Journée séminaire - Optimisation de compilation pour les processeurs embarqués Lyon, France, June 15, 2009

Fast and accurate floating-point division on ST231

Algorithm, implementation, and automatic generation and validation

Guillaume Revy

Advisors: Claude-Pierre Jeannerod and Gilles Villard

Arénaire Inria project-team (LIP, ENS Lvon) Université de Lvon CNRS

Context and objectives

Context

- FLIP software library
 - → http://flip.gforge.inria.fr/
 - → support for floating-point arithmetic on integer processors
- low latency implementation of binary floating-point division
 - → targets a VLIW integer processor of the ST200 family
- no support of subnormal numbers
 - \rightarrow input/output: ± 0 , $\pm \infty$, NaN or *normal* number

Objectives

- faster software implementation (compared to FLIP 0.3)
 - → expose instruction-level parallelism via bivariate polynomial evaluation
- correctly rounded
 - → rounding-to-nearest even

Notation and assumptions

- ▶ Input (x, y): two positive normal numbers
 - \rightarrow precision p, extremal exponents (e_{\min} , e_{\max})

$$x = (-1)^{s_x} \cdot m_x \cdot 2^{e_x} \quad \text{with} \quad \begin{cases} s_x \in \{0,1\} \\ m_x = 1.m_{x,1} \dots m_{x,p-1} \in [1,2) \\ e_x \in \{e_{\min}, \dots, e_{\max}\} \end{cases}$$

- ► Computation: k-bit unsigned integers
 - \rightarrow register size k
- ► Example for binary32 format: $(k, p, e_{max}) = (32, 24, 127)$

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Division algorithm flowchart

► Definition

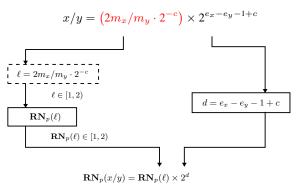
$$c = \begin{cases} 1 & \text{if } m_x \ge m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$$

Division algorithm flowchart

Definition

$$c = \begin{cases} 1 & \text{if } m_x \ge m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$$

Range reduction

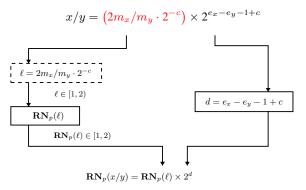


Division algorithm flowchart

Definition

$$c = \begin{cases} 1 & \text{if } m_x \ge m_y, \\ 0 & \text{if } m_x < m_y. \end{cases}$$

Range reduction



How to compute the correctly rounded significand $RN_p(\ell)$?

How to compute a correctly rounded significand?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm

How to compute a correctly rounded significand?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm
- Multiplicative methods (Newton-Raphson, Goldschmidt)
 - ► Piñeiro and Bruguera (2002) Raina's Ph.D/FLIP (2006)
 - more instruction-level parallelism exposure
 - previous implementation of division (FLIP 0.3)

How to compute a correctly rounded significand?

- Iterative methods (restoring, non-restoring, ...)
 - Oberman and Flynn (1997)
 - minimal instruction-level parallelism exposure, sequential algorithm
- Multiplicative methods (Newton-Raphson, Goldschmidt)
 - Piñeiro and Bruguera (2002) Raina's Ph.D/FLIP (2006)
 - more instruction-level parallelism exposure
 - previous implementation of division (FLIP 0.3)
- Polynomial-based methods
 - Agarwal, Gustavson and Schmookler (1999)
 - → univariate polynomial evaluation
 - Our approach
 - → single bivariate polynomial evaluation

Truncated one-sided approximation

- See for example, Ercegovac and Lang (2004)
- 3 steps
 - 1. compute $v=(01.v_1\dots v_{k-2})$ such that $-2^{-p}<\ell-v<0 \ \ \text{that is implied by} \ \ |(\ell+2^{-p-1})-v|<2^{-p-1}$
 - 2. truncate v after p fraction bits
 - 3. obtain $RN_p(\ell)$ after possibly adding 2^{-p}

Truncated one-sided approximation

- See for example, Ercegovac and Lang (2004)
- 3 steps
 - 1. compute $v=(01.v_1\dots v_{k-2})$ such that $-2^{-p}\leq \ell-v<0 \ \ \text{that is implied by} \ \ |(\ell+2^{-p-1})-v|<2^{-p-1}$
 - 2. truncate v after p fraction bits
 - 3. obtain $RN_p(\ell)$ after possibly adding 2^{-p}

How to compute the one-sided approximation v?

