
Centre National d’Études Spatiales (CNES) - Séminaire CCT/STIL
Toulouse, France, January 19, 2012

Techniques for the automatic debugging of scientific
floating-point programs

David H. Bailey1 James Demmel2 William Kahan2

Guillaume Revy3 Koushik Sen2

Berkeley Lab Computing Sciences1 ParLab (EECS, University of California, Berkeley)2 DALI project-team - UPVD/LIRMM (CNRS-UM2)3

Thanks to Sun/Oracle.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 1/19

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 2/19

Motivation and objective of the project

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 3/19

Motivation and objective of the project

Motivation and objective

The field of large-scale scientific applications has been growing rapidly

I in cycles used

 0.1

 1

 10

 100

 1000

 10000

11/01

06/02

11/02

06/03

11/03

06/04

11/04

06/05

11/05

06/06

11/06

06/07

11/07

06/08

11/08

06/09

11/09

06/10

11/10

06/11

11/11
T

o
p
5
0
0
 S

u
p
e
rc

o
m

p
u
te

r
p
e
a
k
 p

e
rf

o
rm

a
n
c
e
 (

T
F

lo
p
s
)

91.8 TFlops

1.5 TFlops

96.4 TFlops

11280.4 TFlops
Rank 1

Rank 500

I in complexity of software

 both these make finding bugs harder (especially for non experts)

Objectives of the project

I reduce difficulty of debugging
I automatic techniques for detecting and suggesting remedies for roundoff and other

numerical exception problems (anomalies)

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 4/19

Motivation and objective of the project

Motivation and objective

Techniques for detecting suspected anomalies vary :

1. in the costs of their application,

2. and in scopes and effectiveness : in the kind of anomalies they detect.

Goal automate debugging now done by hand
I intelligent and automatic tool

• locate automatically suspected anomalies
• with or without source code
• at runtime or statically

I help developers whose expertise does not extend to numerical error-analysis
• shorten debugging time and improve their productivity

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 5/19

Motivation and objective of the project

Motivation and objective

Techniques for detecting suspected anomalies vary :

1. in the costs of their application,

2. and in scopes and effectiveness : in the kind of anomalies they detect.

Goal automate debugging now done by hand
I intelligent and automatic tool

• locate automatically suspected anomalies
• with or without source code
• at runtime or statically

I help developers whose expertise does not extend to numerical error-analysis
• shorten debugging time and improve their productivity

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 5/19

Motivation and objective of the project

What are the usual source of anomalies ?

Common source of anomalies :

I rounding error accumulations
I conditional branches involving floating-point comparisons

• e.g. NaN leading to a convergence misbehavior

I vagaries of programming languages

• Fortran : conversion of constants in full double precision accuracy (unlike C)

double precision c1 0.1d0 0.10000000000000000555

double precision c2 0.1 0.10000000149011611938

I under/overflows
I cancellation, benign or catastrophic
I resolution of ill-conditioned problems, ...

Hardware problems : misbehavior of floating-point programs

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 6/19

Motivation and objective of the project

Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = b−a
2·n∫ b

a
f (x) ·dx =

h
3

[
f (a)+4 · f (a+h)+2 · f (a+2 ·h)+ · · ·+4 · f

(
a+(2 ·n−1) ·h

)
+ f (b)

]
.

unsigned int n = 10000;
double a = 0, b = 1, h = (b-a)/(2.*n);

double xk = a; // xk ≈ a + k.n
double r = f(xk); // r ≈ f(a)

while(1){
xk = xk + h;
r = r + 4.* f(xk); // r ≈ r + 4.f(a + k.n)

xk = xk + h;
if (xk >= b)

break;

r = r + 2.* f(xk); // r ≈ r + 2.f(a + k.n)
}

r = r + f(xk); // r ≈ r + f(b)

r = (h/3.) * r;

Implementation with a conditional
branch

I terminate the loop when
a+ k ·h ≥ b

I may result in an extra iteration, if
a+ k ·h is slightly less than b due to
roundoff error

Example of fix : a+ k ·h+ ε≥ b
I how to determine ε

semi-automatically ?

