Techniques for the automatic debugging of scientific floating-point programs

David H. Bailey¹ James Demmel² William Kahan²
Guillaume Revy³ Koushik Sen²

Berkeley Lab Computing Sciences¹ ParLab (EECS, University of California, Berkeley)² DALI project-team - UPVD/LIRMM (CNRS-UM2)³

Thanks to Sun/Oracle.
Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective
Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective
Motivation and objective

The field of large-scale scientific applications has been growing rapidly

- in cycles used
- in complexity of software

both these make finding bugs harder (especially for non experts)

Objectives of the project

- reduce difficulty of debugging
- automatic techniques for detecting and suggesting remedies for roundoff and other numerical exception problems (anomalies)
Motivation and objective

Techniques for detecting suspected anomalies vary:

1. in the costs of their application,
2. and in scopes and effectiveness: in the kind of anomalies they detect.
Motivation and objective

Techniques for detecting suspected anomalies vary:
1. in the costs of their application,
2. and in scopes and effectiveness: in the kind of anomalies they detect.

Goal: automate debugging now done by hand

- intelligent and automatic tool
 - locate automatically suspected anomalies
 - with or without source code
 - at runtime or statically

- help developers whose expertise does not extend to numerical error-analysis
 - shorten debugging time and improve their productivity
What are the usual source of anomalies?

- **Common source of anomalies**:
 - rounding error accumulations
 - conditional branches involving floating-point comparisons
 - e.g. NaN leading to a convergence misbehavior
 - vagaries of programming languages
 - Fortran: conversion of constants in full double precision accuracy (unlike C)

 | double precision c1 0.1d0 | → | 0.10000000000000000555 |
 | double precision c2 0.1 | → | 0.1000000149011611938 |
 - under/overflows
 - cancellation, benign or catastrophic
 - resolution of ill-conditioned problems, ...

- **Hardware problems**: misbehavior of floating-point programs
Example of avoidable numerical anomalies

Given \(n \), evaluate the definite integral using Simpson’s rule, with \(h = \frac{b-a}{2 \cdot n} \)

\[
\int_{a}^{b} f(x) \cdot dx = \frac{h}{3} \left[f(a) + 4 \cdot f(a + h) + 2 \cdot f(a + 2 \cdot h) + \cdots + 4 \cdot f(a + (2 \cdot n - 1) \cdot h) + f(b) \right].
\]

```
unsigned int n = 10000;
double a = 0, b = 1, h = (b-a)/(2.*n);
double xk = a; // xk ≈ a + k.n
double r = f(xk); // r ≈ f(a)
while( 1 ){
    xk = xk + h;
    r = r + 4.* f(xk); // r ≈ r + 4.f(a + k.n)
    xk = xk + h;
    if (xk >= b)
        break;
    r = r + 2.* f(xk); // r ≈ r + 2.f(a + k.n)
}
```

- Implementation with a conditional branch
 - terminate the loop when \(a + k \cdot h \geq b \)
 - may result in an extra iteration, if \(a + k \cdot h \) is slightly less than \(b \) due to roundoff error

Example of fix:

- how to determine \(\varepsilon \) semi-automatically?
Example of avoidable numerical anomalies

Given \(n \), evaluate the definite integral using Simpson’s rule, with \(h = \frac{b-a}{2\cdot n} \)

\[
\int_a^b f(x) \, dx = \frac{h}{3} \left[f(a) + 4 \cdot f(a + h) + 2 \cdot f(a + 2 \cdot h) + \cdots + 4 \cdot f(a + (2 \cdot n - 1) \cdot h) + f(b) \right].
\]

- **Implementation with a conditional branch**
 - terminate the loop when \(a + k \cdot h \geq b \)
 - may result in an extra iteration, if \(a + k \cdot h \) is slightly less than \(b \) due to roundoff error

- **Example of fix** : \(a + k \cdot h + \varepsilon \geq b \)
 - how to determine \(\varepsilon \) semi-automatically?
Example of avoidable numerical anomalies

Given \(n \), evaluate the definite integral using Simpson’s rule, with \(h = \frac{b-a}{2\cdot n} \)

\[
\int_a^b f(x) \, dx = \frac{h}{3} \left[f(a) + 4 \cdot f(a + h) + 2 \cdot f(a + 2 \cdot h) + \cdots + 4 \cdot f(a + (2 \cdot n - 1) \cdot h) + f(b) \right].
\]

Implementation with a conditional branch

- terminate the loop when \(a + k \cdot h \geq b \)
- may result in an extra iteration, if \(a + k \cdot h \) is slightly less than \(b \) due to roundoff error

Example of fix : \(a + k \cdot h + \varepsilon \geq b \)

- how to determine \(\varepsilon \) semi-automatically?

