Séminaire STMicroelectronics Grenoble Grenoble, France, December 16, 2009

Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

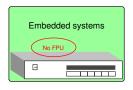
Guillaume Revy

Advisors: Claude-Pierre Jeannerod and Gilles Villard

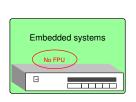
Arénaire INRIA project-team (LIP. Ens Lyon) Université de Lvon CNRS

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

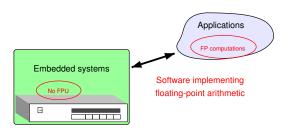


- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)



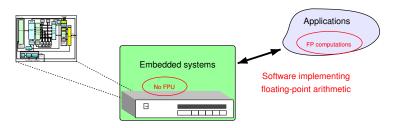
- Highly used in audio and video applications
 - demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)



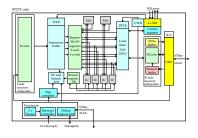
- Highly used in audio and video applications
 - demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)



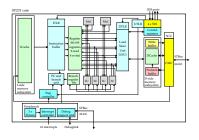
- Highly used in audio and video applications
 - demanding on floating-point computations

Overview of the ST231 architecture



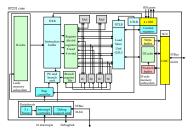
- 4-issue VLIW 32-bit integer processor
 - \rightarrow no FPU
- Parallel execution unit
 - 4 integer ALU
 - ▶ 2 pipelined multipliers $32 \times 32 \rightarrow 32$
- Latencies: ALU \rightarrow 1 cycle, Mul \rightarrow 3 cycles

Overview of the ST231 architecture



- 4-issue VLIW 32-bit integer processor
 - \rightarrow no FPU
- Parallel execution unit
 - 4 integer ALU
 - ▶ 2 pipelined multipliers $32 \times 32 \rightarrow 32$
- Latencies: ALU → 1 cycle, Mul → 3 cycles
- VLIW (Very Long Instruction Word)
 - → instructions grouped into bundles
 - → Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

Overview of the ST231 architecture



- 4-issue VLIW 32-bit integer processor
 - \rightarrow no FPU
- Parallel execution unit
 - 4 integer ALU
 - ≥ 2 pipelined multipliers 32 × 32 → 32
- Latencies: ALU \rightarrow 1 cycle, Mul \rightarrow 3 cycles
- VLIW (Very Long Instruction Word)
 - → instructions grouped into bundles
 - → Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

uint32_t uint32 t			
uint32_t uint32 t	R3	=	A1 * X;

	Issue 1	Issue 2	Issue 3	Issue 4
0	R1	R2		R3
1	R4			

How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for IEEE 754 floating-point arithmetic on integer processors

- Existing software for IEEE 754 floating-point arithmetic:
 - ▶ Software floating-point support of GCC, Glibc and μ Clibc, GoFast Floating-Point Library
 - SoftFloat (→ STlib)
 - FLIP (Floating-point Library for Integer Processors)
 - software support for binary32 floating-point arithmetic on integer processors
 - correctly-rounded addition, subtraction, multiplication, division, square root, reciprocal, ...
 - handling subnormals, and handling special inputs

- Underlying problem: development "by hand"
 - long and tedious, error prone
 - new target ? new floating-point format ?

- Underlying problem: development "by hand"
 - long and tedious, error prone
 - new target ? new floating-point format ?
 - ⇒ need for automation and certification

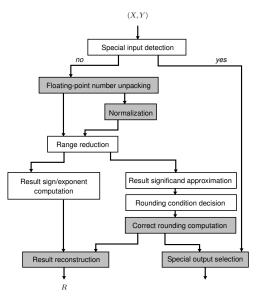
- Underlying problem: development "by hand"
 - long and tedious, error prone
 - new target ? new floating-point format ?
 - ⇒ need for automation and certification
- Current challenge: tools and methodologies for the automatic generation of efficient and certified programs
 - optimized for a given format, for the target architecture

- Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)
- Spiral project: hardware and software code generation for DSP algorithms
 Can we teach computers to write fast libraries?

- Arénaire's developments: hardware (FloPoCo) and software (Sollya, Metalibm)
- Spiral project: hardware and software code generation for DSP algorithms

 Can we teach computers to write fast libraries?
- Our tool: CGPE (Code Generation for Polynomial Evaluation)
 In the particular case of polynomial evaluation, can we teach computers to write fast and certified codes, for a given target and optimized for a given format?

