BeBOP meeting (ParLab, EECS, UC Berkeley) Berkeley, CA, USA - March 30, 2010

Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

ParLab

EECS University of California, Berkeley

Ph.D. thesis' work done under the direction of Claude-Pierre Jeannerod and Gilles Villard Arénaire INRIA project-team (LIP, Ens Lyon, France)

Guillaume Revy - March 30, 2010

Implementation of binary floating-point arithmetic on embedded integer processors 1/44

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

Embedded systems
No FPU

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications

demanding on floating-point computations

How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for IEEE 754 floating-point arithmetic on integer processors

- Existing software for IEEE 754 floating-point arithmetic:
 - ► Software floating-point support of GCC, Glibc and µClibc, GoFast Floating-Point Library
 - SoftFloat (→ STlib)
 - FLIP (Floating-point Library for Integer Processors)
 - software support for *binary32* floating-point arithmetic on integer processors
 - correctly-rounded addition, subtraction, multiplication, division, square root, reciprocal, ...
 - handling subnormals, and handling special inputs

Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?

Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?
 - \Rightarrow need for automation and certification

Underlying problem: development "by hand"

- long and tedious, error prone
- new target? new floating-point format?
 - \Rightarrow need for automation and certification

 Current challenge: tools and methodologies for the automatic generation of efficient and certified programs

optimized for a given format, for the target architecture

- Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)
- Spiral project: hardware and software code generation for DSP algorithms Can we teach computers to write fast libraries?

- Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)
- Spiral project: hardware and software code generation for DSP algorithms *Can we teach computers to write fast libraries?*
- Our tool: CGPE (Code Generation for Polynomial Evaluation)
 In the particular case of polynomial evaluation, we can teach computers to write fast and certified codes, for a given target and optimized for a given format.

Basic blocks for implementing correctly-rounded operators

→ ILP exposure

Guillaume Revy - March 30, 2010

Basic blocks for implementing correctly-rounded operators

- Low latency, correctly-rounded implementations
- → ILP exposure

Basic blocks for implementing correctly-rounded operators

Guillaume Revy - March 30, 2010

Outline of the talk

- 1. Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach Implementation of correct rounding
- 2. Low latency parenthesization computation

Classical evaluation methods Computation of all parenthesizations Towards low evaluation latency

3. Selection of effective evaluation parenthesizations

General framework Automatic certification of generated C codes

- 4. Numerical results
- 5. Conclusions
- 6. And now in ParLab: Debugging of floating-point programs

Outline of the talk

- 1. Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach Implementation of correct rounding
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

$$(x,y) \rightarrow$$
 Division C code \rightarrow RN (x/y)

- Input (x, y) and output RN(x/y): normal numbers
 - $\rightarrow~$ no underflow nor overflow
 - \rightarrow precision *p*, extremal exponents *e*_{min}, *e*_{max}

$$x = \pm 1.m_{x,1}\dots m_{x,p-1} \cdot 2^{e_x}$$
 with $e_x \in \{e_{\min},\dots,e_{\max}\}$

$$(x,y) \rightarrow$$
 Division C code \rightarrow RN (x/y)

- Input (x, y) and output RN(x/y): normal numbers
 - \rightarrow no underflow nor overflow
 - \rightarrow precision *p*, extremal exponents *e*_{min}, *e*_{max}

$$\mathbf{x} = \pm 1.m_{x,1}\dots m_{x,p-1}\cdot 2^{e_x}$$
 with $e_x \in \{e_{\min},\dots,e_{\max}\}$

$$(X,Y) \rightarrow \text{Division C code} \rightarrow R$$

Standard binary encoding: k-bit unsigned integer X encodes input x

Computation: k-bit unsigned integers

 \rightarrow integer and fixed-point arithmetic

$$X, Y) \rightarrow \text{Division code} R$$

Standard binary encoding: k-bit unsigned integer X encodes input x

Computation: k-bit unsigned integers

 \rightarrow integer and fixed-point arithmetic

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min},\ldots,e_{\max}\}$

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min},\ldots,e_{\max}\}$

Definition

$$c=1$$
 if $m_x \ge m_y$, and $c=0$ otherwise

• Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min},\ldots,e_{\max}\}$

Definition

$$c = 1$$
 if $m_x \ge m_y$, and $c = 0$ otherwise

Range reduction

$$x/y = \underbrace{\left(2^{1-c} \cdot m_x/m_y\right)}_{:=\ell \in [1,2)} \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min},\ldots,e_{\max}\}$

