Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

ParLab EECS University of California, Berkeley

Ph.D. thesis’ work done under the direction of Claude-Pierre Jeannerod and Gilles Villard Arénaire INRIA project-team (LIP, Ens Lyon, France)
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations
Motivation

- **Embedded systems** are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Some embedded systems **do not have any FPU** (floating-point unit)

- Highly used in audio and video applications
 - demanding on **floating-point computations**

- **ST231**
 - 4-issue VLIW 32-bit integer processor
 - At most 2 pipelined multiplications / cycle
 - Latencies: ALU = 1 cycle / Mul = 3 cycles

- Software implementing floating-point arithmetic
How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for IEEE 754 floating-point arithmetic on integer processors

- Existing software for IEEE 754 floating-point arithmetic:
 - Software floating-point support of GCC, Glibc and μClibc, GoFast Floating-Point Library
 - SoftFloat (→ STlib)
 - FLIP (Floating-point Library for Integer Processors)
 - software support for binary32 floating-point arithmetic on integer processors
 - correctly-rounded addition, subtraction, multiplication, division, square root, reciprocal, ...
 - handling subnormals, and handling special inputs
Towards the generation of fast and certified codes

- **Underlying problem:** development “by hand”
 - long and tedious, error prone
 - new target? new floating-point format?
Towards the generation of fast and certified codes

- **Underlying problem:** development “by hand”
 - long and tedious, error prone
 - new target? new floating-point format?
 ⇒ need for **automation and certification**
Towards the generation of fast and certified codes

Underlying problem: development “by hand”
- long and tedious, error prone
- new target? new floating-point format?
 ⇒ need for automation and certification

Current challenge: tools and methodologies for the automatic generation of efficient and certified programs
- optimized for a given format, for the target architecture
Towards the generation of fast and certified codes

- **Arénaire’s developments**: hardware (FloPoCo) and software (Sollya, Metalibm)

- **Spiral project**: hardware and software code generation for DSP algorithms

 Can we teach computers to write fast libraries?
Towards the generation of fast and certified codes

- Arénarie’s developments: hardware (FloPoCo) and software (Sollya, Metalibm)

- Spiral project: hardware and software code generation for DSP algorithms

 Can we teach computers to write fast libraries?

- Our tool: CGPE (Code Generation for Polynomial Evaluation)

 In the particular case of polynomial evaluation, we can teach computers to write fast and certified codes, for a given target and optimized for a given format.
Basic blocks for implementing correctly-rounded operators

(X, Y)

Special input detection

Floating-point number unpacking

Normalization

Range reduction

Result sign/exponent computation

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

Special output selection

function independent

function dependent

Objectives

→ Low latency, correctly-rounded implementations

→ ILP exposure
Basic blocks for implementing correctly-rounded operators

(X, Y)

Special input detection

Floating-point number unpacking

Normalization

Range reduction

Result sign/exponent computation

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

Special output selection

function independent

function dependent

Objectives

→ Low latency, correctly-rounded implementations

→ ILP exposure
Basic blocks for implementing correctly-rounded operators

- Floating-point number unpacking
- Normalization
- Range reduction
- Result sign/exponent computation
- Result significand approximation
- Rounding condition decision
- Correct rounding computation
- Result reconstruction
- Special input detection

■ Uniform approach for \(n \)th roots and their reciprocals
 → polynomial evaluation

■ Extension to division

\[(X, Y) \]

\[R \]
Flowchart for generating efficient and certified C codes

Problem: function to be evaluated

ST231 features

Computation of polynomial approximant

Efficient and certified C code generation

C code

Certificate
Flowchart for generating efficient and certified C codes

1. Problem: function to be evaluated
2. Computation of polynomial approximant
3. Efficient and certified C code generation
4. ST231 features

Constraints:
- Accuracy of approximant and C code
Flowchart for generating efficient and certified C codes

Problem: function to be evaluated

Computation of polynomial approximant

Efficient and certified C code generation

ST231 features

Constraints

- Accuracy of approximant and C code
- Low evaluation latency on ST231, ILP exposure
Flowchart for generating efficient and certified C codes

Problem: function to be evaluated

Computation of polynomial approximant

Efficient and certified C code generation

C code
Certificate

ST231 features

Constraints

- Accuracy of approximant and C code
 - Sollya

- Low evaluation latency on ST231, ILP exposure
Flowchart for generating efficient and certified C codes

- Problem: function to be evaluated
- Computation of polynomial approximant
- Efficient and certified C code generation
- C code
- Certificate
- ST231 features

Constraints
- Accuracy of approximant and C code
 - Sollya
 - interval arithmetic (MPFI), Gappa
- Low evaluation latency on ST231, ILP exposure
Flowchart for generating efficient and certified C codes

- Problem: function to be evaluated
- Efficient and certified C code generation
- Computation of polynomial approximant
- Efficient and certified C code
generation
- ST231 features
- Constraints
 - Accuracy of approximant and C code
 - Sollya
 - interval arithmetic (MPFI), Gappa
 - Low evaluation latency on ST231, ILP exposure
 - ?
Flowchart for generating efficient and certified C codes

