Séminaire — Equipe DALI (Laboratoire ELIAUS — Université de Perpignan)
Perpignan, France, June 23, 2009

Fast and accurate floating-point
division on ST231

Algorithm, implementation, and automatic generation and validation

Guillaume Revy
Advisors: Claude-Pierre Jeannerod and Gilles Villard

Arénaire Inria project-team (LIP, ENS Lyon) Université de Lyon = CNRS

& WBEinria e k- @ uN.msé oLon ®

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 1/29

Context and objectives

Context
» FLIP software library

— http://flip.gforge.inria.fr/
— support for floating-point arithmetic on integer processors

» low latency implementation of binary floating-point division
— targets a VLIW integer processor of the ST200 family

» no support of subnormal numbers
— input/output: £0, o0, NaN or normal number

Objectives

» faster software implementation (compared to FLIP 0.3)

— expose instruction-level parallelism via bivariate polynomial evaluation
» correctly rounded

— rounding-to-nearest even

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

http://flip.gforge.inria.fr/

IEEE 754 specification

Let (x, y) be two binary floating-point data:

zfy = (=1 -|zl/|yl,

with s, = sz XOR sy.

lyl
l=l/ly] +0 normal 400 NaN
+0 gNaN +0 +0 gNaN
normal 400 RN, (|| /|y|) +0 gNaN
L I +oo0 gNaN gNaN
NaN gNaN gNaN gNaN gNaN

Special values for RN, (|z]/|y]) .

= since RN, (—r) = —RN,(r), for non special inputs:

RNy (z/y) = (=1 - RNp(|z|/[y]).

Fast and accurate floating-point division on ST231

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009)

Notation and assumptions

» Input (z, y): two positive normal numbers

— precision p, extremal exponents (emin, €max)

sz € {0,1}
z=(=1)% -mg-2° with S myz =Lmy1...myp-1 € [L,2)
€x e {emim ey emax}

» Computation: k-bit unsigned integers

— register size k

» Example for binary32 format: (k, p, emax) = (32, 24, 127)

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 4129

L
Outline of the talk

Division via polynomial evaluation

Generation of an efficient evaluation program

Validation of the generated evaluation program

Experimental results

Concluding remarks

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 5/29

Outline of the talk

Division via polynomial evaluation

Guillaume Revy (Séminaire IC|LI|p , June 23, 2009)

st and accurate floating-point division on ST231 6/29

Division via polynomial evaluation

Division algorithm flowchart

» Definition 1 if me >m
x Y

0 if my < my.

Guillaume Revy (Séminaire IC|LI|p , June 23, 2009)

st and accurate floating-point division on ST231 7129

Division algorithm flowchart

» Definition 1 if ma > my,

0 if my < my.
» Range reduction

z/y = (2ma/my - 27°) X pea —ey—1+c

| d=e;—ey—1+c |

bl

RN, (z/y) = RN, () x 2¢

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Division algorithm flowchart

» Definition 1 if ma > my,

0 if my < my.
» Range reduction

z/y = (2771/1;/7711/ : 27(:) « = —ey—lte

bl

RN, (z/y) = RN, () x 2¢

How to compute the correctly rounded significand RN, (¢) ?

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 7129

Division via polynomial evaluation

How to compute a correctly rounded significand ?

» lterative methods (restoring, non-restoring, ...)
» Oberman and Flynn (1997)

» minimal instruction-level parallelism exposure, sequential algorithm

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 8/29

Division via polynomial evaluation

How to compute a correctly rounded significand ?

» lterative methods (restoring, non-restoring, ...)
» Oberman and Flynn (1997)

» minimal instruction-level parallelism exposure, sequential algorithm

» Multiplicative methods (Newton-Raphson, Goldschmidt)
» Pifieiro and Bruguera (2002) — Raina’s Ph.D/FLIP (2006)
> more instruction-level parallelism exposure

> previous implementation of division (FLIP 0.3)

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 8/29

Division via polynomial evaluation

How to compute a correctly rounded significand ?