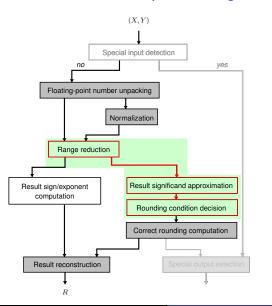
Basic blocks for implementing correctly-rounded operators



Objectives

- Low latency, correctly-rounded implementations
- → ILP exposure

Basic blocks for implementing correctly-rounded operators

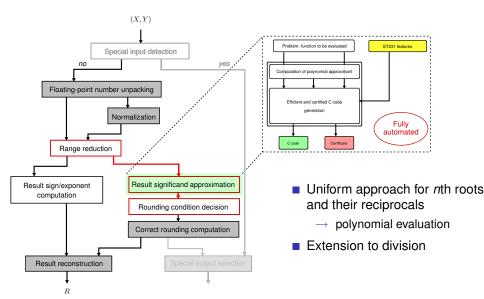


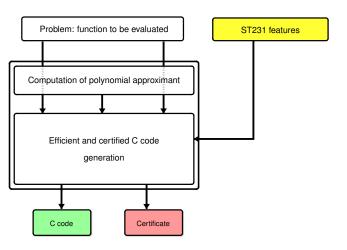
function independent

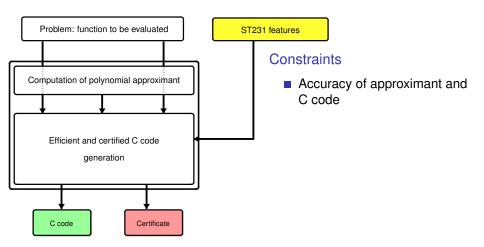
Objectives

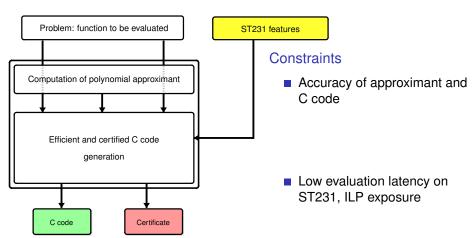
- Low latency, correctly-rounded implementations
- → ILP exposure

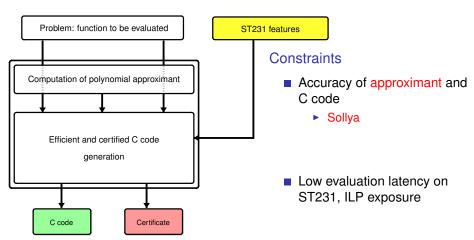
Basic blocks for implementing correctly-rounded operators

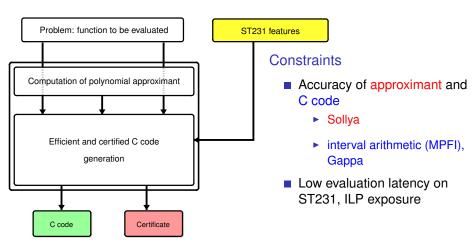


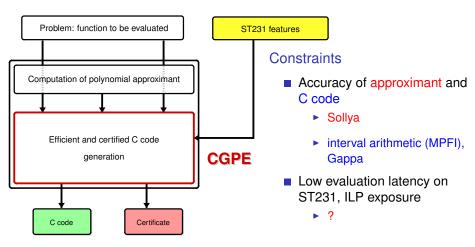


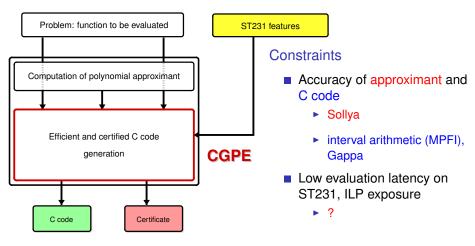












Efficiency of the generation process

Outline of the talk

- Design and implementation of floating-point operators
 Bivariate polynomial evaluation-based approach
 Implementation of correct rounding
- Low latency parenthesization computation Classical evaluation methods Computation of all parenthesizations Towards low evaluation latency
- Selection of effective evaluation parenthesizations
 General framework
 Automatic certification of generated C codes
- 4. Numerical results
- 5. Conclusions and perspectives