Problem: function to be evaluated

Efficient and certified C code generation

Computation of polynomial approximant

ST231 features

Constraints

- Accuracy of approximant and C code
 - Sollya
 - interval arithmetic (MPFI), Gappa
- Low evaluation latency on ST231, ILP exposure
 - ?
- Efficiency of the generation process
Outline of the talk

1. Design and implementation of floating-point operators
 - Bivariate polynomial evaluation-based approach
 - Implementation of correct rounding

2. Low latency parenthesization computation
 - Classical evaluation methods
 - Computation of all parenthesizations
 - Towards low evaluation latency

3. Selection of effective evaluation parenthesizations
 - General framework
 - Automatic certification of generated C codes

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs
Outline of the talk

1. Design and implementation of floating-point operators
 - Bivariate polynomial evaluation-based approach
 - Implementation of correct rounding

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs
Notation and assumptions

- Input \((x, y)\) and output \(\text{RN}(x/y)\): normal numbers
 - no underflow nor overflow
 - precision \(p\), extremal exponents \(e_{\text{min}}, e_{\text{max}}\)

\[
x = \pm 1.m_{x,1} \ldots m_{x,p-1} \cdot 2^{e_x} \quad \text{with} \quad e_x \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}
\]
Notation and assumptions

- Input \((x, y)\) and output \(\text{RN}(x/y)\): normal numbers
 - no underflow nor overflow
 - precision \(p\), extremal exponents \(e_{\text{min}}, e_{\text{max}}\)
 - \(x = \pm 1.m_{x,1} \ldots m_{x,p-1} \cdot 2^{e_x} \quad \text{with} \quad e_x \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}\)
 - RoundTiesToEven
Notation and assumptions

- **Standard binary encoding**: k-bit unsigned integer X encodes input x

 - s_x: 1 bit
 - $E_x = e_x - e_{\text{min}} - 1$: $w = k - p$ bits
 - $T_x = m_{x,1} \ldots m_{x,p-1}$: \(p - 1 \) bits

- **Computation**: k-bit unsigned integers

 \rightarrow integer and fixed-point arithmetic

\[(X, Y) \xrightarrow{\text{Division C code}} R \]
Notation and assumptions

- **Standard binary encoding**: k-bit unsigned integer X encodes input x

 \[
 s_x \quad E_x = e_x - e_{\text{min}} - 1 \quad T_x = m_{x,1} \ldots m_{x,p-1}
 \]

 \[
 \begin{align*}
 s_x & \quad 1 \text{ bit} \\
 E_x & \quad w = k - p \text{ bits} \\
 T_x & \quad p - 1 \text{ bits}
 \end{align*}
 \]

- **Computation**: k-bit unsigned integers

 \rightarrow integer and fixed-point arithmetic
Range reduction of division

Express the exact result $r = x/y$ as:

$$ r = \ell \cdot 2^d \Rightarrow \text{RN}(x/y) = \text{RN}(\ell) \cdot 2^d $$

with

$$ \ell \in [1, 2) \quad \text{and} \quad d \in \{e_{\text{min}}, \ldots, e_{\text{max}}\} $$
Range reduction of division

- Express the exact result \(r = x/y \) as:
 \[
 r = \ell \cdot 2^d \quad \Rightarrow \quad \text{RN}(x/y) = \text{RN}(\ell) \cdot 2^d
 \]
 with
 \[
 \ell \in [1, 2) \quad \text{and} \quad d \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}
 \]

- Definition
 \[
 c = 1 \quad \text{if} \quad m_x \geq m_y, \quad \text{and} \quad c = 0 \quad \text{otherwise}
 \]
Range reduction of division

- Express the exact result $r = x/y$ as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \text{RN}(x/y) = \text{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1, 2) \quad \text{and} \quad d \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}$$

- Definition

$$c = 1 \quad \text{if} \quad m_x \geq m_y, \quad \text{and} \quad c = 0 \quad \text{otherwise}$$

- Range reduction

$$\frac{x}{y} = \left(2^{1-c} \cdot \frac{m_x}{m_y}\right) \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

$$:= \ell \in [1,2)$$
Range reduction of division

- Express the exact result $r = x/y$ as:

$$r = \ell \cdot 2^d \Rightarrow \text{RN}(x/y) = \text{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1, 2) \quad \text{and} \quad d \in \{e_{\min}, \ldots, e_{\max}\}$$

- Definition

$$c = 1 \quad \text{if} \quad m_x \geq m_y, \quad \text{and} \quad c = 0 \quad \text{otherwise}$$

- Range reduction

$$x/y = (2^{1-c} \cdot m_x/m_y) \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

$$: = \ell \in [1,2)$$

How to compute the correctly-rounded significand $\text{RN}(\ell)$?
Methods for computing the correctly-rounded significand

- **Iterative methods**: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm
Methods for computing the correctly-rounded significand

- **Iterative methods**: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm

- **Multiplicative methods**: Newton-Raphson, Goldschmidt
 - Piñeiro and Bruguera (2002) – Raina’s Ph.D., FLIP 0.3 (2006)
 - exploit available multipliers, more ILP exposure
Methods for computing the correctly-rounded significand

- **Iterative methods**: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm

- **Multiplicative methods**: Newton-Raphson, Goldschmidt
 - Piñeiro and Bruguera (2002) – Raina’s Ph.D., FLIP 0.3 (2006)
 - exploit available multipliers, more ILP exposure

- **Polynomial-based methods**
 - Agarwal, Gustavson and Schmookler (1999)
 → univariate polynomial evaluation
 - Our approach
 → bivariate polynomial evaluation: maximal ILP exposure
Correct rounding via truncated one-sided approximation

- How to compute $\text{RN}(\ell)$, with $\ell = 2^{1-c} \cdot m_x / m_y$?