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t)=s/(1+t)+2^{-p-1},$$
 at the points $s^*=2^{1-c}m_x$ and $t^*=m_y-1$:
$$\ell+2^{-p-1}=F(s^*,t^*).$$

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1},$$
 at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$:

$$\ell + 2^{-p-1} = F(s^*, t^*).$$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$
.

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation entails an error ϵ_{approx}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1},$$

at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$:

$$\ell + 2^{-p-1} = F(s^*, t^*).$$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$
.

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation entails an error ϵ_{approx}
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

$$v = \mathcal{P}(s^*, t^*).$$

→ evaluation entails an error e_{eval}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1},$$

at the points $s^* = 2^{1-c}m_x$ and $t^* = m_y - 1$:

$$\ell + 2^{-p-1} = F(s^*, t^*).$$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$
.

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation entails an error ϵ_{approx}
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

$$v = \mathcal{P}(s^*, t^*).$$

→ evaluation entails an error e_{eval}

How to ensure that $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$?

Sufficient error bounds

Since by triangular inequality

$$|(\ell + 2^{-p-1}) - v| \le \mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eval}}$$

with

$$\mu = \max\{s^*\} = \max\{2^{1-c}m_x\} = (4 - 2^{3-p})$$

Sufficient error bounds

Since by triangular inequality

$$|(\ell + 2^{-p-1}) - v| \le \mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eval}}$$

with

$$\mu = \max\{s^*\} = \max\{2^{1-c}m_x\} = (4 - 2^{3-p})$$

One has to ensure

$$\mu \cdot \epsilon_{\text{approx}} + \epsilon_{\text{eval}} < 2^{-p-1}$$

Sufficient conditions can be obtained

$$\epsilon_{\text{approx}} < 2^{-p-1}/\mu \quad \text{and} \quad \epsilon_{\text{eval}} < 2^{-p-1} - \mu \cdot \epsilon_{\text{approx}}$$

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Automatic generation of an efficient evaluation program

- ▶ Evaluation program P = main part of the full software implementation
 - → dominates the cost
- By efficient, one means an evaluation program that
 - → reduces the evaluation latency
 - → reduces the number of multiplications
 - → is accurate enough

Automatic generation of an efficient evaluation program

- ▶ Evaluation program P = main part of the full software implementation
 - → dominates the cost
- By efficient, one means an evaluation program that
 - → reduces the evaluation latency
 - → reduces the number of multiplications
 - → is accurate enough
- Target architecture : ST231
 - → 4-issue VLIW integer processor with at most 2 mul. per cycle
 - → latencies: addition = 1 cycle, multiplication = 3 cycles

Automatic generation of an efficient evaluation program

- ▶ Evaluation program P = main part of the full software implementation
 - → dominates the cost
- By efficient, one means an evaluation program that
 - → reduces the evaluation latency
 - → reduces the number of multiplications
 - → is accurate enough
- Target architecture : ST231
 - → 4-issue VLIW integer processor with at most 2 mul. per cycle
 - → latencies: addition = 1 cycle, multiplication = 3 cycles

Which evaluation program to evaluate the polynomial P(s,t)?

Example for the binary32 implementation: (k, p) = (32, 24)

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- ▶ Horner's scheme: $(3+1) \times 11 = 44$ cycles
 - → sequential scheme, no instruction-level parallelism exposure

Example for the binary32 implementation: (k, p) = (32, 24)

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- ▶ Horner's scheme: $(3+1) \times 11 = 44$ cycles
 - → sequential scheme, no instruction-level parallelism exposure
- ▶ Estrin's scheme: 20 cycles
 - → more instruction-level parallelism
 - \rightarrow a last multiplication by s
 - $\to 2$ cycles save by distributing the multiplication by s in the evaluation of the univariate polynomial a(t)

Example for the binary32 implementation: (k, p) = (32, 24)

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- ▶ Horner's scheme: $(3+1) \times 11 = 44$ cycles
 - → sequential scheme, no instruction-level parallelism exposure
- ► Estrin's scheme: 20 cycles
 - → more instruction-level parallelism
 - \rightarrow a last multiplication by s
 - ightarrow 2 cycles save by distributing the multiplication by s in the evaluation of the univariate polynomial a(t)
- **.**..

We can do much better.