Another fix : make loop variable integer

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 7/19

Motivation and objective of the project

Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = b−a
2·n∫ b

a
f (x) ·dx =

h
3

[
f (a)+4 · f (a+h)+2 · f (a+2 ·h)+ · · ·+4 · f

(
a+(2 ·n−1) ·h

)
+ f (b)

]
.

unsigned int n = 10000;
double a = 0, b = 1, h = (b-a)/(2.*n);

double xk = a; // xk ≈ a + k.n
double r = f(xk); // r ≈ f(a)

while(1){
xk = xk + h;
r = r + 4.* f(xk); // r ≈ r + 4.f(a + k.n)

xk = xk + h;
if (xk + EPSILON >= b)

break;

r = r + 2.* f(xk); // r ≈ r + 2.f(a + k.n)
}

r = r + f(xk); // r ≈ r + f(b)

r = (h/3.) * r;

Implementation with a conditional
branch

I terminate the loop when
a+ k ·h ≥ b

I may result in an extra iteration, if
a+ k ·h is slightly less than b due to
roundoff error

Example of fix : a+ k ·h+ ε≥ b
I how to determine ε

semi-automatically ?

Another fix : make loop variable integer

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 7/19

Motivation and objective of the project

Example of avoidable numerical anomalies

Given n, evaluate the definite integral using Simpson’s rule, with h = b−a
2·n∫ b

a
f (x) ·dx =

h
3

[
f (a)+4 · f (a+h)+2 · f (a+2 ·h)+ · · ·+4 · f

(
a+(2 ·n−1) ·h

)
+ f (b)

]
.

unsigned int n = 10000;
double a = 0, b = 1, h = (b-a)/(2.*n);

double xk = a; // xk ≈ a + k.n
double r = f(xk); // r ≈ f(a)

while(1){
xk = xk + h;
r = r + 4.* f(xk); // r ≈ r + 4.f(a + k.n)

xk = xk + h;
if (xk + EPSILON >= b)

break;

r = r + 2.* f(xk); // r ≈ r + 2.f(a + k.n)
}

r = r + f(xk); // r ≈ r + f(b)

r = (h/3.) * r;

Implementation with a conditional
branch

I terminate the loop when
a+ k ·h ≥ b

I may result in an extra iteration, if
a+ k ·h is slightly less than b due to
roundoff error

Example of fix : a+ k ·h+ ε≥ b
I how to determine ε

semi-automatically ?

Another fix : make loop variable integer

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 7/19

Locating numerical anomalies

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 8/19

Locating numerical anomalies

How to detect these usual anomalies ?

Detection can be done by static or dynamic analysis

When suspected, these usual anomalies may be detected by :
I altering rounding mode of floating-point arithmetic hardware

 may not be available on every architectures (e.g. GPU)

I extending precision of floating-point computation

 may increase runtime significantly (use of software implementation)

I modifying comparisons by adding an unobvious tolerance
I using interval arithmetic

 produces a certificate, but runtime cost increases significantly
 intervals may grow too wide to be useful

I using Error-Free Transformation (EFT)
 code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis ?

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 9/19

Locating numerical anomalies

How to detect these usual anomalies ?

Detection can be done by static or dynamic analysis

When suspected, these usual anomalies may be detected by :
I altering rounding mode of floating-point arithmetic hardware

 may not be available on every architectures (e.g. GPU)

I extending precision of floating-point computation

 may increase runtime significantly (use of software implementation)

I modifying comparisons by adding an unobvious tolerance
I using interval arithmetic

 produces a certificate, but runtime cost increases significantly
 intervals may grow too wide to be useful

I using Error-Free Transformation (EFT)
 code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis ?

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 9/19

Locating numerical anomalies

How to detect these usual anomalies ?

Detection can be done by static or dynamic analysis

When suspected, these usual anomalies may be detected by :
I altering rounding mode of floating-point arithmetic hardware

 may not be available on every architectures (e.g. GPU)

I extending precision of floating-point computation

 may increase runtime significantly (use of software implementation)

I modifying comparisons by adding an unobvious tolerance
I using interval arithmetic

 produces a certificate, but runtime cost increases significantly
 intervals may grow too wide to be useful

I using Error-Free Transformation (EFT)
 code transformations may be difficult to automate

How to quickly detect usual anomalies using dynamic analysis ?

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 9/19

Locating numerical anomalies

Isolating failure-inducing code fragment

Does the anomaly (bug) really depend on the whole input code ?