- Three steps for correct rounding computation
 1. compute $v = 1.v_1 \ldots v_{k-2}$ such that $-2^{-p} \leq \ell - v < 0$
 → implied by $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$
 → bivariate polynomial evaluation
 2. compute u as the truncation of v after p fraction bits
 3. determine $\text{RN}(\ell)$ after possibly adding 2^{-p}
Correct rounding via truncated one-sided approximation

- How to compute $\text{RN}(\ell)$, with $\ell = 2^{1-c} \cdot m_x/m_y$?

- **Three steps** for correct rounding computation
 1. compute $v = 1.v_1 \ldots v_{k-2}$ such that $-2^{-p} \leq \ell - v < 0$
 → implied by $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$
 → bivariate polynomial evaluation
 2. compute u as the truncation of v after p fraction bits
 3. determine $\text{RN}(\ell)$ after possibly adding 2^{-p}

How to compute the one-sided approximation v and then deduce $\text{RN}(\ell)$?
One-sided approximation via bivariate polynomials

1. Consider \(\ell + 2^{-p-1} \) as the exact result of the function

\[
F(s, t) = s/(1 + t) + 2^{-p-1}
\]

at the points \(s^* = 2^{1-c} \cdot m_x \) and \(t^* = m_y - 1 \)
One-sided approximation via bivariate polynomials

1. Consider \(\ell + 2^{-p-1} \) as the exact result of the function

\[
F(s, t) = s/(1 + t) + 2^{-p-1}
\]

at the points \(s^* = 2^{1-c} \cdot m_x \) and \(t^* = m_y - 1 \)

2. Approximate \(F(s, t) \) by a bivariate polynomial \(P(s, t) \)

\[
P(s, t) = s \cdot a(t) + 2^{-p-1}
\]

\(\rightarrow a(t) \): univariate polynomial approximant of \(1/(1 + t) \)

\(\rightarrow \) approximation error \(E_{\text{approx}} \)
One-sided approximation via bivariate polynomials

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $$F(s, t) = s/(1 + t) + 2^{-p-1}$$

 at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate $F(s, t)$ by a bivariate polynomial $P(s, t)$

 $$P(s, t) = s \cdot a(t) + 2^{-p-1}$$

 \rightarrow $a(t)$: univariate polynomial approximant of $1/(1 + t)$
 \rightarrow approximation error E_{approx}

3. Evaluate $P(s, t)$ by a well-chosen efficient evaluation program \mathcal{P}

 $$v = \mathcal{P}(s^*, t^*)$$

 \rightarrow evaluation error E_{eval}
One-sided approximation via bivariate polynomials

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s, t) = s/(1 + t) + 2^{-p-1}$$

at the points $s^* = 2^{1-c} \cdot mx$ and $t^* = my - 1$

2. Approximate $F(s, t)$ by a bivariate polynomial $P(s, t)$

$$P(s, t) = s \cdot a(t) + 2^{-p-1}$$

\rightarrow $a(t)$: univariate polynomial approximant of $1/(1 + t)$

\rightarrow approximation error E_{approx}

3. Evaluate $P(s, t)$ by a well-chosen efficient evaluation program \mathcal{P}

$$v = \mathcal{P}(s^*, t^*)$$

\rightarrow evaluation error E_{eval}

How to ensure that $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$?
Sufficient error bounds

To ensure \(|(\ell + 2^{-p-1}) - v| < 2^{-p-1} \)

it suffices to ensure that \(\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1} \),

since

\[
|\ell + 2^{-p-1} - v| \leq \mu \cdot E_{\text{approx}} + E_{\text{eval}} \quad \text{with} \quad \mu = 4 - 2^{3-p}
\]
Sufficient error bounds

- To ensure \(|(\ell + 2^{-p-1}) - v| < 2^{-p-1}\)

 it suffices to ensure that \(\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1}\),

 since

 \[|(\ell + 2^{-p-1}) - v| \leq \mu \cdot E_{\text{approx}} + E_{\text{eval}}\]

 with \(\mu = 4 - 2^{3-p}\)

- This gives the following sufficient conditions

 \[E_{\text{approx}} < 2^{-p-1}/\mu \implies E_{\text{eval}} < 2^{-p-1} - \mu \cdot E_{\text{approx}}\]
Sufficient error bounds

- To ensure \(|(\ell + 2^{-p-1}) - v| < 2^{-p-1}\)

 it suffices to ensure that \(\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1}\),

 since

 \[
 |(\ell + 2^{-p-1}) - v| \leq \mu \cdot E_{\text{approx}} + E_{\text{eval}} \quad \text{with} \quad \mu = 4 - 2^{3-p}
 \]