- But how to explore the solution space and choose an efficient evaluation program?
 - → interest of automatic generation

- Similar to Harrison, Kubaska, Story and Tang (1999)
- Assumption
 - → unbounded parallelism
 - ightarrow latencies of arithmetic operators: + and \times

- Similar to Harrison, Kubaska, Story and Tang (1999)
- Assumption
 - → unbounded parallelism
 - \rightarrow latencies of arithmetic operators: + and \times
- ▶ Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

2. generate automatically a set of evaluation trees, with height $\leq \tau$

- Similar to Harrison, Kubaska, Story and Tang (1999)
- Assumption
 - → unbounded parallelism
 - \rightarrow latencies of arithmetic operators: + and \times
- ▶ Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

- 2. generate automatically a set of evaluation trees, with height $\leq \tau$
- \Rightarrow if no tree satisfies τ then increase τ and restart

- Similar to Harrison, Kubaska, Story and Tang (1999)
- Assumption
 - → unbounded parallelism
 - \rightarrow latencies of arithmetic operators: + and \times
- ▶ Two sub-steps
 - 1. determine a target latency τ

ie.
$$\tau = 3 \times \lceil \log_2(\deg(P)) \rceil + 1$$

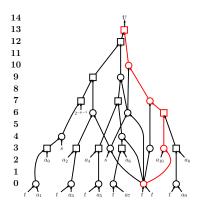
- 2. generate automatically a set of evaluation trees, with height $\leq \tau$
- \Rightarrow if no tree satisfies τ then increase τ and restart
- Number of evaluation trees = extremely large → several filters

$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- first target latency $\tau = 13$
 - → no tree found

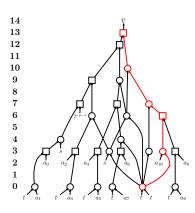
$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- first target latency $\tau = 13$
 - → no tree found
- second target latency $\tau = 14$
 - → obtained in about 10 sec.



$$P(s,t) = 2^{-p-1} + s \cdot \sum_{i=0}^{10} a_i t^i$$

- first target latency $\tau = 13$
 - → no tree found
- second target latency $\tau = 14$
 - → obtained in about 10 sec.
- distribute the multiplication by s
 - → otherwise: 18 cycles
- too difficult to find such tree by hand



Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - ⇒ not store the sign: more accuracy

Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - ⇒ not store the sign: more accuracy
- ► Label evaluation trees by appropriate arithmetic operator: + or -

Arithmetic operator choice

- Polynomial coefficients implemented in absolute value
- All intermediate values have constant sign
 - ⇒ not store the sign: more accuracy
- ▶ Label evaluation trees by appropriate arithmetic operator: + or −
- If the sign of an intermediate value changes when the input varies then the evaluation tree is rejected
 - ⇒ implementation with certified interval arithmetic (MPFI)

Practical scheduling checking

- Schedule the evaluation trees on a simplified model of a real target architecture
 - → operator costs, nb. issues, constraints on operators
 - → no syllables constraint

Practical scheduling checking

- Schedule the evaluation trees on a simplified model of a real target architecture
 - → operator costs, nb. issues, constraints on operators
 - → no syllables constraint
- Check if no increase of latency in practice compared to the latency on unbounded parallelism
 - ⇒ if practical latency > theoretical latency then the evaluation tree is rejected
 - ⇒ implementation using naive list scheduling algorithm is enough

Outline of the talk

Division via polynomial evaluation

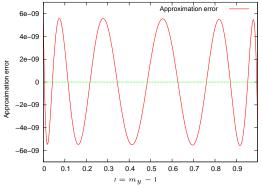
Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

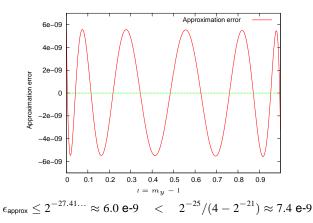
Concluding remarks

ightharpoonup Approximation of 1/(1+t) by truncated Remez' polynomial of degree 10



$$\epsilon_{\text{approx}} \leq 2^{-27.41...} \approx 6.0 \; \text{e-9} \quad < \quad 2^{-25}/(4-2^{-21}) \approx 7.4 \; \text{e-9}$$

ightharpoonup Approximation of 1/(1+t) by truncated Remez' polynomial of degree 10

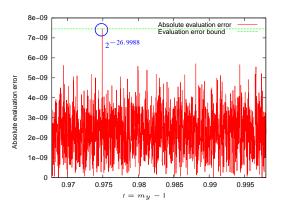


Deduction of the evaluation error bound from ϵ_{approx}

$$\epsilon_{\text{eval}} < 2^{-25} - (4 - 2^{-21}) \cdot 2^{-27.41...} \approx 2^{-26.9999...} \approx 7.4 \text{ e-9}.$$