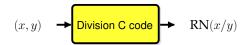
Outline of the talk

- Design and implementation of floating-point operators
 Bivariate polynomial evaluation-based approach
 Implementation of correct rounding
- 2. Low latency parenthesization computation
- 3. Selection of effective evaluation parenthesizations
- 4. Numerical results
- Conclusions and perspectives

$$(x,y) \quad {\longrightarrow} \quad \text{Division C code} \quad {\longrightarrow} \quad \text{RN}(x/y)$$

- Input (x, y) and output RN(x/y): normal numbers
 - → no underflow nor overflow
 - \rightarrow precision p, extremal exponents e_{\min} , e_{\max}

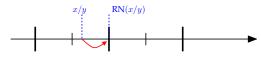
$$x = \pm 1. m_{x,1} \dots m_{x,p-1} \cdot 2^{e_x}$$
 with $e_x \in \{e_{\min}, \dots, e_{\max}\}$



- Input (x, y) and output RN(x/y): normal numbers
 - → no underflow nor overflow
 - \rightarrow precision p, extremal exponents e_{\min} , e_{\max}

$$x = \pm 1.m_{x,1} \dots m_{x,p-1} \cdot 2^{e_x}$$
 with $e_x \in \{e_{\min}, \dots, e_{\max}\}$

→ RoundTiesToEven



Standard binary encoding: k-bit unsigned integer X encodes input x

- Computation: k-bit unsigned integers
 - → integer and fixed-point arithmetic

Standard binary encoding: k-bit unsigned integer X encodes input x

- Computation: k-bit unsigned integers
 - → integer and fixed-point arithmetic

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min}, \dots, e_{\max}\}$

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min}, \dots, e_{\max}\}$

Definition

$$c=1$$
 if $m_x \ge m_y$, and $c=0$ otherwise

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \quad \Rightarrow \quad \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min}, \dots, e_{\max}\}$

Definition

$$c=1$$
 if $m_x \ge m_y$, and $c=0$ otherwise

Range reduction

$$x/y = \underbrace{\left(2^{1-c} \cdot m_x/m_y\right)}_{:= \ell \in [1,2)} \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

Express the exact result r = x/y as:

$$r = \ell \cdot 2^d \implies \mathsf{RN}(x/y) = \mathsf{RN}(\ell) \cdot 2^d$$

with

$$\ell \in [1,2)$$
 and $d \in \{e_{\min}, \dots, e_{\max}\}$

Definition

$$c=1$$
 if $m_x \ge m_y$, and $c=0$ otherwise

■ Range reduction

$$x/y = \underbrace{(2^{1-c} \cdot m_x/m_y)}_{:= \ell \in [1,2)} \cdot 2^d \quad \text{with} \quad d = e_x - e_y - 1 + c$$

How to compute the correctly-rounded significand RN(ℓ) ?

Methods for computing the correctly-rounded significand

- Iterative methods: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm

Methods for computing the correctly-rounded significand

- Iterative methods: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm
- Multiplicative methods: Newton-Raphson, Goldschmidt
 - ▶ Piñeiro and Bruguera (2002) Raina's Ph.D., FLIP 0.3 (2006)
 - exploit available multipliers, more ILP exposure

Methods for computing the correctly-rounded significand

- Iterative methods: restoring, non-restoring, SRT, ...
 - Oberman and Flynn (1997)
 - minimal ILP exposure, sequential algorithm
- Multiplicative methods: Newton-Raphson, Goldschmidt
 - ▶ Piñeiro and Bruguera (2002) Raina's Ph.D., FLIP 0.3 (2006)
 - exploit available multipliers, more ILP exposure
- Polynomial-based methods
 - Agarwal, Gustavson and Schmookler (1999)
 - → univariate polynomial evaluation
 - Our approach
 - → bivariate polynomial evaluation: maximal ILP exposure

Correct rounding via truncated one-sided approximation

- How to compute RN(ℓ), with $\ell = 2^{1-c} \cdot m_x/m_y$?
- Three steps for correct rounding computation
 - 1. compute $v = 1.v_1...v_{k-2}$ such that $-2^{-p} \le \ell v < 0$
 - \rightarrow implied by $|(\ell + 2^{-p-1}) v| < 2^{-p-1}$
 - → bivariate polynomial evaluation
 - 2. compute u as the truncation of v after p fraction bits
 - 3. determine RN(ℓ) after possibly adding 2^{-p}

Correct rounding via truncated one-sided approximation

- How to compute RN(ℓ), with $\ell = 2^{1-c} \cdot m_x/m_y$?
- Three steps for correct rounding computation
 - 1. compute $v = 1.v_1...v_{k-2}$ such that $-2^{-p} \le \ell v < 0$
 - \rightarrow implied by $|(\ell + 2^{-p-1}) v| < 2^{-p-1}$
 - → bivariate polynomial evaluation
 - 2. compute u as the truncation of v after p fraction bits
 - 3. determine RN(ℓ) after possibly adding 2^{-p}

How to compute the one-sided approximation v and then deduce RN(ℓ)?