- This gives the following sufficient conditions

 \[
 E_{\text{approx}} \leq \theta \quad \text{with} \quad \theta < 2^{-p-1}/\mu \quad \Rightarrow \quad E_{\text{eval}} < \eta = 2^{-p-1} - \mu \cdot \theta
 \]
Example for the *binary32* division

- Sufficient conditions with $\mu = 4 - 2^{-21}$

\[
E_{\text{approx}} \leq \theta \quad \text{with} \quad \theta < 2^{-25}/\mu \quad \text{and} \quad E_{\text{eval}} < \eta = 2^{-25} - \mu \cdot \theta
\]
Example for the *binary32* division

- **Sufficient conditions with** $\mu = 4 - 2^{-21}$

\[E_{\text{approx}} \leq \theta \quad \text{with} \quad \theta < 2^{-25}/\mu \quad \text{and} \quad E_{\text{eval}} < \eta = 2^{-25} - \mu \cdot \theta \]

- **Approximation of** $1/(1 + t)$ **by a Remez-like polynomial** of degree 10

\[
\begin{align*}
E_{\text{approx}} & \leq \theta, \\
\text{with} \quad \theta &= 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9} \\
E_{\text{eval}} & < \eta, \\
\text{with} \quad \eta & \approx 7.4 \cdot 10^{-9}
\end{align*}
\]
Flowchart for generating efficient and certified C codes

\[F(s,t) \quad E_{\text{approx}} \leq \theta \quad E_{\text{eval}} < \eta \]

Computation of polynomial approximant

Computation of low latency parenthesizations

Selection of effective parenthesizations

\[|(\ell + 2^{-p-1}) - v| < 2^{-p-1} \]

ST231 features

C code

Certificate

v

truncation

u
Rounding condition: definition

- Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x / m_y$$

- The exact value ℓ may have an infinite number of bits
 \rightarrow the sticky bit cannot always be computed
Rounding condition: definition

- Approximation u of ℓ with
 \[
 \ell = 2^{1-c} \cdot m_x / m_y
 \]
- The exact value ℓ may have an infinite number of bits
 \Rightarrow the sticky bit cannot always be computed

- Compute $\text{RN}(\ell)$ requires to be able to decide whether $u \geq \ell$
 \Rightarrow ℓ cannot be a midpoint
Rounding condition: definition

- Approximation \(u \) of \(\ell \) with
 \[
 \ell = 2^{1-c} \cdot \frac{m_x}{m_y}
 \]

- The exact value \(\ell \) may have an infinite number of bits
 → the sticky bit cannot always be computed

- Compute \(\text{RN}(\ell) \) requires to be able to decide whether \(u \geq \ell \)
 → \(\ell \) cannot be a midpoint

- Rounding condition: \(u \geq \ell \)
 \[
 u \geq \ell \iff u \cdot m_y \geq 2^{1-c} \cdot m_x
 \]
Rounding condition: implementation in integer arithmetic

- Rounding condition: \(u \cdot m_y \geq 2^{1-c} \cdot m_x \)

- Approximation \(u \) and \(m_y \): representable with 32 bits

\[
\begin{array}{c}
\text{ } \times \\
\hline
u \\
m_y \\
\hline
u \cdot m_y
\end{array}
\]

- \(u \cdot m_y \) is exactly representable with 64 bits
Rounding condition: implementation in integer arithmetic

- Rounding condition: \(u \cdot m_y \geq 2^{1-c} \cdot m_x \)

- Approximation \(u \) and \(m_y \): representable with 32 bits

\[
\begin{array}{c}
 u \\
\times \\
 m_y \\
\hline \\
 u \cdot m_y \\
2^{1-c} \cdot m_x \\
\end{array}
\]

- \(u \cdot m_y \) is exactly representable with 64 bits
- \(2^{1-c} \cdot m_x \) is representable with 32 bits since \(c \in \{0, 1\} \)
Rounding condition: implementation in integer arithmetic

- **Rounding condition**: \(u \cdot m_y \geq 2^{1-c} \cdot m_x \)

- **Approximation** \(u \) and \(m_y \): representable with 32 bits

\[
\begin{align*}
\text{u} &\times \\
m_y &\geq \\
2^{1-c} \cdot m_x
\end{align*}
\]

- \(u \cdot m_y \) is exactly representable with 64 bits
- \(2^{1-c} \cdot m_x \) is representable with 32 bits since \(c \in \{0, 1\} \)

\(\Rightarrow \) one \(32 \times 32 \rightarrow 32\)-bit multiplication and one comparison
Flowchart for generating efficient and certified C codes

\[F(s,t) \quad E_{\text{approx}} \leq \theta \quad E_{\text{eval}} < \eta \]

- Computation of polynomial approximant
- Computation of low latency parenthesizations
- Selection of effective parenthesizations

C code
Certificate

ST231 features
Flowchart for generating efficient and certified C codes

\[F(s, t) \quad E_{\text{approx}} \leq \theta \quad E_{\text{eval}} < \eta \]

- Computation of polynomial approximant
- Computation of low latency parenthesizations
- Selection of effective parenthesizations
- C code
- Certificate

ST231 features
Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation
 - Classical evaluation methods
 - Computation of all parenthesizations
 - Towards low evaluation latency

3. Selection of effective evaluation parenthesizations

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs
Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
 - reduces the evaluation latency on unbounded parallelism
Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
 \rightarrow reduces the evaluation latency on unbounded parallelism