Definition

$$c=1$$
 if $m_x \ge m_y$, and $c=0$ otherwise

Range reduction

$$x/y = \underbrace{\left(2^{1-c} \cdot m_x/m_y\right)}_{:=\ell \in [1,2)} \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

How to compute the correctly-rounded significand $RN(\ell)$?

Guillaume Revy - March 30, 2010

Methods for computing the correctly-rounded significand

■ Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm

Methods for computing the correctly-rounded significand

Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm
- Multiplicative methods: Newton-Raphson, Goldschmidt
 - Piñeiro and Bruguera (2002) Raina's Ph.D., FLIP 0.3 (2006)
 - exploit available multipliers, more ILP exposure

Methods for computing the correctly-rounded significand

Iterative methods: restoring, non-restoring, SRT, ...

- Oberman and Flynn (1997)
- minimal ILP exposure, sequential algorithm

Multiplicative methods: Newton-Raphson, Goldschmidt

- Piñeiro and Bruguera (2002) Raina's Ph.D., FLIP 0.3 (2006)
- exploit available multipliers, more ILP exposure
- Polynomial-based methods
 - ► Agarwal, Gustavson and Schmookler (1999) → univariate polynomial evaluation
 - Our approach
 - \rightarrow bivariate polynomial evaluation: maximal ILP exposure

Correct rounding via truncated one-sided approximation

• How to compute $RN(\ell)$, with $\ell = 2^{1-c} \cdot m_x/m_y$?

Three steps for correct rounding computation

- 1. compute $v = 1.v_1 ... v_{k-2}$ such that $-2^{-p} \le \ell v < 0$
 - \rightarrow implied by $|(\ell + 2^{-p-1}) \nu| < 2^{-p-1}$
 - \rightarrow bivariate polynomial evaluation
- 2. compute *u* as the truncation of *v* after *p* fraction bits
- 3. determine RN(ℓ) after possibly adding 2^{-p}

Correct rounding via truncated one-sided approximation

• How to compute $RN(\ell)$, with $\ell = 2^{1-c} \cdot m_x/m_y$?

Three steps for correct rounding computation

- 1. compute $v = 1.v_1 ... v_{k-2}$ such that $-2^{-p} \le \ell v < 0$
 - → implied by $|(\ell + 2^{-p-1}) v| < 2^{-p-1}$
 - \rightarrow bivariate polynomial evaluation
- 2. compute *u* as the truncation of *v* after *p* fraction bits
- 3. determine $RN(\ell)$ after possibly adding 2^{-p}

How to compute the one-sided approximation v and then deduce RN(ℓ)?

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1}$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1}$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}$

- \rightarrow *a*(*t*): univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation error E_{approx}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1}$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}$

- \rightarrow *a*(*t*): univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation error E_{approx}
- 3. Evaluate P(s, t) by a well-chosen efficient evaluation program \mathcal{P}

$$\mathbf{v}=\mathscr{P}(\mathbf{s}^*,t^*)$$

 \rightarrow evaluation error E_{eval}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

 $F(s,t) = s/(1+t) + 2^{-p-1}$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

 $P(s,t) = s \cdot a(t) + 2^{-p-1}$

- \rightarrow *a*(*t*): univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation error E_{approx}
- 3. Evaluate P(s, t) by a well-chosen efficient evaluation program \mathcal{P}

$$\mathbf{v} = \mathcal{P}(\mathbf{s}^*, t^*)$$

 \rightarrow evaluation error E_{eval}

How to ensure that
$$|(\ell + 2^{-p-1}) - \nu| < 2^{-p-1}$$
?