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1}$$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1}$$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- → approximation error E_{approx}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1}$$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation error E_{approx}
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

$$v = \mathcal{P}(s^*, t^*)$$

 \rightarrow evaluation error E_{eval}

1. Consider $\ell + 2^{-p-1}$ as the exact result of the function

$$F(s,t) = s/(1+t) + 2^{-p-1}$$

at the points $s^* = 2^{1-c} \cdot m_x$ and $t^* = m_y - 1$

2. Approximate F(s,t) by a bivariate polynomial P(s,t)

$$P(s,t) = s \cdot a(t) + 2^{-p-1}$$

- $\rightarrow a(t)$: univariate polynomial approximant of 1/(1+t)
- \rightarrow approximation error E_{approx}
- 3. Evaluate P(s,t) by a well-chosen efficient evaluation program \mathcal{P}

$$v = \mathcal{P}(s^*, t^*)$$

 \rightarrow evaluation error E_{eval}

How to ensure that $|(\ell + 2^{-p-1}) - v| < 2^{-p-1}$?

Sufficient error bounds

■ To ensure $|(\ell+2^{-p-1})-v|<2^{-p-1}$

it suffices to ensure that $\mu \cdot E_{approx} + E_{eval} < 2^{-p-1}$,

since

$$|(\ell+2^{-p-1})-v| \le \mu \cdot E_{\text{approx}} + E_{\text{eval}}$$
 with $\mu = 4-2^{3-p}$

Sufficient error bounds

■ To ensure $|(\ell+2^{-p-1})-v|<2^{-p-1}$

it suffices to ensure that $\mu \cdot E_{\text{approx}} + E_{\text{eval}} < 2^{-p-1}$,

since

$$|(\ell+2^{-p-1})-v| \le \mu \cdot E_{ ext{approx}} + E_{ ext{eval}} \qquad ext{with} \qquad \mu = 4-2^{3-p}$$

This gives the following sufficient conditions

$$E_{\text{approx}} < 2^{-p-1}/\mu \qquad \Rightarrow \qquad E_{\text{eval}} < 2^{-p-1} - \mu \cdot E_{\text{approx}}$$

Sufficient error bounds

■ To ensure $|(\ell+2^{-p-1})-v|<2^{-p-1}$

it suffices to ensure that $\mu \cdot E_{approx} + E_{eval} < 2^{-p-1}$,

since

$$|(\ell+2^{-p-1})-v| \le \mu \cdot E_{ ext{approx}} + E_{ ext{eval}} \qquad ext{with} \qquad \mu = 4-2^{3-p}$$

This gives the following sufficient conditions

$$E_{\text{approx}} \leq \theta$$
 with $\theta < 2^{-p-1}/\mu$ \Rightarrow $E_{\text{eval}} < \eta = 2^{-p-1} - \mu \cdot \theta$

Example for the binary32 division

Sufficient conditions with $\mu = 4 - 2^{-21}$

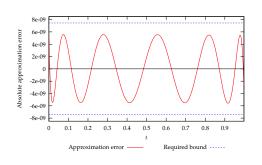
$$E_{ ext{approx}} \leq \theta$$
 with $\theta < 2^{-25}/\mu$ and $E_{ ext{eval}} < \eta = 2^{-25} - \mu \cdot \theta$

Example for the binary32 division

Sufficient conditions with $\mu = 4 - 2^{-21}$

$$E_{ ext{approx}} \leq heta$$
 with $heta < 2^{-25}/\mu$ and $E_{ ext{eval}} < \eta = 2^{-25} - \mu \cdot heta$