- Evaluation program $P = \text{main part of the full software implementation}$
 \rightarrow dominates the cost
Objectives

- Compute an efficient parenthesization for evaluating \(P(s, t) \)
 \(\rightarrow \) reduces the evaluation latency on unbounded parallelism

- Evaluation program \(P \) = main part of the full software implementation
 \(\rightarrow \) dominates the cost

- Two families of algorithms
 - algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and Stockmeyer (1964), ...
 \(\rightarrow \) ill-suited in the context of fixed-point arithmetic
 - algorithms without coefficient adaptation
Objectives

- Compute an efficient parenthesization for evaluating $P(s, t)$
 - reduces the evaluation latency on unbounded parallelism

- Evaluation program P = main part of the full software implementation
 - dominates the cost

- Two families of algorithms
 - algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
 - ill-suited in the context of fixed-point arithmetic
 - algorithms without coefficient adaptation
Classical parenthesesizations for binary32 division

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- Horner’s rule: \((3 + 1) \times 11 = 44\) cycles
 - \(\rightarrow\) no ILP exposure
Classical parenthesizations for *binary32* division

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- Horner’s rule: \((3 + 1) \times 11 = 44\) cycles
 \rightarrow \text{no ILP exposure}

- Second-order Horner’s rule: 27 cycles
 \rightarrow \text{evaluation of odd and even parts independently with Horner, more ILP}
Classical parentheses for *binary32* division

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- **Horner’s rule:** \((3 + 1) \times 11 = 44\) cycles
 \(\rightarrow\) no ILP exposure

- **Second-order Horner’s rule:** 27 cycles
 \(\rightarrow\) evaluation of odd and even parts independently with Horner, more ILP

- **Estrin’s method:** 19 cycles
 \(\rightarrow\) evaluation of high and low parts in parallel, even more ILP
 \(\rightarrow\) distributing the multiplication by \(s\) in the evaluation of \(a(t)\) \(\rightarrow\) 16 cycles
Classical parenthesizations for *binary32* division

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- **Horner’s rule:** \((3 + 1) \times 11 = 44\) cycles
 - \(\rightarrow\) no ILP exposure
- **Second-order Horner’s rule:** 27 cycles
 - \(\rightarrow\) evaluation of odd and even parts independently with *Horner*, more ILP
- **Estrin’s method:** 19 cycles
 - \(\rightarrow\) evaluation of high and low parts in parallel, even more ILP
 - \(\rightarrow\) distributing the multiplication by \(s\) in the evaluation of \(a(t) \rightarrow 16\) cycles

- ...

 We can do better.

How to explore the solution space of parenthesizations?
Algorithm for computing all parenthesizations

\[a(x, y) = \sum_{0 \leq i \leq n_x} \sum_{0 \leq j \leq n_y} a_{i,j} \cdot x^i \cdot y^j \quad \text{with} \quad n = n_x + n_y, \quad \text{and} \quad a_{n_x,n_y} \neq 0 \]

Example

Let \(a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y \). Then

\[a_{1,0} + a_{1,1} \cdot y \] is a valid expression, while \(a_{1,0} \cdot x + a_{1,1} \cdot x \) is not.
Algorithm for computing all parenthesizations

\[a(x, y) = \sum_{0 \leq i \leq n_x} \sum_{0 \leq j \leq n_y} a_{i,j} \cdot x^i \cdot y^j \quad \text{with} \quad n = n_x + n_y, \quad \text{and} \quad a_{n_x,n_y} \neq 0 \]

Example

Let \(a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y \). Then

\[a_{1,0} + a_{1,1} \cdot y \] is a valid expression, while \(a_{1,0} \cdot x + a_{1,1} \cdot x \) is not.

- Exhaustive algorithm: iterative process
 \[\rightarrow \text{step } k = \text{computation of all the valid expressions of total degree } k \]

- 3 building rules for computing all parenthesizations
Low latency parenthesization computation

Computation of all parenthesizations

Number of parenthesizations

<table>
<thead>
<tr>
<th>$n_x = 1$</th>
<th>$n_x = 2$</th>
<th>$n_x = 3$</th>
<th>$n_x = 4$</th>
<th>$n_x = 5$</th>
<th>$n_x = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_y = 0$</td>
<td>1</td>
<td>7</td>
<td>163</td>
<td>11602</td>
<td>2334244</td>
</tr>
<tr>
<td>$n_y = 1$</td>
<td>51</td>
<td>67467</td>
<td>1133220387</td>
<td>207905478247998</td>
<td>...</td>
</tr>
<tr>
<td>$n_y = 2$</td>
<td>67467</td>
<td>106191222651</td>
<td>10139277122276921118</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Number of generated parenthesizations for evaluating a bivariate polynomial

- Timings for parenthesization computation
 - for univariate polynomial of degree 5 ≈ 1h on a 2.4 GHz core
 - for bivariate polynomial of degree (2,1) ≈ 30s
 - for $P(s, t)$ of degree (3,1) ≈ 7s (88384 schemes)

- Optimization for univariate polynomial and $P(s, t)$
 - univariate polynomial of degree 5 ≈ 4min
 - for $P(s, t)$ of degree (3,1) ≈ 2s (88384 schemes)
Number of parenthesizations

→ minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)
→ minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

How to compute only parenthesizations of low latency?
Determination of a *target* latency

- Target latency = *minimal cost* for evaluating

\[a_{0,0} + a_{nx,ny} \cdot x^{nx} y^{ny} \]

- if no scheme satisfies \(\tau \) then increase \(\tau \) and restart
Determination of a \textit{target} latency

- Target latency $= \text{minimal cost for evaluating}$

\[a_{0,0} + a_{n_x,n_y} \cdot x^{n_x} y^{n_y} \]

- if no scheme satisfies τ then increase τ and restart

- Static target latency τ_{static}
 - as general as evaluating $a_{0,0} + x^{n_x+n_y+1}$

\[\tau_{\text{static}} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil \]
Determination of a target latency

- **Target latency** = minimal cost for evaluating
 \[a_{0,0} + a_{n_x,n_y} \cdot x^{n_x} y^{n_y} \]
 - if no scheme satisfies \(\tau \) then increase \(\tau \) and restart

- **Static target latency** \(\tau_{static} \)
 - as general as evaluating \(a_{0,0} + x^{n_x+n_y+1} \)
 \[\tau_{static} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil \]

- **Dynamic target latency** \(\tau_{dynamic} \)
 - cost of operator on \(a_{n_x,n_y} \) and delay on intederminates
 - dynamic programming
Optimized search of *best* parenthesizations

Example

Let \(a(x, y) \) be a degree-2 bivariate polynomial

\[
a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.
\]

\[\Rightarrow \text{find a best splitting of the polynomial} \rightarrow \text{low latency} \]
Optimized search of *best* parenthesizations

Example

Let \(a(x, y) \) be a degree-2 bivariate polynomial

\[
a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.
\]

\[\Rightarrow \text{find a best splitting of the polynomial} \rightarrow \text{low latency}\]

\[
\left(a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y \right) + \left(a_{1,1} \cdot x \cdot y \right)
\]
Optimized search of best parenthesizations

Example
Let $a(x, y)$ be a degree-2 bivariate polynomial

$$a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

\Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$(a_{0,0} + a_{1,0} \cdot x) + a_{0,1} \cdot y + (a_{1,1} \cdot x \cdot y)$$
Optimized search of *best* parenthesizations

Example
Let $a(x, y)$ be a degree-2 bivariate polynomial

$$a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

⇒ find a best splitting of the polynomial → low latency

$$\left(a_{0,0} + (a_{1,0} \cdot x + a_{0,1} \cdot y) \right) + \left(a_{1,1} \cdot x \cdot y \right)$$
Optimized search of *best* parenthesizations

Example

Let \(a(x, y) \) be a degree-2 bivariate polynomial

\[
a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.
\]

⇒ find a best splitting of the polynomial → low latency

\[
\left(a_{0,0} + a_{1,0} \cdot x \right) + \left(a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y \right)
\]
Optimized search of *best* parenthesizations

Example

Let \(a(x, y) \) be a degree-2 bivariate polynomial

\[
a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.
\]

⇒ find a best splitting of the polynomial → low latency

\[
a_{0,0} + \left(a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y \right)
\]
Optimized search of best parenthesizations

Example

Let $a(x, y)$ be a degree-2 bivariate polynomial

$$a(x, y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$
Efficient evaluation parenthesization generation

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- First target latency \(\tau = 13 \)
 - \(\rightarrow \) no parenthesization found
Efficient evaluation parenthesization generation

\[P(s, t) = 2^{-25} + s \cdot \sum_{0 \leq i \leq 10} a_i \cdot t^i \]

- First target latency \(\tau = 13 \)
 \(\rightarrow \) no parenthesization found

- Second target latency \(\tau = 14 \)
 \(\rightarrow \) obtained in about 10 sec.

- Classical methods
 - Horner: 44 cycles,
 - Estrin: 19 cycles,
 - Estrin by distributing \(s \): 16 cycles
Flowchart for generating efficient and certified C codes

\[F(s,t) \quad E_{\text{approx}} \leq \theta \quad E_{\text{eval}} < \eta \]

- Computation of polynomial approximant
- Computation of low latency parenthesizations
- Selection of effective parenthesizations
- ST231 features
- C code
- Certificate
Flowchart for generating efficient and certified C codes

\[F(s,t) \quad E_{\text{approx}} \leq \theta \quad E_{\text{eval}} < \eta \]

Computation of polynomial approximant

Computation of low latency parenthesizations

Selection of effective parenthesizations

C code

Certificate

ST231 features
Outline of the talk

1. Design and implementation of floating-point operators

2. Low latency parenthesization computation

3. Selection of effective evaluation parenthesizations
 - General framework
 - Automatic certification of generated C codes

4. Numerical results

5. Conclusions

6. And now in ParLab: Debugging of floating-point programs
Selection of effective parenthesizations

1. Arithmetic Operator Choice
 ▶ all intermediate variables are of constant sign
Selection of effective parenthesizations

1. Arithmetic Operator Choice
 ▶ all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231
 ▶ constraints of architecture: cost of operators, instructions bundling, ...
 ▶ delays on indeterminates
Selection of effective evaluation parenthesizations