» lterative methods (restoring, non-restoring, ...)
» Oberman and Flynn (1997)

» minimal instruction-level parallelism exposure, sequential algorithm

» Multiplicative methods (Newton-Raphson, Goldschmidt)
» Pifieiro and Bruguera (2002) — Raina’s Ph.D/FLIP (2006)
> more instruction-level parallelism exposure

> previous implementation of division (FLIP 0.3)

» Polynomial-based methods

» Agarwal, Gustavson and Schmookler (1999)
— univariate polynomial evaluation

> Our approach
— single bivariate polynomial evaluation

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 8/29

Division via polynomial evaluation

Truncated one-sided approximation

» See for example, Ercegovac and Lang (2004)
» 3 steps
1. compute v = (01.v; . ..vE_2) such that

—27P < f—wv <0 thatisimpliedby |[(¢+2 P71 —¢| <2771

2. truncate v after p fraction bits: w = (01.v1...v,0...0)

3. obtain RN, (¢) after possibly adding 2—7

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 9/29

Division via polynomial evaluation

Truncated one-sided approximation

» See for example, Ercegovac and Lang (2004)
» 3 steps
1. compute v = (01.v; . ..vE_2) such that

—27P < f—wv <0 thatisimpliedby |[(¢+2 P71 —¢| <2771

2. truncate v after p fraction bits: w = (01.v1...v,0...0)

3. obtain RN, (¢) after possibly adding 2—7

How to compute the one-sided approximation v ?

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 9/29

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider £+ 277~* as the exact result of the function
F(s,t) =s/(14+t)+2777
at the points s* = 2"°m, and t* = m, — 1:
(42777 = F(s",t7).

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider £+ 277~* as the exact result of the function
F(s,t) =s/(14+t)+2777
at the points s* = 2"°m, and t* = m, — 1:
(42777 = F(s",t7).

2. Approximate F(s,t) by a bivariate polynomial P(s, t)
P(s,t) = s-a(t) + -1

— a(t): univariate polynomial approximant of 1/(1 + ¢)
— approximation entails an error eapprox

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider £+ 277~* as the exact result of the function
F(s,t) =s/(14+t)+2777
at the points s* = 2"°m, and t* = m, — 1:
(42777 = F(s",t7).

2. Approximate F(s,t) by a bivariate polynomial P(s, t)
P(s,t) = s-a(t) + -1

— a(t): univariate polynomial approximant of 1/(1 + ¢)
— approximation entails an error eapprox

3. Evaluate P(s,t) by a well-chosen efficient evaluation program P
v ="P(s"t").

— evaluation entails an error eqys

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Division via polynomial evaluation

Computation of the one-sided approximation

1. Consider £+ 277~* as the exact result of the function
F(s,t) =s/(14+t)+2777
at the points s* = 2"°m, and t* = m, — 1:
(42777 = F(s",t7).
2. Approximate F'(s,t) by a bivariate polynomial P(s,t)
P(s,t)=s-a(t)+2 7"
— a(t): univariate polynomial approximant of 1/(1 + ¢)

— approximation entails an error eapprox

3. Evaluate P(s,t) by a well-chosen efficient evaluation program P
v ="P(s"t").
— evaluation entails an error €qya

How to ensure that |(£ +277P7Y) —o| < 27P71?

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Division via polynomial evaluation

Sufficient error bounds

» Since by triangular inequality
|(£ +4 2,p,1) — ’U| < M+ €approx + €eval

with
= max{s"} = max{2" °m,} = (4 — 2*°7)

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 11/29

Division via polynomial evaluation

Sufficient error bounds

» Since by triangular inequality
|(£ +4 2,p,1) — ’U| < M+ €approx + €eval

with
= max{s"} = max{2" °m,} = (4 — 2*°7)

» One has to ensure
—p—1
L+ €approx T €eval < 2 P

» Sufficient conditions can be obtained

—p—1 —p—1
Eapprox < 2P /,U/ and Eeval < 2 P — [* €approx

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 11/29

Division via polynomial evaluation

Implementation steps

1. determine the minimal degree § for the polynomial approximant a
2. compute the polynomial approximant a such that
Capprox < zipil/,“
3. find an efficient evaluation program P such that
ot < 2777 — 1+ Eapprox

4. validate the evaluation program

= implemented using Sollya (steps 1 and 2) and Gappa (step 4)

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Outline of the talk

Generation of an efficient evaluation program

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 13/29

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

» Evaluation program P = main part of the full software implementation
— dominates the cost

» By efficient, one means an evaluation program that

— reduces the evaluation latency
— reduces the number of multiplications
— is accurate enough

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 14/29

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

» Evaluation program P = main part of the full software implementation
— dominates the cost