Another fix : make loop variable integer
Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective
How to detect these usual anomalies?

- Detection can be done by static or dynamic analysis

- When suspected, these usual anomalies may be detected by:
 - altering rounding mode of floating-point arithmetic hardware
 - may not be available on every architectures (e.g. GPU)
 - extending precision of floating-point computation
 - may increase runtime significantly (use of software implementation)
 - modifying comparisons by adding an unobvious tolerance
 - using interval arithmetic
 - produces a certificate, but runtime cost increases significantly
 - intervals may grow too wide to be useful
 - using Error-Free Transformation (EFT)
 - code transformations may be difficult to automate
How to detect these usual anomalies?

- Detection can be done by static or dynamic analysis

- When suspected, these usual anomalies may be detected by:
 - altering rounding mode of floating-point arithmetic hardware
 - may not be available on every architectures (e.g. GPU)
 - extending precision of floating-point computation
 - may increase runtime significantly (use of software implementation)
 - modifying comparisons by adding an unobvious tolerance
 - using interval arithmetic
 - produces a certificate, but runtime cost increases significantly
 - intervals may grow too wide to be useful
 - using Error-Free Transformation (EFT)
 - code transformations may be difficult to automate
Locating numerical anomalies

How to detect these usual anomalies?

- Detection can be done by static or dynamic analysis

- When suspected, these usual anomalies may be detected by:
 - altering rounding mode of floating-point arithmetic hardware
 → may not be available on every architectures (e.g. GPU)
 - extending precision of floating-point computation
 → may increase runtime significantly (use of software implementation)
 - modifying comparisons by adding an unobvious tolerance
 - using interval arithmetic
 → produces a certificate, but runtime cost increases significantly
 → intervals may grow too wide to be useful
 - using Error-Free Transformation (EFT)
 → code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis?
Locating numerical anomalies

Isolating failure-inducing code fragment

- Does the anomaly (bug) really depend on the whole input code?

- First step in processing any bug: **simplification**
 - eliminating all the details in the original code that are not relevant
 - isolate the difference that causes the bug (failure)
 - often people spend a lot of time isolating failure-inducing code fragment

- Usually carried out by hand
 - long and tedious + may miss some relevant simplification
 - need to automate this process
Locating numerical anomalies

Framework for isolating numerical anomalies in floating-point programs

Single precision

Mixed precision

Double precision

Exponential number of solutions

Single precision

|res(S) − res(D)| > τ

|res(M) − res(D)| ≤ τ

Techniques for the automatic debugging of scientific floating-point programs
Locating numerical anomalies

Framework flowchart

|res(S) − res(D)| > τ

|res(M) − res(D)| ≤ τ

Single precision

Code transformation / instrumentation

Locally minimum set of changes

CIL

Delta-Debugging

Double precision

Mixed precision

Single precision

Small number of solutions

G. Revy (CNES, CCT/STIL - January 19, 2012)
Transformations using CIL (C Intermediate Language)

- **CIL**\(^1\): high-level representation of C programs
 - analysis and source-to-source transformation of C programs

```c
int main( void )
{
    float a;
    float b;
    float c;
    a = b + c;
    // ...
    return 0;
}
```

Transformations using CIL (C Intermediate Language)

- CIL1 : high-level representation of C programs
 - analysis and source-to-source transformation of C programs

```c
int main( void )
{
  double a;
  float b;
  double c;
  a = b + c;
  // ...
  return 0;
}
```

Currently implemented transformations
- FloatToDouble: float \Rightarrow double,
- RoundingMode: RN \Rightarrow {RU, RD, RZ},
- DoubleToDD: double \Rightarrow double-double,
- FlipFunction: implementation1 \Rightarrow implementation2.