Approximation of 1/(1+t) by a Remez-like polynomial of degree 10



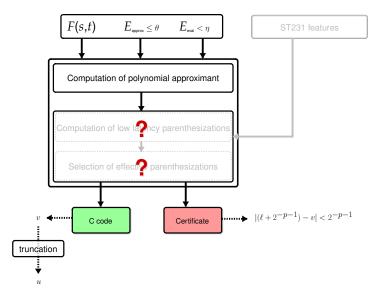
 $ightharpoonup E_{approx} \leq \theta$,

with
$$\theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$$

 $ightharpoonup E_{ ext{eval}} < \eta,$

with
$$\eta \approx 7.4 \cdot 10^{-9}$$

Flowchart for generating efficient and certified C codes

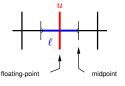


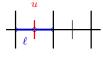
Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x/m_y$$

- The exact value ℓ may have an infinite number of bits
 - → the sticky bit cannot always be computed



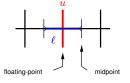


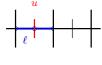
Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x/m_y$$

- The exact value ℓ may have an infinite number of bits
 - ightarrow the sticky bit cannot always be computed





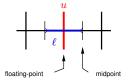
- Compute RN(ℓ) requires to be able to decide whether $u \ge \ell$
 - $\rightarrow \ell$ cannot be a midpoint

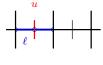
Rounding condition: definition

Approximation u of ℓ with

$$\ell = 2^{1-c} \cdot m_x/m_y$$

- The exact value ℓ may have an infinite number of bits
 - → the sticky bit cannot always be computed



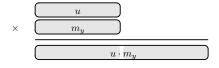


- Compute RN(ℓ) requires to be able to decide whether $u \ge \ell$
 - $\rightarrow \ell$ cannot be a midpoint
- Rounding condition: $u \ge \ell$

$$u \ge \ell \iff u \cdot m_y \ge 2^{1-c} \cdot m_x$$

Rounding condition: implementation in integer arithmetic

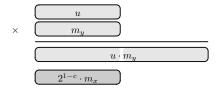
- Rounding condition: $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_v : representable with 32 bits



• $u \cdot m_v$ is exactly representable with 64 bits

Rounding condition: implementation in integer arithmetic

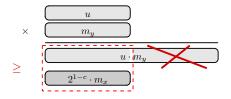
- Rounding condition: $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_v : representable with 32 bits



- $u \cdot m_v$ is exactly representable with 64 bits
- ▶ $2^{1-c} \cdot m_x$ is representable with 32 bits since $c \in \{0,1\}$

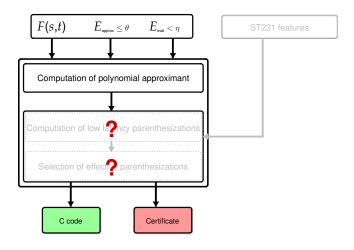
Rounding condition: implementation in integer arithmetic

- Rounding condition: $u \cdot m_y \ge 2^{1-c} \cdot m_x$
- Approximation u and m_v : representable with 32 bits

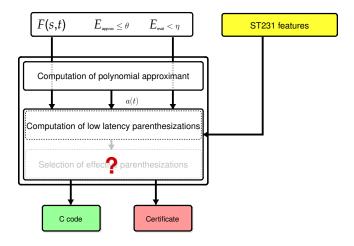


- $u \cdot m_v$ is exactly representable with 64 bits
- ▶ $2^{1-c} \cdot m_x$ is representable with 32 bits since $c \in \{0,1\}$
- \Rightarrow one 32 \times 32 \rightarrow 32-bit multiplication and one comparison

Flowchart for generating efficient and certified C codes



Flowchart for generating efficient and certified C codes



Outline of the talk

- Design and implementation of floating-point operators
- Low latency parenthesization computation Classical evaluation methods Computation of all parenthesizations Towards low evaluation latency
- 3. Selection of effective evaluation parenthesizations
- Numerical results
- Conclusions and perspectives

- Compute an efficient parenthesization for evaluating P(s,t)
 - → reduces the evaluation latency on unbounded parallelism

- Compute an efficient parenthesization for evaluating P(s,t)
 - → reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - → dominates the cost

- Compute an efficient parenthesization for evaluating P(s,t)
 - → reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - → dominates the cost
- Two families of algorithms
 - algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
 - → ill-suited in the context of fixed-point arithmetic
 - algorithms without coefficient adaptation