First step in processing any bug : simplification
I eliminating all the details in the original code that are not relevant

 isolate the difference that causes the bug (failure)

I often people spend a lot of time isolating failure-inducing code fragment

Usually carried out by hand

I long and tedious + may miss some relevant simplification
I need to automate this process

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 10/19

Locating numerical anomalies

Framework flowchart

Double precision

Mixed precision

res(D)

Single precision

r
e
s
(
D
)

r
e
s
(
M
)

r
e
s
(
S
)

|res(S)− res(D)| > τ

|res(M)− res(D)| ≤ τ

Single precision

of solutions

Exponential numberFramework for isolating

numerical anomalies

in floating-point programs

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 11/19

Locating numerical anomalies

Framework flowchart

Double precision

Mixed precision

res(D)

Single precision

r
e
s
(
D
)

r
e
s
(
M
)

r
e
s
(
S
)

|res(S)− res(D)| > τ

|res(M)− res(D)| ≤ τ

Delta-Debugging

Single precision

of solutions
Small number

Locally minimum

set of changes

CIL

Code transformation /

instrumentation

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 11/19

Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

CIL 1 : high-level representation of C programs

I analysis and source-to-source transformation of C programs

int main(void)
{

float a;
float b;
float c;

a = b + c;
// ...

return 0;
}

float: c

float: a

float: b

return: 0

func: int main(void)

a

+

b c

Currently implemented transformations
I FloatToDouble : float⇒ double,
I RoundingMode : RN⇒ {RU,RD,RZ},
I DoubleToDD : double⇒ double-double,
I FlipFunction : implementation1⇒ implementation2.

1. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL : Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 12/19

Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

CIL 1 : high-level representation of C programs

I analysis and source-to-source transformation of C programs

int main(void)
{
double a;
float b;
double c;

a = b + c;
// ...

return 0;
}

double: c

scan in depth-first

double: a

float: b

return: 0

func: int main(void)

a

+

b c

Currently implemented transformations
I FloatToDouble : float⇒ double,
I RoundingMode : RN⇒ {RU,RD,RZ},
I DoubleToDD : double⇒ double-double,
I FlipFunction : implementation1⇒ implementation2.

1. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL : Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 12/19

Locating numerical anomalies

Transformations using CIL (C Intermediate Language)

CIL 1 : high-level representation of C programs

I analysis and source-to-source transformation of C programs

int main(void)
{
double a;
float b;
double c;

a = b + c;
// ...

return 0;
}

double: c

scan in depth-first

double: a

float: b

return: 0

func: int main(void)

a

+

b c

Currently implemented transformations
I FloatToDouble : float⇒ double,
I RoundingMode : RN⇒ {RU,RD,RZ},
I DoubleToDD : double⇒ double-double,
I FlipFunction : implementation1⇒ implementation2.

1. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL : Intermediate Language and Tools for Analysis and Transformation of C Programs. Proc. of Conference on Compiler Construction, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 12/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

0

20

40

60

80

100

0 10 20 30 40 50

E
rr

or
|r
e
s
(
M
)
−
r
e
s
(
D
)
|

Number of changes

How to isolate these 27 changes?

Error |res(M)− res(D)|
Threshold τ

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

double precision single precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

single precision double precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

single precisiondouble precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

double precision single precisionsingle precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

double precision single precisionsingle precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

simplification

double precision single precisionsingle precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

Delta-Debugging algorithm

General principle of Delta-Debugging 2 : find a locally minimal set of changes on a
code, so that the returned result remains within a given threshold τ of a more
accurate result (exact, higher precision, ...)

I implementation like binary search

double precision

simplification

double precision single precisionsingle precision

 apply half the changes and check if the
output is still accurate

 if no, go back to the other state and
discard the other half

 if the input is still inaccurate, increase
the granularity of the splitting

I the changes may be not consecutive

Future improvement : consider the efficiency (performance) of changes ?

2. A. Zeller and R. Hildebrandt.
Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 2002

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 13/19

Locating numerical anomalies

More realistic example (D.H. Bailey)

Calculate the arc length of the function g defined as

g(x) = x + ∑
0≤k≤5

2−k sin(2k · x), over (0,π).

Summing for xk ∈ (0,π) divided into n subintervals√
h2 +(g(xk +h)−g(h))2,

with h = π/n and xk = k ·h. If n = 1000000, we have

result = 5.795776322412856 (all double-double) 20x slower

= 5.795776322413031 (all double)

= 5.795776322412856 (only the summand is in double-double)

5.795776322412856 almost the same speed
I only 1 change is necessary found in ≈ 30 sec.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 14/19

Locating numerical anomalies

More realistic example (D.H. Bailey)

Calculate the arc length of the function g defined as

g(x) = x + ∑
0≤k≤5

2−k sin(2k · x), over (0,π).

