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Motivation and objective of the project

Motivation and objective

The field of large-scale scientific applications has been growing rapidly
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I in complexity of software

 both these make finding bugs harder (especially for non experts)

Objectives of the project

I reduce difficulty of debugging
I automatic techniques for detecting and suggesting remedies for roundoff and other

numerical exception problems (anomalies)
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Motivation and objective of the project

Motivation and objective

Techniques for detecting suspected anomalies vary :

1. in the costs of their application,

2. and in scopes and effectiveness : in the kind of anomalies they detect.

Goal automate debugging now done by hand
I intelligent and automatic tool

• locate automatically suspected anomalies
• with or without source code
• at runtime or statically

I help developers whose expertise does not extend to numerical error-analysis
• shorten debugging time and improve their productivity
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Motivation and objective of the project

What are the usual source of anomalies ?

Common source of anomalies :

I rounding error accumulations
I conditional branches involving floating-point comparisons

• e.g. NaN leading to a convergence misbehavior

I vagaries of programming languages

• Fortran : conversion of constants in full double precision accuracy (unlike C)

double precision c1 0.1d0  0.10000000000000000555

double precision c2 0.1  0.10000000149011611938

I under/overflows
I cancellation, benign or catastrophic
I resolution of ill-conditioned problems, ...

Hardware problems : misbehavior of floating-point programs
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Motivation and objective of the project

Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = b−a
2·n∫ b

a
f (x) ·dx =

h
3

[
f (a)+4 · f (a+h)+2 · f (a+2 ·h)+ · · ·+4 · f

(
a+(2 ·n−1) ·h

)
+ f (b)

]
.

unsigned int n = 10000;
double a = 0, b = 1, h = (b-a)/(2.*n);

double xk = a; // xk ≈ a + k.n
double r = f(xk); // r ≈ f(a)

while( 1 ){
xk = xk + h;
r = r + 4.* f(xk); // r ≈ r + 4.f(a + k.n)

xk = xk + h;
if (xk >= b)

break;

r = r + 2.* f(xk); // r ≈ r + 2.f(a + k.n)
}

r = r + f(xk); // r ≈ r + f(b)

r = (h/3.) * r;

Implementation with a conditional
branch

I terminate the loop when
a+ k ·h ≥ b

I may result in an extra iteration, if
a+ k ·h is slightly less than b due to
roundoff error

Example of fix : a+ k ·h+ ε≥ b
I how to determine ε

semi-automatically ?

Another fix : make loop variable integer
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Locating numerical anomalies
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Locating numerical anomalies

How to detect these usual anomalies ?

Detection can be done by static or dynamic analysis

When suspected, these usual anomalies may be detected by :
I altering rounding mode of floating-point arithmetic hardware

 may not be available on every architectures (e.g. GPU)

I extending precision of floating-point computation

 may increase runtime significantly (use of software implementation)

I modifying comparisons by adding an unobvious tolerance
I using interval arithmetic

 produces a certificate, but runtime cost increases significantly
 intervals may grow too wide to be useful

I using Error-Free Transformation (EFT)
 code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis ?
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Locating numerical anomalies

Isolating failure-inducing code fragment

Does the anomaly (bug) really depend on the whole input code ?

First step in processing any bug : simplification
I eliminating all the details in the original code that are not relevant

 isolate the difference that causes the bug (failure)

I often people spend a lot of time isolating failure-inducing code fragment

Usually carried out by hand

I long and tedious + may miss some relevant simplification
I need to automate this process
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Locating numerical anomalies

Framework flowchart
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Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

CIL 1 : high-level representation of C programs

I analysis and source-to-source transformation of C programs

int main( void )
{

float a;
float b;
float c;

a = b + c;
// ...

return 0;
}

float: c

float: a

float: b

return: 0

func: int main( void )

a

+

b c

Currently implemented transformations
I FloatToDouble : float⇒ double,
I RoundingMode : RN⇒ {RU,RD,RZ},
I DoubleToDD : double⇒ double-double,
I FlipFunction : implementation1⇒ implementation2.

1. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL : Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002
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Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)
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How to isolate these 27 changes?
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Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002
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Locating numerical anomalies

More realistic example (D.H. Bailey)

Calculate the arc length of the function g defined as

g(x) = x + ∑
0≤k≤5

2−k sin(2k · x), over (0,π).

Summing for xk ∈ (0,π) divided into n subintervals√
h2 +(g(xk +h)−g(h))2,

with h = π/n and xk = k ·h. If n = 1000000, we have

result = 5.795776322412856 (all double-double)  20x slower

= 5.795776322413031 (all double)

= 5.795776322412856 (only the summand is in double-double)

5.795776322412856  almost the same speed
I only 1 change is necessary found in ≈ 30 sec.
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Locating numerical anomalies

Bug in dgges subroutine of LAPACK

LAPACK bug report 3

I have the following problem with dgges. For version 3.1.1 and sooner, I get a reaso-
nable result, for version 3.2 and 3.2.1, I get info=n+2.

The only difference between LAPACK 3.1.1 and 3.2.x
I some calls to dlarfg replaced by dlarfp

First step : simplification
I which call(s) to dlarfp made the program fail ?

Automation with delta-debugging

I 25610 calls to dlarfp = 25610 possible changes
I all changes but 1 did not matter found in about 1m. 50 sec.

 much easier to find which line of code was the source of this bug

3. See http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783 for details.
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Conclusion and perspective

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective
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Conclusion and perspective

NaN/Inf checking and some infinite loop isolation

Problem : NaN/Inf occurring in floating-point programs may be the source of some
infinite loops

How to detect where NaN/Inf occur during the run of the program ?

I by testing the result of each floating-point operations
I by testing overflow/invalid flag (only works if created by programs, not input)

 need an exception handler

Just try to show loop termination or detect loop non-termination
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Conclusion and perspective

Conclusion and perspective

Goal automatic debugging of scientific floating-point programs

Framework for the automatic isolation of numerical anomalies

I transformation / instrumentation using CIL
I effective changes found using Delta-Debugging

Current and future work

I implementation of other transformations (FloatToFF, ...)
I apply to database bugs of LAPACK
I NaN/Inf checking for isolating some infinite loops (loop non-termination)

I modifying comparisons that go astray by adding an unobvious tolerance
I isolation of floating-point constants that are not converted in full precision

I identification of hardware features that could facilitate “debugging process” while not
impacting normal floating-point performance
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Thanks to Sun/Oracle.
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