- Compute an efficient parenthesization for evaluating P(s,t)
 - → reduces the evaluation latency on unbounded parallelism
- Evaluation program \mathcal{P} = main part of the full software implementation
 - → dominates the cost
- Two families of algorithms
 - algorithms with coefficient adaptation: Knuth and Eve (60's), Paterson and Stockmeyer (1964), ...
 - → ill-suited in the context of fixed-point arithmetic
 - algorithms without coefficient adaptation

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

- Horner's rule: $(3+1) \times 11 = 44$ cycles
 - → no ILP exposure

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

- Horner's rule: $(3+1) \times 11 = 44$ cycles
 - → no ILP exposure
- Second-order Horner's rule: 27 cycles
 - → evaluation of odd and even parts independently with Horner, more ILP

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

- Horner's rule: $(3+1) \times 11 = 44$ cycles
 - → no ILP exposure
- Second-order Horner's rule: 27 cycles
 - → evaluation of odd and even parts independently with Horner, more ILP
- Estrin's method: 19 cycles
 - → evaluation of high and low parts in parallel, even more ILP
 - \rightarrow distributing the multiplication by s in the evaluation of $a(t) \rightarrow 16$ cycles

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

- Horner's rule: $(3+1) \times 11 = 44$ cycles
 - → no ILP exposure
- Second-order Horner's rule: 27 cycles
 - → evaluation of odd and even parts independently with Horner, more ILP
- Estrin's method: 19 cycles
 - → evaluation of high and low parts in parallel, even more ILP
 - \rightarrow distributing the multiplication by s in the evaluation of $a(t) \rightarrow 16$ cycles
- ··· We can do better.

How to explore the solution space of parenthesizations?

Algorithm for computing all parenthesizations

$$a(x,y) = \sum_{0 \le i \le dx} \sum_{0 \le j \le n_y} a_{i,j} \cdot x^i \cdot y^j$$
 with $n = n_x + n_y$, and $a_{n_x,n_y} \ne 0$

Example

Let
$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y$$
. Then

 $a_{10} + a_{11} \cdot y$ is a valid expression, while $a_{10} \cdot x + a_{11} \cdot x$ is not.

Algorithm for computing all parenthesizations

$$a(x,y) = \sum_{0 \le i \le dx} \sum_{0 \le j \le n_y} a_{i,j} \cdot x^i \cdot y^j$$
 with $n = n_x + n_y$, and $a_{n_x,n_y} \ne 0$

Example

Let
$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y$$
. Then

$$a_{1.0} + a_{1.1} \cdot y$$
 is a valid expression, while $a_{1.0} \cdot x + a_{1.1} \cdot x$ is not.

- Exhaustive algorithm: iterative process
 - \rightarrow step k = computation of all the valid expressions of total degree k
- 3 building rules for computing all parenthesizations

Rules for building valid expressions

Consider step *k* of the algorithm

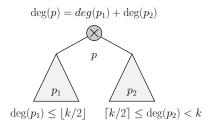
- \blacksquare $E^{(k)}$: valid expressions of total degree k
- $P^{(k)}$: powers $x^i y^j$ of total degree k = i + j

Rules for building *valid* expressions

Consider step *k* of the algorithm

- \blacksquare $E^{(k)}$: valid expressions of total degree k
- $P^{(k)}$: powers $x^i y^j$ of total degree k = i + j

Rule R1 for building the powers

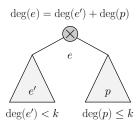


Rules for building valid expressions

Consider step k of the algorithm

- \blacksquare $E^{(k)}$: valid expressions of total degree k
- $P^{(k)}$: powers $x^i y^j$ of total degree k = i + j

Rule R2 for expressions by multiplications

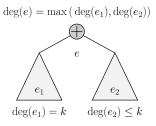


Rules for building *valid* expressions

Consider step k of the algorithm

- \blacksquare $E^{(k)}$: valid expressions of total degree k
- $P^{(k)}$: powers $x^i y^j$ of total degree k = i + j

Rule R3 for expressions by additions



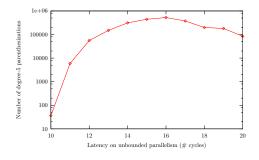
Number of parenthesizations

	$n_X = 1$	$n_X = 2$	$n_X = 3$	$n_X = 4$	$n_{X} = 5$	$n_{X} = 6$
$n_y = 0$	1	7	163	11602	2334244	1304066578
$n_y = 1$	51	67467	1133220387	207905478247998		
$n_y = 2$	67467	106191222651	10139277122276921118			