Sufficient error bounds

To ensure
$$|(\ell + 2^{-p-1}) - \nu| < 2^{-p-1}$$

 $\text{it suffices to ensure that} \quad \mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1},$

since

$$|(\ell + 2^{-p-1}) - v| \le \mu \cdot E_{\text{approx}} + E_{\text{eval}}$$
 with $\mu = 4 - 2^{3-p}$

Sufficient error bounds

To ensure
$$|(\ell + 2^{-p-1}) - \nu| < 2^{-p-1}$$

it suffices to ensure that $\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1}$,

since

$$|(\ell + 2^{-p-1}) - \nu| \le \mu \cdot E_{\text{approx}} + E_{\text{eval}}$$
 with $\mu = 4 - 2^{3-p}$

This gives the following sufficient conditions

$$E_{\text{approx}} < 2^{-p-1}/\mu \qquad \Rightarrow \qquad E_{\text{eval}} < 2^{-p-1} - \mu \cdot E_{\text{approx}}$$

Sufficient error bounds

To ensure
$$|(\ell + 2^{-p-1}) - \nu| < 2^{-p-1}$$

it suffices to ensure that $\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1}$,

since

$$|(\ell+2^{-p-1})-\nu| \leq \mu \cdot E_{\text{approx}} + E_{\text{eval}}$$
 with $\mu = 4 - 2^{3-p}$

This gives the following sufficient conditions

$$m{E}_{ ext{approx}} \leq heta$$
 with $m{ heta} < 2^{-
ho-1}/\mu$ \Rightarrow $m{E}_{ ext{eval}} < \eta = 2^{-
ho-1} - \mu \cdot m{ heta}$

Example for the *binary32* division

Sufficient conditions with
$$\mu = 4 - 2^{-21}$$

$$m{E}_{ ext{approx}} \leq heta$$
 with $m{ heta} < 2^{-25}/\mu$ and $m{E}_{ ext{eval}} < \eta = 2^{-25} - \mu \cdot m{ heta}$

Example for the *binary32* division

Sufficient conditions with
$$\mu = 4 - 2^{-21}$$

$$m{ extsf{E}_{ extsf{approx}}} \leq heta$$
 with $m{ heta} < 2^{-25}/\mu$ and $m{ extsf{E}_{ extsf{eval}}} < \eta = 2^{-25}-\mu \cdot m{ heta}$

Approximation of 1/(1+t) by a Remez-like polynomial of degree 10

Flowchart for generating efficient and certified C codes

Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x / m_y$$

- The exact value ℓ may have an infinite number of bits
 - \rightarrow the sticky bit cannot always be computed

Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x / m_y$$

- The exact value ℓ may have an infinite number of bits
 - \rightarrow the sticky bit cannot always be computed

- Compute $RN(\ell)$ requires to be able to decide whether $u \ge \ell$
 - $\rightarrow~\ell$ cannot be a midpoint

Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x / m_y$$

- The exact value ℓ may have an infinite number of bits
 - \rightarrow the sticky bit cannot always be computed

- Compute $RN(\ell)$ requires to be able to decide whether $u \ge \ell$
 - $\rightarrow~\ell$ cannot be a midpoint
- **Rounding condition:** $u \ge \ell$

$$u \geq \ell \quad \Longleftrightarrow \quad u \cdot m_y \geq 2^{1-c} \cdot m_x$$

Rounding condition: implementation in integer arithmetic

- **Rounding condition:** $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_v : representable with 32 bits

• $u \cdot m_v$ is exactly representable with 64 bits

Rounding condition: implementation in integer arithmetic

- **Rounding condition:** $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_y : representable with 32 bits

