in integer arithmetic

■ Rounding condition: $u \cdot m_{y} \geq 2^{1-c} \cdot m_{x}$

- Approximation u and m_{y} : representable with 32 bits

- $u \cdot m_{y}$ is exactly representable with 64 bits
- $2^{1-c} \cdot m_{x}$ is representable with 32 bits since $c \in\{0,1\}$

Rounding condition: implementation in integer arithmetic

■ Rounding condition: $u \cdot m_{y} \geq 2^{1-c} \cdot m_{x}$

- Approximation u and m_{y} : representable with 32 bits

- $u \cdot m_{y}$ is exactly representable with 64 bits
- $2^{1-c} \cdot m_{x}$ is representable with 32 bits since $c \in\{0,1\}$
\Rightarrow one $32 \times 32 \rightarrow 32$-bit multiplication and one comparison

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes

Outline of the talk

1. Design and implementation of floating-point operators
2. Low latency parenthesization computation

Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs

Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
\rightarrow reduces the evaluation latency on unbounded parallelism

Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
\rightarrow reduces the evaluation latency on unbounded parallelism

■ Evaluation program $\mathcal{P}=$ main part of the full software implementation
\rightarrow dominates the cost

Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
\rightarrow reduces the evaluation latency on unbounded parallelism

■ Evaluation program $\mathcal{P}=$ main part of the full software implementation
\rightarrow dominates the cost

■ Two families of algorithms

- algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
\rightarrow ill-suited in the context of fixed-point arithmetic
- algorithms without coefficient adaptation

Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
\rightarrow reduces the evaluation latency on unbounded parallelism

■ Evaluation program $\mathcal{P}=$ main part of the full software implementation
\rightarrow dominates the cost

- Two families of algorithms
- algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
\rightarrow ill-suited in the context of fixed-point arithmetic
- algorithms without coefficient adaptation

Classical parenthesizations for binary32 division

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

■ Horner's rule: $(3+1) \times 11=44$ cycles
\rightarrow no ILP exposure

Classical parenthesizations for binary32 division

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

- Horner's rule: $(3+1) \times 11=44$ cycles
\rightarrow no ILP exposure
■ Second-order Horner's rule: 27 cycles
\rightarrow evaluation of odd and even parts independently with Horner, more ILP

Classical parenthesizations for binary32 division

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

- Horner's rule: $(3+1) \times 11=44$ cycles
\rightarrow no ILP exposure
- Second-order Horner's rule: 27 cycles
\rightarrow evaluation of odd and even parts independently with Horner, more ILP
■ Estrin's method: 19 cycles
\rightarrow evaluation of high and low parts in parallel, even more ILP
\rightarrow distributing the multiplication by s in the evaluation of $a(t) \rightarrow 16$ cycles

Classical parenthesizations for binary32 division

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

■ Horner's rule: $(3+1) \times 11=44$ cycles
\rightarrow no ILP exposure
■ Second-order Horner's rule: 27 cycles
\rightarrow evaluation of odd and even parts independently with Horner, more ILP
■ Estrin's method: 19 cycles
\rightarrow evaluation of high and low parts in parallel, even more ILP
\rightarrow distributing the multiplication by s in the evaluation of $a(t) \rightarrow 16$ cycles

- ..

We can do better.

How to explore the solution space of parenthesizations?

Algorithm for computing all parenthesizations

$$
a(x, y)=\sum_{0 \leq i \leq n_{x}} \sum_{0 \leq j \leq n_{y}} a_{i, j} \cdot x^{i} \cdot y^{j} \quad \text { with } \quad n=n_{x}+n_{y}, \quad \text { and } \quad a_{n_{x}, n_{y}} \neq 0
$$

Example

Let $a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y$. Then
$a_{1,0}+a_{1,1} \cdot y$ is a valid expression, while $a_{1,0} \cdot x+a_{1,1} \cdot x$ is not.

Algorithm for computing all parenthesizations

$$
a(x, y)=\sum_{0 \leq i \leq n_{x}} \sum_{0 \leq j \leq n_{y}} a_{i, j} \cdot x^{i} \cdot y^{j} \quad \text { with } \quad n=n_{x}+n_{y}, \quad \text { and } \quad a_{n_{x}, n_{y}} \neq 0
$$

Example

Let $a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y$. Then $a_{1,0}+a_{1,1} \cdot y$ is a valid expression, while $a_{1,0} \cdot x+a_{1,1} \cdot x$ is not.