Number of generated parenthesizations for evaluating a bivariate polynomial

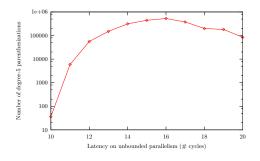
- Timings for parenthesization computation
 - \rightarrow for univariate polynomial of degree 5 \approx 1h on a 2.4 GHz core
 - \rightarrow for bivariate polynomial of degree (2,1) \approx 30s
 - \rightarrow for P(s,t) of degree (3,1) \approx 7s (88384 schemes)
- Optimization for univariate polynomial and P(s,t)
 - \rightarrow univariate polynomial of degree 5 \approx 4min
 - \rightarrow for P(s,t) of degree (3,1) \approx 2s (88384 schemes)

Number of parenthesizations



→ minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

Number of parenthesizations



 → minimal latency for univariate polynomial of degree 5: 10 cycles (36 schemes)

How to compute only parenthesizations of low latency?

■ Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

if no scheme satisfies τ then increase τ and restart

■ Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

- if no scheme satisfies τ then increase τ and restart
- Static target latency τ_{static}
 - ▶ as general as evaluating $a_{0,0} + x^{n_x + n_y + 1}$

$$\tau_{\text{static}} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil$$

■ Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

- \blacktriangleright if no scheme satisfies τ then increase τ and restart
- Static target latency τ_{static}
 - ▶ as general as evaluating $a_{0,0} + x^{n_x + n_y + 1}$

$$\tau_{\text{static}} = A + M \times \lceil \log_2(n_x + n_y + 1) \rceil$$

- Dynamic target latency τ_{dynamic}
 - \triangleright cost of operator on a_{n_x,n_y} and delay on intederminates
 - dynamic programming

■ Target latency = minimal cost for evaluating

$$a_{0,0}+a_{n_x,n_y}\cdot x^{n_x}y^{n_y}$$

• if no scheme satisfies τ then increase τ and restart

Example

- Degree-9 bivariate polynomial: $n_x = 8$ and $n_y = 1$
- Latencies: A = 1 and M = 3
- Delay: y available 9 cycles later than x

$$\frac{\tau_{\text{static}}}{1 + 3 \times \lceil \log_2(10) \rceil} = 13 \text{ cycles} \qquad 16 \text{ cycles}$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

Example

Let a(x,y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y) + (a_{1,1} \cdot x \cdot y)$$

Example

Let a(x,y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$\left(\left(a_{0,0}+a_{1,0}\cdot x\right)+a_{0,1}\cdot y\right)+\left(a_{1,1}\cdot x\cdot y\right)$$

Example

Let a(x,y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0} + (a_{1,0} \cdot x + a_{0,1} \cdot y)) + (a_{1,1} \cdot x \cdot y)$$

Example

Let a(x,y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

$$(a_{0,0}+a_{1,0}\cdot x)+(a_{0,1}\cdot y+a_{1,1}\cdot x\cdot y)$$

Example

Let a(x,y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$

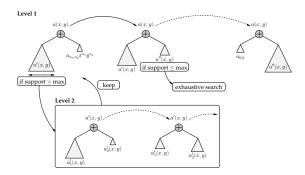
 \Rightarrow find a best splitting of the polynomial \rightarrow low latency

$$a_{0,0} + \left(a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y\right)$$

Example

Let a(x, y) be a degree-2 bivariate polynomial

$$a(x,y) = a_{0,0} + a_{1,0} \cdot x + a_{0,1} \cdot y + a_{1,1} \cdot x \cdot y.$$



Efficient evaluation parenthesization generation

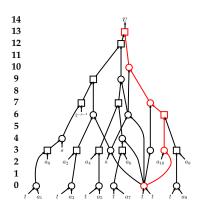
$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