- $u \cdot m_v$ is exactly representable with 64 bits
- ▶ $2^{1-c} \cdot m_x$ is representable with 32 bits since $c \in \{0, 1\}$

Rounding condition: implementation in integer arithmetic

- **Rounding condition:** $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_y: representable with 32 bits

- $u \cdot m_y$ is exactly representable with 64 bits
- ▶ $2^{1-c} \cdot m_x$ is representable with 32 bits since $c \in \{0, 1\}$

\Rightarrow one 32 \times 32 \rightarrow 32-bit multiplication and one comparison

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes

Guillaume Revy - March 30, 2010

Outline of the talk

1. Design and implementation of floating-point operators

- 2. Low latency parenthesization computation Classical evaluation methods Computation of all parenthesizations Towards low evaluation latency
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

- Compute an efficient parenthesization for evaluating P(s,t)
 - $\rightarrow\,$ reduces the evaluation latency on unbounded parallelism

- Compute an efficient parenthesization for evaluating P(s,t)
 - $\rightarrow\,$ reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - \rightarrow dominates the cost

- Compute an efficient parenthesization for evaluating P(s,t)
 - \rightarrow reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - \rightarrow dominates the cost

Two families of algorithms

- algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
 - \rightarrow ill-suited in the context of fixed-point arithmetic
- algorithms without coefficient adaptation

- Compute an efficient parenthesization for evaluating P(s,t)
 - $\rightarrow\,$ reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - \rightarrow dominates the cost

Two families of algorithms

- algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
 - $\rightarrow~$ ill-suited in the context of fixed-point arithmetic
- algorithms without coefficient adaptation

Classical parenthesizations for binary32 division

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

• Horner's rule: $(3+1) \times 11 = 44$ cycles

 \rightarrow no ILP exposure

23/44

Classical parenthesizations for *binary32* division

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

• Horner's rule: $(3+1) \times 11 = 44$ cycles

- \rightarrow no ILP exposure
- Second-order Horner's rule: 27 cycles
 - \rightarrow evaluation of odd and even parts independently with Horner, more ILP

Classical parenthesizations for *binary32* division

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

■ Horner's rule: (3+1) × 11 = 44 cycles

 \rightarrow no ILP exposure

Second-order Horner's rule: 27 cycles

- \rightarrow evaluation of odd and even parts independently with Horner, more ILP
- Estrin's method: 19 cycles
 - $\rightarrow~$ evaluation of high and low parts in parallel, even more ILP
 - \rightarrow distributing the multiplication by *s* in the evaluation of $a(t) \rightarrow 16$ cycles

Classical parenthesizations for *binary32* division

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

- Horner's rule: $(3+1) \times 11 = 44$ cycles
 - \rightarrow no ILP exposure
- Second-order Horner's rule: 27 cycles
 - \rightarrow evaluation of odd and even parts independently with Horner, more ILP
- Estrin's method: 19 cycles
 - $\rightarrow~$ evaluation of high and low parts in parallel, even more ILP
 - \rightarrow distributing the multiplication by *s* in the evaluation of *a*(*t*) \rightarrow 16 cycles

We can do better.

How to explore the solution space of parenthesizations?

Algorithm for computing all parenthesizations

$$a(x,y) = \sum_{0 \le i \le n_x} \sum_{0 \le j \le n_y} a_{i,j} \cdot x^i \cdot y^j \quad \text{with} \quad n = n_x + n_y, \quad \text{and} \quad a_{n_x,n_y} \ne 0$$

Example

Let
$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y$$
. Then

 $a_{1,0} + a_{1,1} \cdot y$ is a valid expression, while $a_{1,0} \cdot x + a_{1,1} \cdot x$ is not.