1. Arithmetic Operator Choice
 ▶ all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231
 ▶ constraints of architecture: cost of operators, instructions bundling, ...
 ▶ delays on indeterminates

3. Certification of generated C code
 ▶ **straightline** polynomial evaluation program
 ▶ “certified C code”: we can bound the evaluation error in integer arithmetic
Certification of evaluation error for binary32 division

- Sufficient conditions with $\mu = 4 - 2^{-21}$

\[E_{\text{approx}} \leq \theta \quad \text{with} \quad \theta < 2^{-25}/\mu \quad \text{and} \quad E_{\text{eval}} < \eta = 2^{-25} - \mu \cdot \theta \]

- $E_{\text{approx}} \leq \theta$, with $\theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$

- $E_{\text{eval}} < \eta$, with $\eta \approx 7.4 \cdot 10^{-9}$
Certification of evaluation error for *binary32* division

- **Case 1**: $m_x \geq m_y$ → condition satisfied
- **Case 2**: $m_x < m_y$ → condition not satisfied: $E_{\text{eval}} \geq \eta$

$s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$
Certification of evaluation error for *binary32* division

- **Case 1:** $m_x \geq m_y \rightarrow$ condition satisfied
- **Case 2:** $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \geq \eta$

$$s^* = 3.935581684112548828125 \text{ and } t^* = 0.97490441799163818359375$$

1. determine an interval I around this point
Certification of evaluation error for *binary32* division

- **Case 1:** $m_x \geq m_y \rightarrow$ condition satisfied
- **Case 2:** $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \geq \eta$

\[s^* = 3.935581684112548828125 \text{ and } t^* = 0.97490441799163818359375 \]

1. determine an interval I around this point
2. compute E_{approx} over I
3. determine an evaluation error bound η
4. check if $E_{\text{eval}} < \eta$?
Certification of evaluation error for *binary32* division

- Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

\[
E_{\text{approx}}^{(i)} \leq \theta^{(i)} \quad \text{with} \quad \theta^{(i)} < 2^{-25}/\mu \quad \text{and} \quad E_{\text{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot \theta^{(i)}
\]
Certification of evaluation error for *binary32* division

- Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

\[
E_{\text{approx}}^{(i)} \leq \theta^{(i)} \quad \text{with} \quad \theta^{(i)} < 2^{-25}/\mu \quad \text{and} \quad E_{\text{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot \theta^{(i)}
\]

- $E_{\text{approx}}^{(i)} \leq \theta^{(i)}$
- $E_{\text{eval}}^{(i)} < \eta^{(i)}$
Certification using a dichotomy-based strategy

- Implementation of the splitting by **dichotomy**

 - for each $\mathcal{T}^{(i)}$
 1. compute a certified approximation error bound $\theta^{(i)}$
 2. determine an evaluation error bound $\eta^{(i)}$
 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$

 \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy

 - for each $\mathcal{T}^{(i)}$
 1. compute a certified approximation error bound $\theta^{(i)}$
 2. determine an evaluation error bound $\eta^{(i)}$
 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$

\Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy

 ▶ for each $\mathcal{T}^{(i)}$

 1. compute a certified approximation error bound $\theta^{(i)}$

 2. determine an evaluation error bound $\eta^{(i)}$

 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$

 \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

- Example of *binary32* implementation

 → launched on a 64 processor grid

 → 36127 subintervals found in several hours (≈ 5h.)
Outline of the talk

1. Design and implementation of floating-point operators
2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs
Performances of FLIP on ST231

Performances on ST231, in RoundTiesToEven

⇒ Speed-up between 20 and 50%
Performances of FLIP on ST231

⇒ Speed-up between 20 and 50 %

- Implementations of other operators

<table>
<thead>
<tr>
<th>operator</th>
<th>x^{-1}</th>
<th>$x^{-1/2}$</th>
<th>$x^{1/3}$</th>
<th>$x^{-1/3}$</th>
<th>$x^{-1/4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>29</td>
<td>34</td>
<td>40</td>
<td>42</td>
</tr>
</tbody>
</table>

Performances on ST231, in RoundTiesToEven (in number of cycles)
Outline of the talk

1. Design and implementation of floating-point operators
2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs
Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division
Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division
 - polynomial evaluation-based method, very high ILP exposure
- \Rightarrow new, much faster version of FLIP
Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division
 - polynomial evaluation-based method, very high ILP exposure
 ⇒ new, much faster version of FLIP

- Code generation for efficient and certified polynomial evaluation
 - methodologies and tools for automating polynomial evaluation implementation
 - heuristics and techniques for generating quickly efficient and certified C codes
 ⇒ CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP
Outline of the talk

1. Design and implementation of floating-point operators
2. Low latency parenthesization computation
3. Selection of effective evaluation parenthesizations
4. Numerical results
5. Conclusions
6. And now in ParLab: Debugging of floating-point programs
Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
 - either at C code level or at run-time

- What are the usual anomalies?
 - rounding error accumulations
 - conditional branches involving floating-point comparisons
 - may fail due to the subtleties of floating-point arithmetic
 - difficulties of programming languages
 - Fortran: constants converted in full double precision accuracy if written with the dX notation
 - overflows, resolution of ill-conditioned problems
 - returned result may be completely wrong
 - benign / catastrophic cancellation, ...
Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
 - either at C code level or at run-time

- How to detect these usual anomalies?
 - altering rounding mode of floating-point arithmetic hardware
 - may not be used for remedying problems
 - extending precision of floating-point computation
 - run time may increase significantly (due to the use of software interface)
 - using interval arithmetic
 - produces a certificate, but run time cost is the greatest
Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

How to detect these usual anomalies?

