
Open Source Quality (OSQ) Retreat

Santa Cruz, CA, USA, May 13, 2010

Techniques for the automatic debugging
of scientific floating-point programs

Guillaume Revy
ParLab EECS University of California, Berkeley

Joint work with David H. Bailey, James Demmel, William Kahan, and Koushik Sen.

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 1/19

Motivation & Objective

The field of large-scale scientific application has been growing rapidly
⇒ anomalies: significative impact on numerical results

⇒ on the general behavior of the systems

Techniques for detecting anomalies vary:
⇒ in the costs of their application

⇒ and in the kind of anomalies they detect.

Propose automatic techniques for detecting and remedying a wide class
of numerical anomalies arising in single/multi-threaded applications
⇒ helping developers not necessarily expert in numerical analysis

⇒ improving their productivity

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 2/19

Motivation & Objective

The field of large-scale scientific application has been growing rapidly
⇒ anomalies: significative impact on numerical results

⇒ on the general behavior of the systems

Techniques for detecting anomalies vary:
⇒ in the costs of their application

⇒ and in the kind of anomalies they detect.

Propose automatic techniques for detecting and remedying a wide class
of numerical anomalies arising in single/multi-threaded applications
⇒ helping developers not necessarily expert in numerical analysis

⇒ improving their productivity

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 2/19

First simple example

Code

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
float b = 1.0f;
float c = a + b;
float d = c - a;

printf("The value of d is: %1.19e\n", d);

return 0;
}

Execution result

$ The value of d is: 0.0000000000000000000e+00

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 3/19

First simple example

Code

#include <math.h>
#include <stdio.h>

int
main(void)
{
double a = 1e15f;
double b = 1.0f;
double c = a + b;
double d = c - a;

printf("The value of d is: %1.19e\n", d);

return 0;
}

Execution result

$ The value of d is: 1.0000000000000000000e+00

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 3/19

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

What are the usual anomalies?

I rounding error accumulations
I conditional branches involving floating-point comparisons

→ may go astray due to the subtleties of floating-point arithmetic, eg NaN

→ convergence misbehavior

I difficulties of programming languages
→ Fortran: constants converted in full double precision accuracy if written with

the d notation, otherwise not, unlike C

I under/overflows, resolution of ill-conditioned problems
→ returned result may be completely wrong

I cancellation, benign or catastrophic, ...

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 4/19

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

How to detect these usual anomalies?
I altering rounding mode of floating-point arithmetic hardware

→ may not normally be usable to remedy the problems

I extending precision of floating-point computation
→ may increase run time significantly (due to the use of software interface)

I using interval arithmetic
→ produces a certificate, but run time cost is the greatest
→ intervals may grow too wide to be useful

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 4/19

Debugging of floating-point programs

Tool for detecting and remedying anomalies in floating-point programs

→ either at C code level or at run-time

How to detect these usual anomalies?
I altering rounding mode of floating-point arithmetic hardware

→ may not normally be usable to remedy the problems

I extending precision of floating-point computation
→ may increase run time significantly (due to the use of software interface)

I using interval arithmetic
→ produces a certificate, but run time cost is the greatest
→ intervals may grow too wide to be useful

How to detect quickly the most sensitive part of a C program?

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 4/19

Framework flowchart

error < τ

(ie. float) (ie. double)

(ie. mixed precision)

C code

C code C code

Framework for debugging

floating-point programs

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 5/19

Framework flowchart

error < τ

(ie. float) (ie. double)

(ie. mixed precision)

C code

C code C code

CIL Code transformation / instrumentation

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 5/19

Framework flowchart

error < τ

(ie. float) (ie. double)

(ie. mixed precision)

C code

C code C code

Delta-Debugging (ddmin) Local minimum set of changes

CIL Code transformation / instrumentation

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 5/19

Outline of the talk

1. Delta-Debugging Algorithm

2. Code transformation and instrumentation

3. Some results

4. Conclusion & Current work

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 6/19

Outline of the talk

1. Delta-Debugging Algorithm

2. Code transformation and instrumentation

3. Some results

4. Conclusion & Current work

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 7/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

X

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

X

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

X

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

V

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

General principle of Delta-Debugging

Principle: find a local minimal set of changes on a C code, so that the
returned result remains at a given threshold of a known and more
accurate result (exact, higher precision, ...)

→ implementation like binary search

V

V

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 8/19

Delta-Debugging Algorithm for the first simple example

Code

#include <math.h>
#include <stdio.h>

int
main(void)
{
float a = 1e15f;
double b = 1.0f;
double c = a + b;
float d = c - a;

printf("The value of d is: %1.19e\n", d);

return 0;
}

. 13 possible changes

. 7 (9) tests done

. 2 changes are relevant

Execution result

$ The value of d is: 1.0000000000000000000e+00

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 9/19

Delta-Debugging Algorithm

Let error, C3 = S1∪·· ·∪Sn, and S̄i be such that:

error(/0) = 7, error(C3) = 3, and S̄i = C3−Si .

Finally ddmin(C3) = DD(C3,2) with

1. if ∃i ∈ {1, · · · ,n} such that error(Si) = 3

→ reduction to subset: DD(Si ,2),

2. if ∃i ∈ {1, · · · ,n} such that error(S̄i) = 3

→ reduction to complement: DD(S̄i ,max(n−1,2)),

3. if n < |C3|
→ increase of granularity: DD(C3,min(|C3| ,2n)),

4. otherwise
→ done.

