Centre National d'Etudes Spatiales (CNES) - Séminaire CCT/STIL
Toulouse, France, January 19, 2012

Techniques for the automatic debugging of scientific
floating-point programs

David H. Bailey' ~ James Demmel®  William Kahan?
Guillaume Revy®  Koushik Sen?

Berkeley Lab Computing Sciences! ParlLab (EECS, University of California, Berkeley)2 DALI project-team - UPVD/LIRMM (CNF{SVUMZ)3
AT T Q‘ HIIHP 1a Domitia LIRMM

Thanks to Sun/Oracle.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



R
Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Outline of the talk

1. Motivation and objective of the project

evy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Motivation and objective of the project

Motivation and objective

m The field of large-scale scientific applications has been growing rapidly

> in cycles used oo [ mamkr e 12804 oS

Rank 500 —=—

1000 +

1 1 .4
100 91.8 TFlops. 96.4 TFlops

/

1 // 1.5 TFlops

[ 2 2 O 2> G [
> in complexity of software b g g o o

Top500 Supercomputer peak performance (TFlops)

~ both these make finding bugs harder (especially for non experts)

m Objectives of the project

» reduce difficulty of debugging

» automatic techniques for detecting and suggesting remedies for roundoff and other
numerical exception problems (anomalies)

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Motivation and objective

m Techniques for detecting suspected anomalies vary :

1. in the costs of their application,
2. and in scopes and effectiveness : in the kind of anomalies they detect.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Motivation and objective

m Techniques for detecting suspected anomalies vary :

1. in the costs of their application,
2. and in scopes and effectiveness : in the kind of anomalies they detect.

m Goal ~» automate debugging now done by hand
> intelligent and automatic tool

® |ocate automatically suspected anomalies
® with or without source code
® at runtime or statically
> help developers whose expertise does not extend to numerical error-analysis
* shorten debugging time and improve their productivity

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



What are the usual source of anomalies ?

m Common source of anomalies :
» rounding error accumulations
» conditional branches involving floating-point comparisons
® e.g. NaN leading to a convergence misbehavior
» vagaries of programming languages

® Fortran : conversion of constants in full double precision accuracy (unlike C)

double precision cl 0.1d0 ~+ 0.10000000000000000555
double precision c2 0.1 ~> 0.10000000149011611938

» under/overflows
» cancellation, benign or catastrophic
> resolution of ill-conditioned problems, ...

m Hardware problems : misbehavior of floating-point programs

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = %”

/:f(x)-dx=g[f(a)+4-f(a+h)+24f(a+2~h)+-~~—|—4~f(a+(2~n—1)~h)+f(b)].

m Implementation with a conditional

unsigned int n = 10000; branch
double a = 0, b =1, h = (b-a)/(2.*n);
(R > terminate the loop when
a+k-h>b
/v e+ 4.f(a ¢ kon) » may result in an extra iteration, if

a+ k- his slightly less than b due to
roundoff error

ro=r + 2.% f(xk); // r =z + 2.f(a + k.n)
}
r =1 + f(xk); // r =1+ £(b)
r = (h/3.) * r;

. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = 52

b—a
n

/:f(x)~dx=g[f(a)+4~f(a+h)+2<f(a+2~h)+~~~+4~f(a+(2~n—1)~h)+f(b)].

unsigned int n = 10000;
double a = 0, b =1, h = (b-a)/(2.*n);
double xk = a // xk & a + k.n
double r = f(xk) // r = f(a)
hile( 1 ){
xk = xk + h;
r=r1r + 4.* f£(xk); // r =71+ 4.f(a + k.n)
xk = xk + h;
if (xk + EPSILON >= b)
break;
r=r + 2.% f£(xk); // r =1 + 2.f(a + k.n)
}
r =r + f£(xk); // r =71 + f£(b)
r = (h/3.) * r;

m Implementation with a conditional
branch

> terminate the loop when
at+k-h>b

> may result in an extra iteration, if
a+ k- his slightly less than b due to
roundoff error

m Example of fix:a+k-h+€e>b
> how to determine €
semi-automatically ?

. Revy (CNES, CCT/STIL - January 19, 2012)

Techniques for the automatic debugging of scientific floating-point programs



Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = %

/:f(x)-dx=g[f(a)+4-f(a+h)+24f(a+2~h)+~~~—|—4~f(a+(2~n—1)~h)+f(b)}.

m Implementation with a conditional

unsigned int n = 10000; branch

double a = 0, b = 1, h = (b-a)/(2.*n);

double xk = a /[ xk m a + k.n » terminate the loop when

double r = f(xk) /¢ = f(a)

hile( 1 ){ a+kh2b
xk = xk + hj . . . .
r=rot 4 E(xk); // Ao+ 4f(a + ko) » may result in an extra iteration, if
e ey a+ k- his slightly less than b due to

Lecel roundoff error

r=1r+ 2.% f(xk); // r =1+ 2.f(a + k.n)

}

2o @ o BT /ot E(b) m Example of fix:a+k-h+€e>b

T = (n/3) % > how to determine €

semi-automatically ?