- Exhaustive algorithm: iterative process
\rightarrow step $k=$ computation of all the valid expressions of total degree k
■ 3 building rules for computing all parenthesizations

Number of parenthesizations

	$n_{x}=1$	$n_{x}=2$	$n_{x}=3$	$n_{x}=4$	$n_{x}=5$	$n_{x}=6$
$n_{y}=0$	1	7	163	11602	2334244	$\underline{1304066578}$
$n_{y}=1$	51	67467	$\underline{1133220387}$	$\underline{207905478247998}$	\ldots	\ldots
$n_{y}=2$	67467	$\underline{106191222651}$	$\underline{10139277122276921118}$	\ldots	\ldots	\ldots

Number of generated parenthesizations for evaluating a bivariate polynomial

- Timings for parenthesization computation
\rightarrow for univariate polynomial of degree $5 \approx 1 \mathrm{~h}$ on a 2.4 GHz core
\rightarrow for bivariate polynomial of degree $(2,1) \approx 30$ s
\rightarrow for $P(s, t)$ of degree $(3,1) \approx 7 \mathrm{~s}$ (88384 schemes)
- Optimization for univariate polynomial and $P(s, t)$
\rightarrow univariate polynomial of degree $5 \approx 4 \mathrm{~min}$
\rightarrow for $P(s, t)$ of degree $(3,1) \approx 2 \mathrm{~s}$ (88384 schemes)

Number of parenthesizations

\rightarrow minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

Number of parenthesizations

\rightarrow minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

How to compute only parenthesizations of low latency?

Determination of a target latency

■ Target latency = minimal cost for evaluating

$$
a_{0,0}+a_{n_{x}, n_{y}} \cdot x^{n_{x}} y^{n_{y}}
$$

- if no scheme satisfies τ then increase τ and restart

Determination of a target latency

■ Target latency = minimal cost for evaluating

$$
a_{0,0}+a_{n_{x}, n_{y}} \cdot x^{n_{x}} y^{n_{y}}
$$

- if no scheme satisfies τ then increase τ and restart

■ Static target latency $\tau_{\text {static }}$

- as general as evaluating $a_{0,0}+x^{n_{x}+n_{y}+1}$

$$
\tau_{\text {static }}=A+M \times\left\lceil\log _{2}\left(n_{x}+n_{y}+1\right)\right\rceil
$$

Determination of a target latency

■ Target latency = minimal cost for evaluating

$$
a_{0,0}+a_{n_{x}, n_{y}} \cdot x^{n_{x}} y^{n_{y}}
$$

- if no scheme satisfies τ then increase τ and restart
- Static target latency $\tau_{\text {static }}$
- as general as evaluating $a_{0,0}+x^{n_{x}+n_{y}+1}$

$$
\tau_{\text {static }}=A+M \times\left\lceil\log _{2}\left(n_{x}+n_{y}+1\right)\right\rceil
$$

■ Dynamic target latency $\tau_{\text {dynamic }}$

- cost of operator on $a_{n_{x}, n_{y}}$ and delay on intederminates
- dynamic programming

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y .
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$
\left(a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y\right)+\left(a_{1,1} \cdot x \cdot y\right)
$$

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$
\left(\left(a_{0,0}+a_{1,0} \cdot x\right)+a_{0,1} \cdot y\right)+\left(a_{1,1} \cdot x \cdot y\right)
$$

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$
\left(a_{0,0}+\left(a_{1,0} \cdot x+a_{0,1} \cdot y\right)\right)+\left(a_{1,1} \cdot x \cdot y\right)
$$

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y .
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$
\left(a_{0,0}+a_{1,0} \cdot x\right)+\left(a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y\right)
$$

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y .
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$
a_{0,0}+\left(a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y\right)
$$

Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$
a(x, y)=a_{0,0}+a_{1,0} \cdot x+a_{0,1} \cdot y+a_{1,1} \cdot x \cdot y
$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

Efficient evaluation parenthesization generation

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

■ First target latency $\tau=13$
\rightarrow no parenthesization found

Efficient evaluation parenthesization generation

$$
P(s, t)=2^{-25}+s \cdot \sum_{0 \leq i \leq 10} a_{i} \cdot t^{i}
$$

- First target latency $\tau=13$
\rightarrow no parenthesization found

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes

Outline of the talk

1. Design and implementation of floating-point operators
2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations

General framework
Automatic certification of generated C codes
4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Selection of effective parenthesizations