Transformations using CIL (C Intermediate Language)

- **CIL**\(^1\): high-level representation of C programs
 - analysis and source-to-source transformation of C programs

```c
int main( void )
{
    double a;
    float b;
    double c;
    a = b + c;
    // ...
    return 0;
}
```

- Currently implemented transformations
 - **FloatToDouble**: float \(\Rightarrow\) double,
 - **RoundingMode**: RN \(\Rightarrow\) \{RU, RD, RZ\},
 - **DoubleToDD**: double \(\Rightarrow\) double-double,
 - **FlipFunction**: implementation1 \(\Rightarrow\) implementation2.

Delta-Debugging algorithm

- General principle of Delta-Debugging\(^2\): find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)

```
How to isolate these 27 changes?
Error |\text{res}(M) - \text{res}(D)|
Threshold \(\tau\)
```

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002
Delta-Debugging algorithm

- General principle of Delta-Debugging: find a locally minimal set of changes on a code, so that the returned result remains within a given threshold τ of a more accurate result (exact, higher precision, ...)
 - implementation like binary search

Future improvement: consider the efficiency (performance) of changes?

Delta-Debugging algorithm

- **General principle of Delta-Debugging**\(^2\): find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)

 - implementation like binary search

\[\begin{array}{c}
\text{double precision} \\
\text{double precision} \quad \text{single precision}
\end{array}\]

\[\begin{array}{c}
\checkmark \\
\times
\end{array}\]

\[\Rightarrow \text{apply half the changes and check if the output is still accurate}\]

Delta-Debugging algorithm

- General principle of Delta-Debugging\(^2\): find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)

 - implementation like binary search

 ![Diagram](double precision single precision double precision)

 - apply half the changes and check if the output is still accurate
 - if no, go back to the other state and discard the other half

Delta-Debugging algorithm

- **General principle of Delta-Debugging**: find a locally minimal set of changes on a code, so that the returned result remains within a given threshold τ of a more accurate result (exact, higher precision, ...)
 - implementation like binary search

 ![Diagram]

 - apply half the changes and check if the output is still accurate
 - if no, go back to the other state and discard the other half
 - if the input is still inaccurate, increase the granularity of the splitting

Delta-Debugging algorithm

General principle of Delta-Debugging\(^2\) : find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)

- implementation like binary search

\[\text{double precision} \quad \text{single precision} \]

\[\checkmark \quad \checkmark \]

\(\Rightarrow\) apply half the changes and check if the output is still accurate

\(\Rightarrow\) if no, go back to the other state and discard the other half

\(\Rightarrow\) if the input is still inaccurate, increase the granularity of the splitting

Delta-Debugging algorithm

- General principle of Delta-Debugging: find a locally minimal set of changes on a code, so that the returned result remains within a given threshold τ of a more accurate result (exact, higher precision, ...)
 - implementation like binary search

 ![Diagram of Delta-Debugging algorithm]

 - apply half the changes and check if the output is still accurate
 - if no, go back to the other state and discard the other half
 - if the input is still inaccurate, increase the granularity of the splitting

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002
Delta-Debugging algorithm

- **General principle of Delta-Debugging**\(^2\): find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)

 - implementation like binary search

 ![Diagram](image.png)

 - double precision
 - double precision single precision
 - simplification

 ▶ apply half the changes and check if the output is still accurate
 ▶ if no, go back to the other state and discard the other half
 ▶ if the input is still inaccurate, increase the granularity of the splitting

- the changes may be not consecutive

Delta-Debugging algorithm

- General principle of Delta-Debugging\(^2\): find a locally minimal set of changes on a code, so that the returned result remains within a given threshold \(\tau\) of a more accurate result (exact, higher precision, ...)
 - implementation like binary search
 - double precision
 - apply half the changes and check if the output is still accurate
 - if no, go back to the other state and discard the other half
 - if the input is still inaccurate, increase the granularity of the splitting
 - double precision single precision
 - the changes may be not consecutive

- Future improvement: consider the efficiency (performance) of changes?