Summing for xk ∈ (0,π) divided into n subintervals√
h2 +(g(xk +h)−g(h))2,

with h = π/n and xk = k ·h. If n = 1000000, we have

result = 5.795776322412856 (all double-double) 20x slower

= 5.795776322413031 (all double)

= 5.795776322412856 (only the summand is in double-double)

5.795776322412856 almost the same speed
I only 1 change is necessary found in ≈ 30 sec.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 14/19

Locating numerical anomalies

Bug in dgges subroutine of LAPACK

LAPACK bug report 3

I have the following problem with dgges. For version 3.1.1 and sooner, I get a reaso-
nable result, for version 3.2 and 3.2.1, I get info=n+2.

The only difference between LAPACK 3.1.1 and 3.2.x
I some calls to dlarfg replaced by dlarfp

First step : simplification
I which call(s) to dlarfp made the program fail ?

Automation with delta-debugging

I 25610 calls to dlarfp = 25610 possible changes
I all changes but 1 did not matter found in about 1m. 50 sec.

 much easier to find which line of code was the source of this bug

3. See http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783 for details.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 15/19

http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783

Locating numerical anomalies

Bug in dgges subroutine of LAPACK

LAPACK bug report 3

I have the following problem with dgges. For version 3.1.1 and sooner, I get a reaso-
nable result, for version 3.2 and 3.2.1, I get info=n+2.

The only difference between LAPACK 3.1.1 and 3.2.x
I some calls to dlarfg replaced by dlarfp

First step : simplification
I which call(s) to dlarfp made the program fail ?

Automation with delta-debugging

I 25610 calls to dlarfp = 25610 possible changes
I all changes but 1 did not matter found in about 1m. 50 sec.

 much easier to find which line of code was the source of this bug

3. See http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783 for details.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 15/19

http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=1783

Conclusion and perspective

Outline of the talk

1. Motivation and objective of the project

2. Locating numerical anomalies

3. Conclusion and perspective

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 16/19

Conclusion and perspective

NaN/Inf checking and some infinite loop isolation

Problem : NaN/Inf occurring in floating-point programs may be the source of some
infinite loops

How to detect where NaN/Inf occur during the run of the program ?

I by testing the result of each floating-point operations
I by testing overflow/invalid flag (only works if created by programs, not input)

 need an exception handler

Just try to show loop termination or detect loop non-termination

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 17/19

Conclusion and perspective

NaN/Inf checking and some infinite loop isolation

Problem : NaN/Inf occurring in floating-point programs may be the source of some
infinite loops

How to detect where NaN/Inf occur during the run of the program ?

I by testing the result of each floating-point operations
I by testing overflow/invalid flag (only works if created by programs, not input)

 need an exception handler

Just try to show loop termination or detect loop non-termination

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 17/19

Conclusion and perspective

Conclusion and perspective

Goal automatic debugging of scientific floating-point programs

Framework for the automatic isolation of numerical anomalies

I transformation / instrumentation using CIL
I effective changes found using Delta-Debugging

Current and future work

I implementation of other transformations (FloatToFF, ...)
I apply to database bugs of LAPACK
I NaN/Inf checking for isolating some infinite loops (loop non-termination)

I modifying comparisons that go astray by adding an unobvious tolerance
I isolation of floating-point constants that are not converted in full precision

I identification of hardware features that could facilitate “debugging process” while not
impacting normal floating-point performance

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 18/19

Conclusion and perspective

Centre National d’Études Spatiales (CNES) - Séminaire CCT/STIL
Toulouse, France, January 19, 2012

Techniques for the automatic debugging of scientific
floating-point programs

David H. Bailey1 James Demmel2 William Kahan2

Guillaume Revy3 Koushik Sen2

Berkeley Lab Computing Sciences1 ParLab (EECS, University of California, Berkeley)2 DALI project-team - UPVD/LIRMM (CNRS-UM2)3

Thanks to Sun/Oracle.

G. Revy (CNES, CCT/STIL - January 19, 2012) Techniques for the automatic debugging of scientific floating-point programs 19/19

	CNES, CCT/STIL - January 19, 2012
	Motivation and objective of the project
	Locating numerical anomalies
	Conclusion and perspective