Algorithm for computing all parenthesizations

$$a(x,y) = \sum_{0 \le i \le n_x} \sum_{0 \le j \le n_y} a_{i,j} \cdot x^i \cdot y^j \quad \text{with} \quad n = n_x + n_y, \quad \text{and} \quad a_{n_x,n_y} \ne 0$$

Example

Let
$$a(x,y) = a_{\scriptscriptstyle 0,0} + a_{\scriptscriptstyle 1,0} \cdot x + a_{\scriptscriptstyle 0,1} \cdot y + a_{\scriptscriptstyle 1,1} \cdot x \cdot y$$
. Then

 $a_{1,0} + a_{1,1} \cdot y$ is a valid expression, while $a_{1,0} \cdot x + a_{1,1} \cdot x$ is not.

Exhaustive algorithm: iterative process

 \rightarrow step *k* = computation of all the valid expressions of total degree *k*

3 building rules for computing all parenthesizations

Number of parenthesizations

	$n_X = 1$	$n_{X} = 2$	$n_X = 3$	$n_X = 4$	$n_X = 5$	$n_X = 6$
$n_y = 0$	1	7	163	11602	2334244	<u>1304066578</u>
<i>n</i> _y = 1	51	67467	1133220387	207905478247998		
$n_y = 2$	67467	106191222651	10139277122276921118			

Number of generated parenthesizations for evaluating a bivariate polynomial

- Timings for parenthesization computation
 - ightarrow for univariate polynomial of degree 5 pprox 1h on a 2.4 GHz core
 - \rightarrow for bivariate polynomial of degree (2,1) \approx 30s
 - \rightarrow for P(s,t) of degree (3,1) \approx 7s (88384 schemes)

• Optimization for univariate polynomial and P(s,t)

- ightarrow univariate polynomial of degree 5 pprox 4min
- \rightarrow for P(s,t) of degree (3,1) \approx 2s (88384 schemes)

Number of parenthesizations

→ minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

Number of parenthesizations

→ minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

How to compute only parenthesizations of low latency?

Determination of a *target* latency

Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

• if no scheme satisfies τ then increase τ and restart

Determination of a *target* latency

Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

- if no scheme satisfies τ then increase τ and restart
- Static target latency τ_{static}
 - as general as evaluating $a_{0,0} + x^{n_x + n_y + 1}$

$$\tau_{\text{static}} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil$$

Determination of a *target* latency

Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

- if no scheme satisfies τ then increase τ and restart
- Static target latency τ_{static}
 - as general as evaluating $a_{0,0} + x^{n_x + n_y + 1}$

$$\tau_{\text{static}} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil$$

- Dynamic target latency τ_{dynamic}
 - cost of operator on a_{nx,ny} and delay on intederminates
 - dynamic programming

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y) + (a_{1,1} \cdot x \cdot y)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$((a_{0,0} + a_{1,0} \cdot x) + a_{0,1} \cdot y) + (a_{1,1} \cdot x \cdot y)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0}+(a_{1,0}\cdot x+a_{0,1}\cdot y))+(a_{1,1}\cdot x\cdot y)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0} + a_{1,0} \cdot x) + (a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$a_{0,0} + (a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

 $\Rightarrow~$ find a best splitting of the polynomial \rightarrow low latency

Guillaume Revy - March 30, 2010

Efficient evaluation parenthesization generation

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

First target latency
$$\tau = 13$$

 \rightarrow no parenthesization found

Efficient evaluation parenthesization generation

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i \cdot t^i$$

- First target latency $\tau = 13$ \rightarrow no parenthesization found
- Second target latency $\tau = 14$
 - \rightarrow obtained in about 10 sec.
- Classical methods
 - Horner: 44 cycles,
 - Estrin: 19 cycles,
 - Estrin by distributing s: 16 cycles

Flowchart for generating efficient and certified C codes

Flowchart for generating efficient and certified C codes

Guillaume Revy - March 30, 2010

Outline of the talk

- 1. Design and implementation of floating-point operators
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations General framework Automatic certification of generated C codes
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign

Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign
- 2. Scheduling on a simplified model of the ST231
 - constraints of architecture: cost of operators, instructions bundling, ...
 - delays on indeterminates

Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign
- 2. Scheduling on a simplified model of the ST231
 - constraints of architecture: cost of operators, instructions bundling, ...
 - delays on indeterminates
- 3. Certification of generated C code
 - straightline polynomial evaluation program
 - "certified C code": we can bound the evaluation error in integer arithmetic

Sufficient conditions with
$$\mu = 4 - 2^{-21}$$

 $E_{ ext{approx}} \leq \theta$ with $\theta < 2^{-25}/\mu$ and $E_{ ext{eval}} < \eta = 2^{-25} - \mu \cdot \theta$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{eval} \ge \eta$

 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \ge \eta$

 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

1. determine an interval I around this point

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{eval} \ge \eta$

 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

- 1. determine an interval I around this point
- 2. compute E_{approx} over I
- 3. determine an evaluation error bound $\boldsymbol{\eta}$
- 4. check if $E_{eval} < \eta$?

 $\begin{array}{c} \text{Approximation error} & -----\\ \text{Required bound } 2^{-25}/(4-2^{-21}) \approx 8 \cdot 10^{-9} & -----\\ \text{Approximation error bound } \theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9} & -----\\ \end{array}$

Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

$$\mathcal{E}_{ ext{approx}}^{(i)} \leq heta^{(i)}$$
 with $heta^{(i)} < 2^{-25}/\mu$ and $\mathcal{E}_{ ext{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot heta^{(i)}$

Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

$$m{\mathcal{E}}_{ ext{approx}}^{(i)} \leq heta^{(i)}$$
 with $m{ heta}^{(i)} < 2^{-25}/\mu$ and $m{\mathcal{E}}_{ ext{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot m{ heta}^{(i)}$

•
$$E_{\text{approx}}^{(i)} \leq \theta^{(i)}$$

•
$$E_{\text{eval}}^{(i)} < \eta^{(i)}$$

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - for each $T^{(i)}$
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - for each $T^{(i)}$
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Sollya

Sollya Gappa

Sollva

Sollva

Gappa

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - for each $T^{(i)}$
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{eval}^{(i)} < \eta^{(i)}$

 \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Example of *binary32* implementation

- \rightarrow launched on a 64 processor grid
- ightarrow 36127 subintervals found in several hours (pprox 5h.)

Outline of the talk

- 1. Design and implementation of floating-point operators
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Performances of FLIP on ST231

Performances on ST231, in RoundTiesToEven

 \Rightarrow Speed-up between 20 and 50 %

Performances of FLIP on ST231

Performances on ST231, in RoundTiesToEven

- \Rightarrow Speed-up between 20 and 50 %
- Implementations of other operators

Performances on ST231, in RoundTiesToEven (in number of cycles)

Outline of the talk

- 1. Design and implementation of floating-point operators
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Conclusions

Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division

Conclusions

Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division
- polynomial evaluation-based method, very high ILP exposure
- ⇒ new, much faster version of FLIP

Conclusions

Design and implementation of floating-point operators

- uniform approach for correctly-rounded roots and their reciprocals
- extension to correctly-rounded division
- polynomial evaluation-based method, very high ILP exposure
- ⇒ new, much faster version of FLIP

Code generation for efficient and certified polynomial evaluation

- methodologies and tools for automating polynomial evaluation implementation
- heuristics and techniques for generating quickly efficient and certified C codes
- \Rightarrow CGPE: allows to write and certify automatically \approx 50 % of the codes of FLIP

Outline of the talk

- 1. Design and implementation of floating-point operators
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions

6. And now in ParLab: Debugging of floating-point programs

Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
 - $\rightarrow~$ either at C code level or at run-time
- What are the usual anomalies?
 - rounding error accumulations
 - conditional branches involving floating-point comparisons
 - \rightarrow may fail due to the subtleties of floating-point arithmetic
 - difficulties of programming languages
 - $\rightarrow\,$ Fortran: constants converted in full double precision accuracy if written with the dX notation
 - overflows, resolution of ill-conditioned problems
 - \rightarrow returned result may be completely wrong
 - benign / catastrophic cancellation, ...

Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
 - $\rightarrow~$ either at C code level or at run-time
- How to detect these usual anomalies?
 - altering rounding mode of floating-point arithmetic hardware
 - \rightarrow may not be used for remedying problems
 - extending precision of floating-point computation
 - \rightarrow run time may increase significantly (due to the use of software interface)
 - using interval arithmetic
 - $\rightarrow\,$ produces a certificate, but run time cost is the greatest

Debugging of floating-point programs

- Tool for detecting and remedying anomalies in floating-point programs
 - $\rightarrow~$ either at C code level or at run-time
- How to detect these usual anomalies?
 - altering rounding mode of floating-point arithmetic hardware
 - \rightarrow may not be used for remedying problems
 - extending precision of floating-point computation
 - \rightarrow run time may increase significantly (due to the use of software interface)
 - using interval arithmetic
 - \rightarrow produces a certificate, but run time cost is the greatest

How to detect quickly the most sensitive part of a C program?

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.b>
#include <stdio.h>
int
main(void)
{
  float a = le15f;
  float b = 1.0f;
  float c = a + b;
  float d = c - a; // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.b>
#include <math.b>
#include <stdio.h>
int
main(void)
{
    double a = 1e15f;
    double b = 1.0f;
    float c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.h>
#include <math.h>
#include <stdio.h>
int
main(void)
{
  float a = le15f;
  float b = 1.0f;
  double c = a + b;
  double d = c - a; // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.b>
#include <math.b>
#include <stdio.h>
int
main(void)
{
    double a = 1e15f;
    float b = 1.0f;
    float c = a + b;
    float d = c - a; // d = 0.0
    printf("The value of d is: %1.19e\n", d);
    return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.b>
#include <math.b>
#include <stdio.h>
int
main(void)
{
  float a = le15f;
  double b = 1.0f;
  float c = a + b;
  float d = c - a; // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.b>
#include <math.b>
#include <stdio.h>
int
main(void)
{
  float a = le15f;
  float b = 1.0f;
  double c = a + b;
  float d = c - a; // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.h>
#include <math.h>
#include <stdio.h>
int
main(void)
{
  float a = le15f;
  float b = 1.0f;
  float c = a + b;
  double d = c - a; // d = 0.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.h>
#include <math.h>
#include <stdio.h>
int
main( void )
{
  float a = le15f;
  double b = 1.0f;
  double c = a + b;
  double d = c - a; // d = 1.0
  printf("The value of d is: %1.19e\n", d);
  return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

- Principle: find a minimal set of changes on a C code, so that the returned result remains at a given threshold of a known and more accurate result (exact, double precision, ...)
 - \rightarrow implementation by binary search

```
#include <math.h>
#include <stdio.h>
int
main(void)
{
float a = le15f;
double b = 1.0f;
double c = a + b;
float d = c - a; // d = 1.0
printf("The value of d is: %1.19e\n", d);
return 0;
}
```

- What is the value of d?
 - Using *binary32* floating-point arithmetic

 $\rightarrow d = 0.0$

 Using *binary64* floating-point arithmetic

Current work

Delta-debugging

- how to determine initial set of changes?
- implementation of other transformations
- Implementation of an exception handler
 - may be useful for building initial set of *delta-debugging* algorithm
- Detection of infinite loops, ...

BeBOP meeting (ParLab, EECS, UC Berkeley) Berkeley, CA, USA - March 30, 2010

Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

ParLab

EECS University of California, Berkeley

Ph.D. thesis' work done under the direction of Claude-Pierre Jeannerod and Gilles Villard Arénaire INRIA project-team (LIP, Ens Lyon, France)

Guillaume Revy - March 30, 2010