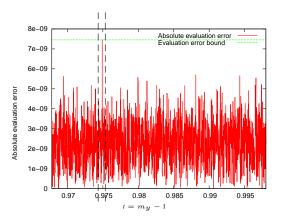
- ▶ Case 1: $m_x \ge m_y \to \text{condition satisfied}$
- ▶ Case 2: $m_x < m_y \rightarrow$ condition not satisfied

ie. $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$



- ▶ Case 1: $m_x \ge m_y \to \text{condition satisfied}$
- ▶ Case 2: $m_x < m_y \rightarrow$ condition not satisfied

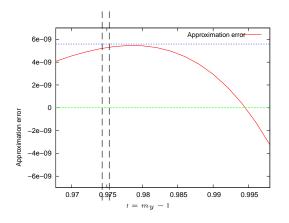
ie.
$$s^* = 3.935581684112548828125$$
 and $t^* = 0.97490441799163818359375$



 determine an interval *I* around this point

- Case 1: m_x ≥ m_y → condition satisfied
- ▶ Case 2: $m_x < m_y \rightarrow$ condition not satisfied

ie. $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$



- determine an interval *I* around this point
- 2. compute ϵ_{approx} over \mathcal{I}
- determine an evaluation error bound η
- 4. check if $\epsilon_{\text{eval}} < \eta$?

Evaluation program validation strategy

Find a splitting of the input interval into n subinterval(s) $\mathcal{T}^{(i)}$, and check that

$$\mu \cdot \epsilon_{\mathsf{approx}}^{(i)} + \epsilon_{\mathsf{eval}}^{(i)} < 2^{-p-1}$$

on each subinterval.

Evaluation program validation strategy

Find a splitting of the input interval into n subinterval(s) $\mathcal{T}^{(i)}$, and check that

$$\mu \cdot \epsilon_{\text{approx}}^{(i)} + \epsilon_{\text{eval}}^{(i)} < 2^{-p-1}$$

on each subinterval.

- Implementation of the splitting by dichotomy
 - ▶ for each T(i)
 - 1. compute a certified approximation error bound $\epsilon_{
 m approx}^{(i)}$
 - 2. determine an evaluation error bound $\epsilon_{\text{eval}}^{(i)}$
 - 3. check this bound
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
 - ▶ implemented using Sollya (steps 1 and 2) and Gappa (step 3)

Evaluation program validation strategy

Find a splitting of the input interval into n subinterval(s) $\mathcal{T}^{(i)}$, and check that

$$\mu \cdot \epsilon_{\text{approx}}^{(i)} + \epsilon_{\text{eval}}^{(i)} < 2^{-p-1}$$

on each subinterval.

- Implementation of the splitting by dichotomy
 - ▶ for each T(i)
 - 1. compute a certified approximation error bound $\epsilon_{
 m approx}^{(i)}$
 - 2. determine an evaluation error bound $\epsilon_{\text{eval}}^{(i)}$
 - 3. check this bound
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
 - ▶ implemented using Sollya (steps 1 and 2) and Gappa (step 3)
- ► Example of binary32 implementation
 - → launched on a 64 processor grid
 - \rightarrow 36127 subintervals found in several hours (\approx 5h.)

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Experimental results

Performances on ST231

	Nb. of instructions	Latency (# cycles)	IPC	Code size (bytes)
rounding to nearest	86	27	3.18	416

- speed-up by a factor of about 1.78 in rounding to nearest compared to the previous implementation (48 cycles)
 - optimized implementation
 - efficient ST200 compiler (st200cc)
- ▶ high IPC value: confirms the parallel nature of our approach

Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Concluding remarks

Contributions

- New approach for the implementation of binary floating-point division
 - → bivariate polynomial-based algorithm
 - → automatic generation and validation of efficient evaluation program
 - → implementation targeted ST231 VLIW integer processor
- Speed-up by a factor of about 1.78 in rounding to nearest compared to the previous implementation

Since then

- Extension to subnormal numbers support
 - → implementation in 31 cycles: 4 extra cycles
- Implementation of other functions

	Latency (# cycles)	IPC	Code size (bytes)	Speed-up
square root	21	2.47	276	2.38
reciprocal	22	2.59	336	1.75
reciprocal square root	29	2.24	368	2.27