» By efficient, one means an evaluation program that

— reduces the evaluation latency
— reduces the number of multiplications
— is accurate enough

» Target architecture : ST231

— 4-issue VLIW integer processor with at most 2 mul. per cycle
— latencies: addition = 1 cycle, multiplication = 3 cycles

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Automatic generation of an efficient evaluation program

» Evaluation program P = main part of the full software implementation
— dominates the cost

» By efficient, one means an evaluation program that

— reduces the evaluation latency
— reduces the number of multiplications
— is accurate enough

» Target architecture : ST231

— 4-issue VLIW integer processor with at most 2 mul. per cycle
— latencies: addition = 1 cycle, multiplication = 3 cycles

Which evaluation program to evaluate the polynomial P(s,t) ?

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 14/29

Example for the binary32 implementation: (k,p) = (32, 24)

10
P(s,t)=2""+5. Zaiti

=0

» Horner’s scheme: (3+ 1) x 11 = 44 cycles

— sequential scheme, no instruction-level parallelism exposure

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 15/29

Generation of an efficient evaluation program

Example for the binary32 implementation: (k,p) = (32, 24)
10)
P(s,t)=2""45. Zaitl
=0

» Horner’s scheme: (3+ 1) x 11 = 44 cycles

— sequential scheme, no instruction-level parallelism exposure

» Estrin’s scheme: 20 cycles

— more instruction-level parallelism
— a last multiplication by s

— 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Example for the binary32 implementation: (k,p) = (32, 24)

10
P(s,t)=2""+5. Zaiti
i=0

» Horner’s scheme: (3+ 1) x 11 = 44 cycles

— sequential scheme, no instruction-level parallelism exposure

v

Estrin’s scheme: 20 cycles

— more instruction-level parallelism
— a last multiplication by s

— 2 cycles save by distributing the multiplication by s in the evaluation of the
univariate polynomial a(t)

We can do much better.

v

But how to explore the solution space and choose an efficient evaluation
program ?
— interest of automatic generation

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

» Similar to Harrison, Kubaska, Story and Tang (1999)

» Assumption

— unbounded parallelism
— latencies of arithmetic operators: + and x

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

» Similar to Harrison, Kubaska, Story and Tang (1999)

» Assumption

— unbounded parallelism
— latencies of arithmetic operators: + and x

» Two sub-steps

1. determine atarget latency

ie. 7=3x [log,(deg(P))] +1

2. generate automatically a set of evaluation trees, with height < =

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

» Similar to Harrison, Kubaska, Story and Tang (1999)

» Assumption

— unbounded parallelism
— latencies of arithmetic operators: + and x

» Two sub-steps

1. determine atarget latency

ie. 7=3x [log,(deg(P))] +1

2. generate automatically a set of evaluation trees, with height < =

= if no tree satisfies T then increase = and restart

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

» Similar to Harrison, Kubaska, Story and Tang (1999)

» Assumption

— unbounded parallelism
— latencies of arithmetic operators: + and x

» Two sub-steps

1. determine atarget latency

ie. 7=3x [log,(deg(P))] +1

2. generate automatically a set of evaluation trees, with height < =

= if no tree satisfies T then increase = and restart

» Number of evaluation trees = extremely large — several filters

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

10
P(s,t)=2""+5. Zaiti

=0

» first target latency 7 = 13
— no tree found

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 17/29

Generation of an efficient evaluation program

Efficient evaluation tree generation

10
P(s,t)=2""+5. Zaiti
i=0

) 14
» first target latency 7 = 13 13
— no tree found 12

» second target latency 7 = 14
— obtained in about 10 sec.

==
ocrRrNMwhATOINLO S

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Efficient evaluation tree generation

10
P(s,t)=2""+5. Zaiti
i=0

» first target latency 7 = 13 i;
— no tree found 12

11

» second target latency 7 = 14 10

©

— obtained in about 10 sec.

v

distribute the multiplication by s

— otherwise: 18 cycles

\{

too difficult to find such tree by hand

O - NWHR IO ®©

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Arithmetic operator choice

» Polynomial coefficients implemented in absolute value
» All intermediate values have constant sign

= not store the sign: more accuracy

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Arithmetic operator choice

» Polynomial coefficients implemented in absolute value
» All intermediate values have constant sign