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 10/19

Delta-Debugging Algorithm

Let error, C3 = S1∪·· ·∪Sn, and S̄i be such that:

error(/0)≥ τ, error(C3) < τ, and S̄i = C3−Si .

Finally ddmin(C3) = DD(C3,2) with

1. if ∃i ∈ {1, · · · ,n} such that error(Si) < τ

→ reduction to subset: DD(Si ,2),

2. if ∃i ∈ {1, · · · ,n} such that error(S̄i) < τ

→ reduction to complement: DD(S̄i ,max(n−1,2)),

3. if n < |C3|
→ increase of granularity: DD(C3,min(|C3| ,2n)),

4. otherwise
→ done.

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 10/19

Property on ddmin

Property
For any Si ⊂ C3, ddmin(Si) is 1-minimal.

V

V

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 11/19

Property on ddmin

Property
For any Si ⊂ C3, ddmin(Si) is 1-minimal.

V

X

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 11/19

Property on ddmin

Property
For any Si ⊂ C3, ddmin(Si) is 1-minimal.

V

XX

V

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 11/19

Outline of the talk

1. Delta-Debugging Algorithm

2. Code transformation and instrumentation

3. Some results

4. Conclusion & Current work

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 12/19

CIL - C Intermediate Language

CIL: high-level representation of C programs

⇒ analysis and source-to-source transformation of C programs

C program: represented as a tree

⇒ a node = variable declaration, constants, function definition, block
statement, ...

⇒ scan in depth-first the structure of the CIL program (tree)

⇒ define modifications (transformations) on each kind of node

C code transformations using CIL
+

Local minimal set finding using Delta-Debugging

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 13/19

CIL - C Intermediate Language

CIL: high-level representation of C programs

⇒ analysis and source-to-source transformation of C programs

C program: represented as a tree

⇒ a node = variable declaration, constants, function definition, block
statement, ...

⇒ scan in depth-first the structure of the CIL program (tree)

⇒ define modifications (transformations) on each kind of node

C code transformations using CIL
+

Local minimal set finding using Delta-Debugging

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 13/19

Currently implemented transformations

FloatToDouble: float→ double,

RoundingMode: RN→ {RU,RD,RZ},
FlipFunction: flipping between two implementations of the same
computation,

DoubleToDD: double→ double-double (Grey Ballard’s CS 263 project).

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 14/19

Outline of the talk

1. Delta-Debugging Algorithm

2. Code transformation and instrumentation

3. Some results

4. Conclusion & Current work

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 15/19

More realistic example (D.H. Bailey)
Problem

Calculate the arc length of the function g:

g(x) = x + ∑
0≤k≤5

2−k sin(2k x), over (0,π).

Solution

Summing for xk ∈ (0,π) divided into n subintervals√
h2 + (g(xk + h)−g(h))2,

with h = π/n and xk = kh. If n = 1000000, we have

result = 5.795776322412856 (double-double) → 20x slower

= 5.795776322413031 (double)

= 5.795776322412856 (double-double sum of doubles)

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 16/19

More realistic example (D.H. Bailey)
Solution

Summing for xk ∈ (0,π) divided into n subintervals√
h2 + (g(xk + h)−g(h))2,

with h = π/n and xk = kh. If n = 1000000, we have

result = 5.795776322412856 (double-double) → 20x slower

= 5.795776322413031 (double)

= 5.795776322412856 (double-double sum of doubles)

Automation with Delta-Debugging

. 57 possible changes

. 10 (10) tests done

. only 1 change is necessary

≈ 30 sec.

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 16/19

Bug in dgges subroutine of LAPACK

Bug report

I have the following problem with dgges. For version 3.1.1 and sooner, I get a
reasonable result, for version 3.2 and 3.2.1, I get info=n+2.

The only difference between LAPACK 3.1.1 and 3.2.x
→ some call to dlarfg replaced by dlarfp

Which call(s) to dlarfp made the program fail?

Automation with Delta-Debugging

. 25610 possible changes

. 34 (47) tests done

. all changes but 1 did not matter

≈ 1 m. 50 sec.

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 17/19

Outline of the talk

1. Delta-Debugging Algorithm

2. Code transformation and instrumentation

3. Some results

4. Conclusion & Current work

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 18/19

Conclusion & Current work

Framework for the automatic debugging of floating-point programs:
detecting and remedying of a wide range of numerical anomalies

I transformation / instrumentation using CIL
I effective changes found using Delta-Debugging

Delta-Debugging Algorithm

I 1-minimality is not enough (in our cases)
I how to determine initial set of changes?
I implementation of other transformations (FloatToFF, ...)
I protect some parts of code

Adding an adjustable “fuzz” on one side of the comparisons that go astray

Detection of some infinite loops, exception handling, ...

Guillaume Revy – May 13, 2010 Techniques for the automatic debugging of scientific floating-point programs 19/19

	OSQ Retreat, May 13, 2010
	Delta-Debugging Algorithm
	Code transformation and instrumentation
	Some results
	Conclusion & Current work