1. Arithmetic Operator Choice

- all intermediate variables are of constant sign

Selection of effective parenthesizations

1. Arithmetic Operator Choice

- all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

- constraints of architecture: cost of operators, instructions bundling, ...
- delays on indeterminates

Selection of effective parenthesizations

1. Arithmetic Operator Choice

- all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

- constraints of architecture: cost of operators, instructions bundling, ...
- delays on indeterminates

3. Certification of generated C code

- straightline polynomial evaluation program
- "certified C code": we can bound the evaluation error in integer arithmetic

Certification of evaluation error for binary32 division

■ Sufficient conditions with $\mu=4-2^{-21}$

$$
E_{\text {approx }} \leq \theta \text { with } \theta<2^{-25} / \mu \quad \text { and } \quad E_{\text {eval }}<\eta=2^{-25}-\mu \cdot \theta
$$

- $E_{\text {approx }} \leq \theta$,
with $\theta=3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$
- $E_{\text {eval }}<\eta$,

$$
\text { with } \eta \approx 7.4 \cdot 10^{-9}
$$

Certification of evaluation error for binary32 division

■ Case 1: $m_{x} \geq m_{y} \rightarrow$ condition satisfied

- Case 2: $m_{x}<m_{y} \rightarrow$ condition not satisfied: $E_{\text {eval }} \geq \eta$

$$
s^{*}=3.935581684112548828125 \text { and } t^{*}=0.97490441799163818359375
$$

[^0]
Certification of evaluation error for binary32 division

- Case 1: $m_{x} \geq m_{y} \rightarrow$ condition satisfied
- Case 2: $m_{x}<m_{y} \rightarrow$ condition not satisfied: $E_{\text {eval }} \geq \eta$

$$
s^{*}=3.935581684112548828125 \text { and } t^{*}=0.97490441799163818359375
$$

1. determine an interval I around this point

> Approximation error
> Required bound $2^{-25} /\left(4-2^{-21}\right) \approx 8 \cdot 10^{-9}$
> Approximation error bound $\theta=3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$

Certification of evaluation error for binary32 division

- Case 1: $m_{x} \geq m_{y} \rightarrow$ condition satisfied
- Case 2: $m_{x}<m_{y} \rightarrow$ condition not satisfied: $E_{\text {eval }} \geq \eta$

$$
s^{*}=3.935581684112548828125 \text { and } t^{*}=0.97490441799163818359375
$$

1. determine an interval I around this point
2. compute $E_{\text {approx }}$ over I
3. determine an evaluation error bound η
4. check if $E_{\text {eval }}<\eta$?

Required bound $2^{-25} /\left(4-2^{-21}\right) \approx 8 \cdot 10^{-9}$
Approximation error bound $\theta=3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$

Certification of evaluation error for binary32 division

■ Sufficient conditions for each subinterval, with $\mu=4-2^{-21}$

$$
E_{\text {approx }}^{(i)} \leq \theta^{(i)} \quad \text { with } \quad \theta^{(i)}<2^{-25} / \mu \quad \text { and } \quad E_{\text {eval }}^{(i)}<\eta^{(i)}=2^{-25}-\mu \cdot \theta^{(i)}
$$

Certification of evaluation error for binary32 division

■ Sufficient conditions for each subinterval, with $\mu=4-2^{-21}$

$$
E_{\text {approx }}^{(i)} \leq \theta^{(i)} \quad \text { with } \quad \theta^{(i)}<2^{-25} / \mu \quad \text { and } \quad E_{\text {eval }}^{(i)}<\eta^{(i)}=2^{-25}-\mu \cdot \theta^{(i)}
$$

- $E_{\text {approx }}^{(i)} \leq \theta^{(i)}$
- $E_{\text {eval }}^{(i)}<\eta^{(i)}$

Certification using a dichotomy-based strategy

■ Implementation of the splitting by dichotomy

- for each $\mathcal{T}^{(i)}$

1. compute a certified approximation error bound $\theta^{(i)}$
2. determine an evaluation error bound $\eta^{(i)}$
3. check this bound: $E_{\text {eval }}^{(i)}<\eta^{(i)}$
\Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Certification using a dichotomy-based strategy

■ Implementation of the splitting by dichotomy

- for each $\mathcal{T}^{(i)}$

1. compute a certified approximation error bound $\theta^{(i)}$

Sollya
2. determine an evaluation error bound $\eta^{(i)}$

Sollya
3. check this bound: $E_{\text {eval }}^{(i)}<\eta^{(i)}$

Gappa
\Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
- for each $\mathcal{T}^{(i)}$

1. compute a certified approximation error bound $\theta^{(i)}$
2. determine an evaluation error bound $\eta^{(i)}$
3. check this bound: $E_{\text {eval }}^{(i)}<\eta^{(i)}$
\Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

■ Example of binary32 implementation
\rightarrow launched on a 64 processor grid
$\rightarrow 36127$ subintervals found in several hours $(\approx 5 h$.)