m Another fix : make loop variable integer

. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Outline of the talk

2. Locating numerical anomalies

TIL - January 19, 2012) chniques for the automatic debugging of scientific floating-point program:



How to detect these usual anomalies ?

m Detection can be done by static or dynamic analysis

m When suspected, these usual anomalies may be detected by :
» altering rounding mode of floating-point arithmetic hardware
~~ may not be available on every architectures (e.g. GPU)
» extending precision of floating-point computation
~- may increase runtime significantly (use of software implementation)
» modifying comparisons by adding an unobvious tolerance
» using interval arithmetic

~ produces a certificate, but runtime cost increases significantly
~ intervals may grow too wide to be useful

» using Error-Free Transformation (EFT)
~~ code transformations may be difficult to automate

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



How to detect these usual anomalies ?

m Detection can be done by static or dynamic analysis

m When suspected, these usual anomalies may be detected by :
» altering rounding mode of floating-point arithmetic hardware
~~ may not be available on every architectures (e.g. GPU)
» extending precision of floating-point computation
~- may increase runtime significantly (use of software implementation)
» modifying comparisons by adding an unobvious tolerance
» using interval arithmetic

~ produces a certificate, but runtime cost increases significantly
~ intervals may grow too wide to be useful

» using Error-Free Transformation (EFT)
~~ code transformations may be difficult to automate

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



How to detect these usual anomalies ?

m Detection can be done by static or dynamic analysis

m When suspected, these usual anomalies may be detected by :
» altering rounding mode of floating-point arithmetic hardware
~~ may not be available on every architectures (e.g. GPU)
» extending precision of floating-point computation
~- may increase runtime significantly (use of software implementation)
» modifying comparisons by adding an unobvious tolerance
» using interval arithmetic

~ produces a certificate, but runtime cost increases significantly
~ intervals may grow too wide to be useful

» using Error-Free Transformation (EFT)
~~ code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis ? J

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Isolating failure-inducing code fragment

m Does the anomaly (bug) really depend on the whole input code ?

m First step in processing any bug : simplification
» eliminating all the details in the original code that are not relevant
~ isolate the difference that causes the bug (failure)

» often people spend a lot of time isolating failure-inducing code fragment

m Usually carried out by hand

> long and tedious + may miss some relevant simplification

» need to automate this process

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Framework flowchart

> |res(S) —res(D)|>7 <

res (D)

res (S)

Framework for isolating

-_, numerical anomalies

in floating-point programs

TIL - January 19, 2012) chniques for

e automatic debugging of scientific floating

point program



Locating numerical anomalies

Framework flowchart

peeneeeans > |res(S) —res(D)|>7 <

res (S)

|—> CIL

Code transformation /

; instrumentation

Locally minimum

set of changes

|—> Delta-Debugging

TIL - January 19, 2012) chniques for

e automatic debugging of scientific floating

|[res (M) —res(D)| <7

point program



Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

m CIL" : high-level representation of C programs

» analysis and source-to-source transformation of C programs

((_func: int main( void ) )

int main( void )

return 0; float:b Ji™

}

1. G.C.Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL - Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

m CIL" : high-level representation of C programs

» analysis and source-to-source transformation of C programs

(__func: int main( void ) )
int main( void ) H

scan in depth-first
double a;
float b;

double c;

a=b+ci
return 0; float: b
}

1. G.C.Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL - Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002
G. Revy (CNES, CCT/STIL - January 19, 2012)

Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

m CIL" : high-level representation of C programs

» analysis and source-to-source transformation of C programs

[ func: int main( void ) ]

int main( void ) scan in depth-first

double a;
float b;
double c;

a’=b+C: HEH

return 0; float: b
} T

m Currently implemented transformations
» FloatToDouble : float = double,
» RoundingMode : RN = {RU,RD,RZ},
> DoubleToDD : double = double-double,
» FlipFunction :implementation1 = implementation2.

1. G.C.Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL - Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Gompiler Gonstruction, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

T T T T
Error [res(M) — res(D)| ——

Threshold 7

100

3

o 80 .
()

o

L e .
= How to isolate these 27 changes?

n
i 40 B
g
w20 . n

I~
0 ! ! HH I
0 10 20 30 40 50

Number of changes

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012)

Techniques for the automatic debugging of scientific floating-point programs



Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search

double precision

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search

double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate

(AR [ [T TT[TTT]

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search

double precision

v ~~ apply half the changes and check if the
single precision double precision output is still accurate

discard the other half

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search
double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate
_ e ~~ if no, go back to the other state and

discard the other half

~~ if the input is still inaccurate, increase
the granularity of the splitting

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search
double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate
_ v ~~ if no, go back to the other state and
discard the other half

~~ if the input is still inaccurate, increase
the granularity of the splitting

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search
double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate

discard the other half

_ / ~~ if the input is still inaccurate, increase

the granularity of the splitting

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search

double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate

discard the other half

_ / ~~ if the input is still inaccurate, increase

T the granularity of the splitting
simplification

» the changes may be not consecutive

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Locating numerical anomalies

Delta-Debugging algorithm

m General principle of Delta-Debugging? : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold T of a more
accurate result (exact, higher precision, ...)