▶ altering rounding mode of floating-point arithmetic hardware
 → may not be used for remedying problems

▶ extending precision of floating-point computation
 → run time may increase significantly (due to the use of software interface)

▶ using interval arithmetic
 → produces a certificate, but run time cost is the greatest

How to detect quickly the most sensitive part of a C program?
Detection using *delta-debugging*

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 → implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
  float a = 1e15f;
  float b = 1.0f;
  float c = a + b;
  float d = c - a;   // d = 0.0

  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- **What is the value of \(d \)?**
 - Using *binary32* floating-point arithmetic

 → \(d = 0.0 \)
 - Using *binary64* floating-point arithmetic

 → \(d = 1.0 \)
Detection using \textit{delta-debugging}

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 \rightarrow implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
    double a = 1e15f;
    double b = 1.0f;
    float c = a + b;
    float d = c - a;  // $d = 0.0$

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- **What is the value of d?**
 - Using \textit{binary32} floating-point arithmetic
 \rightarrow $d = 0.0$
 - Using \textit{binary64} floating-point arithmetic
 \rightarrow $d = 1.0$
Detection using *delta-debugging*

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 → implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
    float a = 1e15f;
    float b = 1.0f;
    double c = a + b;
    double d = c - a;  // d = 0.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- **What is the value of \(d\)?**
 - Using *binary32* floating-point arithmetic
 → \(d = 0.0 \)
 - Using *binary64* floating-point arithmetic
 → \(d = 1.0 \)
Detection using \textit{delta-debugging}

\begin{itemize}
 \item \textbf{Principle}: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 \item \textarrow{implementation by binary search}
\end{itemize}

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
  double a = 1e15f;
  float b = 1.0f;
  float c = a + b;
  float d = c - a;  // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

\begin{itemize}
 \item \textbf{What is the value of } d?
 \begin{itemize}
 \item Using \textit{binary32} floating-point arithmetic
 \item \textarrow{$d = 0.0$}
 \item Using \textit{binary64} floating-point arithmetic
 \item \textarrow{$d = 1.0$}
 \end{itemize}
\end{itemize}
Detection using \textit{delta-debugging}

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 \[\rightarrow \text{implementation by binary search} \]

```
#include <math.h>
#include <stdio.h>

int main( void ) {
    float a = 1e15f;    
    double b = 1.0f;    
    float c = a + b;    
    float d = c - a;    
    // d = 0.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- **What is the value of \(d\)?**
 - Using \textit{binary32} floating-point arithmetic

 \[\rightarrow d = 0.0 \]
 - Using \textit{binary64} floating-point arithmetic

 \[\rightarrow d = 1.0 \]
Detection using *delta-debugging*

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 → implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
    float a = 1e15f;
    float b = 1.0f;
    double c = a + b;
    float d = c - a;   // d = 0.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- **What is the value of d?**
 - Using *binary32* floating-point arithmetic

 → $d = 0.0$
 - Using *binary64* floating-point arithmetic

 → $d = 1.0$
Detection using *delta-debugging*

- **Principle**: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

 → implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
    float a = 1e15f;
    float b = 1.0f;
    float c = a + b;
    double d = c - a;  // d = 0.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- **What is the value of \(d\)?**

 - Using *binary32* floating-point arithmetic

 → \(d = 0.0\)

 - Using *binary64* floating-point arithmetic

 → \(d = 1.0\)
Detection using \textit{delta-debugging}

\textbf{Principle}: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

\textarrow implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main( void )
{
    float a = 1e15f;
    double b = 1.0f;
    double c = a + b;
    double d = c - a;  // d = 1.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

\textbf{What is the value of }d\textbf{?}

\begin{itemize}
 \item Using \textit{binary32} floating-point arithmetic
 \textarrow $d = 0.0$
 \item Using \textit{binary64} floating-point arithmetic
 \textarrow $d = 1.0$
\end{itemize}
Detection using *delta-debugging*

Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)

→ implementation by binary search

```c
#include <math.h>
#include <stdio.h>

int main(void)
{
    float a = 1e15f;
    double b = 1.0f;
    double c = a + b;
    float d = c - a; // d = 1.0

    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

What is the value of d?

- Using *binary32* floating-point arithmetic
 → $d = 0.0$

- Using *binary64* floating-point arithmetic
 → $d = 1.0$
Current work

- **Delta-debugging**
 - how to determine initial set of changes?
 - implementation of other transformations

- Implementation of an exception handler
 - may be useful for building initial set of *delta-debugging* algorithm

- Detection of infinite loops, ...
Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy
ParLab EECS University of California, Berkeley

Ph.D. thesis’ work done under the direction of Claude-Pierre Jeannerod and Gilles Villard
Arénaire INRIA project-team (LIP, Ens Lyon, France)