More realistic example (D.H. Bailey)

- Calculate the arc length of the function g defined as

$$g(x) = x + \sum_{0 \leq k \leq 5} 2^{-k} \sin(2^k \cdot x), \text{ over } (0, \pi).$$

- Summing for $x_k \in (0, \pi)$ divided into n subintervals

$$\sqrt{h^2 + (g(x_k + h) - g(h))^2},$$

with $h = \pi/n$ and $x_k = k \cdot h$. If $n = 1000000$, we have

result $= 5.795776322412856$ (all double-double) $\sim 20x$ slower

$= 5.795776322413031$ (all double)
More realistic example (D.H. Bailey)

- Calculate the arc length of the function g defined as

$$g(x) = x + \sum_{0 \leq k \leq 5} 2^{-k} \sin(2^k \cdot x), \text{ over } (0, \pi).$$

- Summing for $x_k \in (0, \pi)$ divided into n subintervals

$$\sqrt{h^2 + (g(x_k + h) - g(h))^2},$$

with $h = \pi/n$ and $x_k = k \cdot h$. If $n = 1000000$, we have

\[
\begin{align*}
\text{result} &= 5.795776322412856 \quad \text{(all double-double)} \quad \rightsquigarrow \quad 20x \text{ slower} \\
&= 5.795776322413031 \quad \text{(all double)} \\
&= 5.795776322412856 \quad \text{(only the summand is in double-double)} \\
&\quad \rightsquigarrow \quad \text{almost the same speed} \\
\end{align*}
\]

△ only 1 change is necessary \rightsquigarrow \text{found in } \approx 30 \text{ sec.}
Bug in \texttt{dgges} subroutine of LAPACK

LAPACK bug report 3

I have the following problem with \texttt{dgges}. For version 3.1.1 and sooner, I get a reasonable result, for version 3.2 and 3.2.1, I get \texttt{info}=n+2.

\begin{itemize}
 \item The only difference between LAPACK 3.1.1 and 3.2.x
 \begin{itemize}
 \item some calls to \texttt{dlarfg} replaced by \texttt{dlarfp}
 \end{itemize}
 \item First step: simplification
 \begin{itemize}
 \item which call(s) to \texttt{dlarfp} made the program fail?
 \end{itemize}
\end{itemize}

Bug in \texttt{dgges} subroutine of LAPACK

LAPACK bug report

I have the following problem with \texttt{dgges}. For version 3.1.1 and sooner, I get a reasonable result, for version 3.2 and 3.2.1, I get \texttt{info=n+2}.

- The only difference between LAPACK 3.1.1 and 3.2.x
 - some calls to \texttt{dlarfg} replaced by \texttt{dlarfp}

- First step: simplification
 - which call(s) to \texttt{dlarfp} made the program fail?

- Automation with delta-debugging
 - 25610 calls to \texttt{dlarfp} = 25610 possible changes
 - all changes but 1 did not matter \leadsto found in about 1m. 50 sec.
 \leadsto much easier to find which line of code was the source of this bug

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective
Conclusion and perspective

NaN/Inf checking and some infinite loop isolation

- **Problem**: NaN/Inf occurring in floating-point programs may be the source of some infinite loops

- **How to detect where NaN/Inf occur during the run of the program?**
 - by testing the result of each floating-point operations
 - by testing overflow/invalid flag (only works if created by programs, not input)
 - need an exception handler
NaN/Inf checking and some infinite loop isolation

- **Problem**: NaN/Inf occurring in floating-point programs may be the source of some infinite loops

- **How to detect where NaN/Inf occur during the run of the program?**
 - by testing the result of each floating-point operations
 - by testing overflow/invalid flag (only works if created by programs, not input)
 - need an exception handler

- Just try to show loop termination or detect loop non-termination
Conclusion and perspective

- **Goal** ∸>b automatic debugging of scientific floating-point programs

- **Framework for the automatic isolation of numerical anomalies**
 - transformation / instrumentation using CIL
 - effective changes found using Delta-Debugging

- **Current and future work**
 - implementation of other transformations (FloatToFF, ...)
 - apply to database bugs of LAPACK
 - NaN/Inf checking for isolating some infinite loops (loop non-termination)
 - modifying comparisons that go astray by adding an unobvious tolerance
 - isolation of floating-point constants that are not converted in full precision
 - identification of hardware features that could facilitate “debugging process” while not impacting normal floating-point performance
Techniques for the automatic debugging of scientific floating-point programs

David H. Bailey¹ James Demmel² William Kahan²
Guillaume Revy³ Koushik Sen²

Berkeley Lab Computing Sciences¹ ParLab (EECS, University of California, Berkeley)² DALI project-team - UPVD/LIRMM (CNRS-UM2)³

Thanks to Sun/Oracle.