= not store the sign: more accuracy

» Label evaluation trees by appropriate arithmetic operator: 4+ or —

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Arithmetic operator choice

v

Polynomial coefficients implemented in absolute value

v

All intermediate values have constant sign

= not store the sign: more accuracy

v

Label evaluation trees by appropriate arithmetic operator: + or —

\{

If the sign of an intermediate value changes when the input varies then
the evaluation tree is rejected

= implementation with certified interval arithmetic (MPFI)

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Practical scheduling checking

» Schedule the evaluation trees on a simplified model of a real target
architecture

— operator costs, nb. issues, constraints on operators
— no syllables constraint

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Generation of an efficient evaluation program

Practical scheduling checking

» Schedule the evaluation trees on a simplified model of a real target
architecture

— operator costs, nb. issues, constraints on operators
— no syllables constraint

» Check if no increase of latency in practice compared to the latency on
unbounded parallelism

= if practical latency > theoretical latency then the evaluation tree is rejected

=- implementation using naive list scheduling algorithm is enough

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Outline of the talk

Validation of the generated evaluation program

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Validation of the generated evaluation program

Example for the binary32 implementation: (k,p) = (32, 24)

» Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10

T T T
6e-09 Approximation error ———

4e-09 - | |

2e-09 | |

Approximation error

—-4e-09

i
~2e-09 ‘T
|
|
!
\

-6e-09

.
0 01 02 03 04 05 06 07 08 09
t=my —1

Comox <277 x 6009 < 27%/(4-2T)xT4e9

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 21/29

Validation of the generated evaluation program

Example for the binary32 implementation: (k,p) = (32, 24)

» Approximation of 1/(1 + t) by truncated Remez’ polynomial of degree 10

ro T T
6e-09 | Approximation error ———
\ i) ;

4e-09 - | |

2e-09 |

Approximation error

—-4e-09

i
~2e-09 ‘T
|
|
!
\

-6e-09

.
0 01 02 03 04 05 06 07 08 09
t=my —1

Comox <277 x 6009 < 27%/(4-2T)xT4e9

» Deduction of the evaluation error bound from €zpprox
Coval < 2—25 _ (4 _ 2—21) X 2—27.41.4. ~ 2—26.9999..4 ~ 7.4 -9.

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 21/29

Validation of the generated evaluation program

Example for the binary32 implementation: (k,p) = (32, 24)

» Case 1: m; > m, — condition satisfied
» Case 2: m, < m, — condition not satisfied

ie. s" = 3.935581684112548828125 and " = 0.97490441799163818359375

8e-09

T T
Absolute evaluation error
Evaluation error bound -

7e-09 —26.9988

6e-09 - b

5e-09 |- 1

4e-09

3e-09

2e-09

Absolute evaluation error

1le-09

0 ! | I I I
0.97 0.975 0.98 0.985 0.99 0.995

t=my —1

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 22129

Validation of the generated evaluation program

Example for the binary32 implementation: (k,p) = (32, 24)

» Case 1: m; > m, — condition satisfied
» Case 2: m, < m, — condition not satisfied

ie. s" = 3.935581684112548828125 and " = 0.97490441799163818359375

11
8e-09 ‘ “ . .
|l Absolute evaluation error
7e-00 | i Evaluation error bound i 1. determine an interval
[l T around this point
6e-09 |- [g
Il
5e-09 11 E
|
4e-09 |

3e-09

2e-09

Absolute evaluation error

1le-09

0 1 | / . .
0.97 Q975 0.98 0.985 0.99 0.995

t=my —1

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 22129

Example for the binary32 implementation: (k,p) = (32, 24)

» Case 1: m; > m, — condition satisfied
» Case 2: m, < m, — condition not satisfied

ie. s" = 3.935581684112548828125 and " = 0.97490441799163818359375

6e-09 L ‘ Approxirhation errm‘i i
e 1. determine an interval
7 around this point
4e-09 B
2. compute €eapprox Over I
2e-09 - 1 3. determine an
evaluation error
5 0 bound n
5] .
?
5 —2e-00 | | 4. check if gyl < 1 ?
©
£
3
5 —4e-09 |- 1
Q
<
-6e-09 | g
! !

0.99 0.995

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 22129

Validation of the generated evaluation program

Evaluation program validation strategy

» Find a splitting of the input interval into n subinterval(s) 7(¥, and check
that
1 Exproc + € < 2P
on each subinterval.