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Performances of FLIP on ST231

Performances on ST231, in RoundTiesToEven

\Rightarrow Speed-up between 20 and 50 \%

Performances of FLIP on ST231

Performances on ST231, in RoundTiesToEven

\Rightarrow Speed-up between 20 and 50 \%

- Implementations of other operators

x^{-1}	$x^{-1 / 2}$	$x^{1 / 3}$	$x^{-1 / 3}$	$x^{-1 / 4}$
25	29	34	40	42

Performances on ST231, in RoundTiesToEven (in number of cycles)

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Conclusions

■ Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division

Conclusions

■ Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division
- polynomial evaluation-based method, very high ILP exposure
\Rightarrow new, much faster version of FLIP

Conclusions

■ Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division
- polynomial evaluation-based method, very high ILP exposure
\Rightarrow new, much faster version of FLIP

■ Code generation for efficient and certified polynomial evaluation

- methodologies and tools for automating polynomial evaluation implementation
- heuristics and techniques for generating quickly efficient and certified C codes
\Rightarrow CGPE: allows to write and certify automatically $\approx 50 \%$ of the codes of FLIP

Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs

Debugging of floating-point programs

■ Tool for detecting and remedying anomalies in floating-point programs
\rightarrow either at C code level or at run-time

- What are the usual anomalies?
- rounding error accumulations
- conditional branches involving floating-point comparisons
\rightarrow may fail due to the subtleties of floating-point arithmetic
- difficulties of programming languages
\rightarrow Fortran: constants converted in full double precision accuracy if written with the dX notation
- overflows, resolution of ill-conditioned problems
\rightarrow returned result may be completely wrong
- benign / catastrophic cancellation, ...

Debugging of floating-point programs

■ Tool for detecting and remedying anomalies in floating-point programs
\rightarrow either at C code level or at run-time

■ How to detect these usual anomalies?

- altering rounding mode of floating-point arithmetic hardware
\rightarrow may not be used for remedying problems
- extending precision of floating-point computation
\rightarrow run time may increase significantly (due to the use of software interface)
- using interval arithmetic
\rightarrow produces a certificate, but run time cost is the greatest

Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
\rightarrow either at C code level or at run-time

■ How to detect these usual anomalies?

- altering rounding mode of floating-point arithmetic hardware
\rightarrow may not be used for remedying problems
- extending precision of floating-point computation
\rightarrow run time may increase significantly (due to the use of software interface)
- using interval arithmetic
\rightarrow produces a certificate, but run time cost is the greatest

How to detect quickly the most sensitive part of a C program?

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    float b = 1.0f;
    float c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    double a = 1e15f;
    double b = 1.0f;
    float c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    float b = 1.0f;
    double c = a + b;
    double d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    double a = 1e15f;
    float b = 1.0f;
    float c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    double b = 1.0f;
    float c = a + b;
    float d = c - a; // d=0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1el5f;
    float b = 1.0f;
    double c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    float b = 1.0f;
    float c = a + b;
    double d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    double b = 1.0f;
    double c = a + b;
    double d = c - a; // d = 1.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Detection using delta-debugging

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
\rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main( void )
    float a = 1e15f;
    double b = 1.0f;
    double c = a + b;
    float d = c - a; // d=1.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d ?
- Using binary32 floating-point arithmetic

$$
\rightarrow d=0.0
$$

- Using binary64 floating-point arithmetic

$$
\rightarrow d=1.0
$$

Current work

■ Delta-debugging

- how to determine initial set of changes?
- implementation of other transformations

■ Implementation of an exception handler

- may be useful for building initial set of delta-debugging algorithm

■ Detection of infinite loops, ...

Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

ParLab EECS University of California, Berkeley

Ph.D. thesis' work done under the direction of Claude-Pierre Jeannerod and Gilles Villard Arénaire INRIA project-team (LIP, Ens Lyon, France)

[^0]: Approximation error
 Required bound $2^{-25} /\left(4-2^{-21}\right) \approx 8 \cdot 10^{-9}$
 Approximation error bound $\theta=3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$