> implementation like binary search

double precision

v ~~ apply half the changes and check if the
double precision single precision output is still accurate

discard the other half
_ / ~~ if the input is still inaccurate, increase

T the granularity of the splitting
simplification

» the changes may be not consecutive

m Future improvement : consider the efficiency (performance) of changes ?

2. A Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE i on Software i ing, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



More realistic example (D.H. Bailey)

= Calculate the arc length of the function g defined as

g(x)=x+ Z 2 ¥sin(2%-x), over (0,).
0<k<5

= Summing for xx € (0,7) divided into n subintervals

VP + (gl + ) — g(h))2,
with h =1 /n and xx = k- h. If n = 1000000, we have

result = 5.795776322412856 (all double-double) ~» 20x slower
= 5.795776322413031 (all double)

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



More realistic example (D.H. Bailey)

= Calculate the arc length of the function g defined as

g(x)=x+ Z 2 ¥sin(2%-x), over (0,).
0<k<5

= Summing for xx € (0,7) divided into n subintervals

VP + (gl + ) — g(h))2,
with h =1 /n and xx = k- h. If n = 1000000, we have

result = 5.795776322412856 (all double-double) ~» 20x slower
= 5.795776322413031 (all double)
= 5.795776322412856 (only the summand is in double-double)

~~ almost the same speed
» only 1 change is necessary ~» found in ~ 30 sec.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Bug in dgges subroutine of LAPACK

LAPACK bug report®

| have the following problem with dgges. For version 3.1.1 and sooner, | get a reaso-
nable result, for version 3.2 and 3.2.1, | get info=n+2.

= The only difference between LAPACK 3.1.1 and 3.2.x
» some calls to dlarfq replaced by dlarfp

m First step : simplification
» which call(s) to dlarfp made the program fail ?

3. Seehttp://icl.cs.utk.edu/lapack-forum/viewtopic.php? £=2at=1783 for details.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs


http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783

Locating numerical anomalies

Bug in dgges subroutine of LAPACK

LAPACK bug report®

| have the following problem with dgges. For version 3.1.1 and sooner, | get a reaso-
nable result, for version 3.2 and 3.2.1, | get info=n+2.

= The only difference between LAPACK 3.1.1 and 3.2.x
» some calls to dlarfq replaced by dlarfp

m First step : simplification
» which call(s) to dlarfp made the program fail ?

= Automation with delta-debugging

» 25610 calls to dlarfp = 25610 possible changes
» all changes but 1 did not matter ~» found in about 1m. 50 sec.
~~ much easier to find which line of code was the source of this bug

3. Seehttp://icl.cs.utk.edu/lapack-forum/viewtopic.php? £=2at=1783 for details.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs


http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783

Outline of the talk

3. Conclusion and perspective

TIL - January 19, 2012) chniques for the automatic debugging of scientific floating-point program:



NaN/Inf checking and some infinite loop isolation

m Problem : NaN/Inf occurring in floating-point programs may be the source of some
infinite loops

= How to detect where NaN/Inf occur during the run of the program ?

» by testing the result of each floating-point operations
> by testing overflow/invalid flag (only works if created by programs, not input)
~~ need an exception handler

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



NaN/Inf checking and some infinite loop isolation

m Problem : NaN/Inf occurring in floating-point programs may be the source of some
infinite loops

= How to detect where NaN/Inf occur during the run of the program ?

» by testing the result of each floating-point operations
> by testing overflow/invalid flag (only works if created by programs, not input)
~~ need an exception handler

m Just try to show loop termination or detect loop non-termination

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Conclusion and perspective

m Goal ~» automatic debugging of scientific floating-point programs

m Framework for the automatic isolation of numerical anomalies

>

>

transformation / instrumentation using CIL

effective changes found using Delta-Debugging

m Current and future work

>

>

| 4

implementation of other transformations (FloatToFF, ...)
apply to database bugs of LAPACK
NaN/Inf checking for isolating some infinite loops (loop non-termination)

modifying comparisons that go astray by adding an unobvious tolerance
isolation of floating-point constants that are not converted in full precision

identification of hardware features that could facilitate “debugging process” while not
impacting normal floating-point performance

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



Conclusion and perspective

Centre National d'Etudes Spatiales (CNES) - Séminaire CCT/STIL
Toulouse, France, January 19, 2012

Techniques for the automatic debugging of scientific
floating-point programs

David H. Bailey' ~ James Demmel®  William Kahan?
Guillaume Revy®  Koushik Sen?

Berkeley Lab Computing Sciences! ParlLab (EECS, University of California, Berkeley)2 DALI project-team - UPVD/LIRMM (CNF{SVUMZ)3
AT T Q‘ HIIHP 1a Domitia LIRMM

Thanks to Sun/Oracle.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs



	CNES, CCT/STIL - January 19, 2012
	Motivation and objective of the project
	Locating numerical anomalies
	Conclusion and perspective