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Validation of the generated evaluation program

Evaluation program validation strategy

» Find a splitting of the input interval into n subinterval(s) 7(¥, and check
that
—p—1
/’L eapprox + 6eVa' < 2
on each subinterval.

» Implementation of the splitting by dichotomy

» for each 7(9
1. compute a certified approximation error bound eéf,’))mx

2. determine an evaluation error bound
3. check this bound

eval

= if this bound is not satisfied, 7(*) is split up into 2 subintervals

» implemented using Sollya (steps 1 and 2) and Gappa (step 3)

Guillaume Revy (Séminaire — Equlpe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 23/29

Validation of the generated evaluation program

Evaluation program validation strategy

» Find a splitting of the input interval into n subinterval(s) 7(¥, and check
that
—p—1
/’L eapprox + 6eVa' < 2
on each subinterval.

» Implementation of the splitting by dichotomy

» for each 7(9
1. compute a certified approximation error bound eé’f,gmx

2. determine an evaluation error bound
3. check this bound

eval

= if this bound is not satisfied, 7(*) is split up into 2 subintervals

» implemented using Sollya (steps 1 and 2) and Gappa (step 3)

» Example of binary32 implementation
— launched on a 64 processor grid
— 36127 subintervals found in several hours (= 5h.)

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Validation of the generated evaluation program

Evaluation program validation strategy

* Does the condition

—p— 1
,LL Eapprl:»(+ 6(-:‘val < 2
holdfori e {1,...,n} ?
| Depth Subintervals || oo (@) <)(P) < | * |
approx = eval
| 1 e 2-3,1_ 5 || 0y ~ 272741 ny A~ 2269 | no |
5 Ip,1 = 2=%,05—2"%5 0, ~ 2= 2741 ng A 22699 ves
lho=[05,1—2=% 01~ 2T AL 9= 2699 no
1= 2=%,05—2"%5 0, ~ 2= 2741 ng ~ 2269 ves
i lj,2=10.5,0.75 — 2% 01~ 2724 2729 | yes
Ij 19300 = [0.921875, 0.92578113079071044921875] 03 = 27274 327690 | yes
Ij 19533 = [0.97490406036376953125, 0.97490441799163818359375] || 64 ~ 27749 5y ~ 27277 | yes

Splitting steps when mg, < m,.

Guillaume Revy (Séminaire — Equlpe

June 23, 2009) Fast and accurate floating-point division on ST231 24129

Outline of the talk

Experimental results

Guillaume Revy (Séminaire IC|LI|p , June 23, 2009) te floating-point division on ST231 25/29

Experimental results

Validation and performance evaluation

» Validation of the complete code:
— the Extremal Rounding Tests Set (D.W. Matula)
— TestFloat package

— exhaustive tests on mantissa (with fixed result exponent)

» Performances evaluation on ST231 architecture
— 4-issue VLIW integer processor of ST200 family
— at most 2 mul. per cycle

— latencies: addition = 1 cycle, multiplication = 3 cycles

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Experimental results

Experimental results

Performances on ST231

Nb. of instructions Latency (# cycles) IPC Code size (bytes)
rounding to nearest 86 27 3.18 416

» speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation (48 cycles)

> optimized implementation
» efficient ST200 compiler (st 200cc)

» high IPC value: confirms the parallel nature of our approach

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231

Outline of the talk

Concluding remarks

Guillaume Revy (Séminaire IC|LI|p , June 23, 2009) te floating-point division on ST231 28/29

Concluding remarks

Concluding remarks

Contributions

» New approach for the implementation of binary floating-point division
— bivariate polynomial-based algorithm
— automatic generation and validation of efficient evaluation program
— implementation targeted ST231 VLIW integer processor

» Speed-up by a factor of about 1.78 in rounding to nearest compared to
the previous implementation

Since then

» Extension to subnormal numbers support
— implementation in 31 cycles: 4 extra cycles

» Implementation of other functions

Latency (# cycles) IPC Code size (bytes) Speed-up
square root 21 2.47 276 2.38
reciprocal 22 2.59 336 1.75
reciprocal square root 29 2.24 368 2.27

Guillaume Revy (Séminaire — Equipe DALI, June 23, 2009) Fast and accurate floating-point division on ST231 29/29

	
	Division via polynomial evaluation
	Generation of an efficient evaluation program
	Validation of the generated evaluation program
	Experimental results
	Concluding remarks