- First target latency $\tau = 13$
 - → no parenthesization found

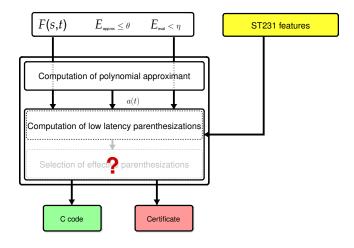
Efficient evaluation parenthesization generation

$$P(s,t) = 2^{-25} + s \cdot \sum_{0 \le i \le 10} a_i t^i$$

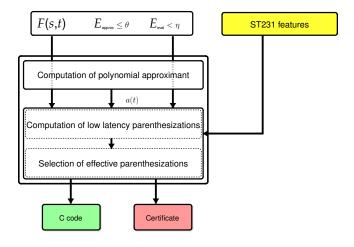
- First target latency $\tau = 13$
 - → no parenthesization found
- Second target latency τ = 14
 - → obtained in about 10 sec.
- Classical methods
 - ► Horner: 44 cycles,
 - Estrin: 19 cycles,
 - ► Estrin by distributing s: 16 cycles



Flowchart for generating efficient and certified C codes



Flowchart for generating efficient and certified C codes



Outline of the talk

- 1. Design and implementation of floating-point operators
- Low latency parenthesization computation
- Selection of effective evaluation parenthesizations
 General framework
 Automatic certification of generated C codes
- 4. Numerical results
- Conclusions and perspectives

Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign

Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign
- 2. Scheduling on a simplified model of the ST231
 - constraints of architecture: cost of operators, instructions bundling, ...
 - delays on indeterminates

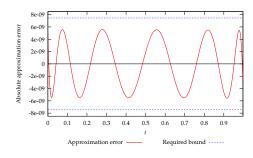
Selection of effective parenthesizations

- 1. Arithmetic Operator Choice
 - all intermediate variables are of constant sign
- 2. Scheduling on a simplified model of the ST231
 - constraints of architecture: cost of operators, instructions bundling, ...
 - delays on indeterminates
- 3. Certification of generated C code
 - straightline polynomial evaluation program
 - "certified C code": we can bound the evaluation error in integer arithmetic

Sufficient conditions with $\mu = 4 - 2^{-21}$

$$E_{\text{approx}} \leq \theta$$
 with $\theta < 2^{-25}/\mu$

and
$$E_{\text{eval}} < \eta = 2^{-25} - \mu \cdot \theta$$

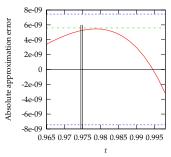


- \triangleright $E_{annrox} < \theta$,
 - with $\theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9}$

- $ightharpoonup E_{\text{eval}} < \eta$,
 - with $\eta \approx 7.4 \cdot 10^{-9}$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \ge \eta$

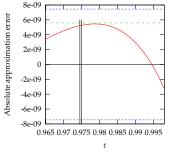
 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$



 $\begin{array}{c} \text{Approximation error} & ----\\ \text{Required bound } 2^{-25}/(4-2^{-21})\approx 8\cdot 10^{-9} & ----\\ \text{Approximation error bound } \theta=3\cdot 2^{-29}\approx 6\cdot 10^{-9} & ---- \end{array}$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \ge \eta$

 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

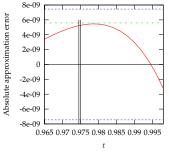


1. determine an interval ${\it I}$ around this point

 $\begin{array}{c} \text{Approximation error} \\ \text{Required bound } 2^{-25}/(4-2^{-21}) \approx 8 \cdot 10^{-9} \\ \text{Approximation error bound } \theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9} \end{array} . \dots.$

- Case 1: $m_x \ge m_y \rightarrow$ condition satisfied
- Case 2: $m_x < m_y \rightarrow$ condition not satisfied: $E_{\text{eval}} \ge \eta$

 $s^* = 3.935581684112548828125$ and $t^* = 0.97490441799163818359375$

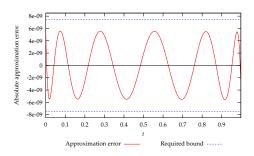


- 1. determine an interval I around this point
- 2. compute E_{approx} over I
- 3. determine an evaluation error bound η
- 4. check if $E_{\text{eval}} < \eta$?

 $\begin{array}{c} \text{Approximation error} \\ \text{Required bound } 2^{-25}/(4-2^{-21}) \approx 8 \cdot 10^{-9} \\ \text{Approximation error bound } \theta = 3 \cdot 2^{-29} \approx 6 \cdot 10^{-9} \end{array} . \dots.$

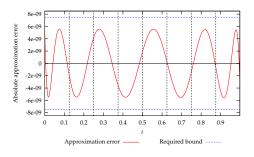
Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

$$E_{\text{approx}}^{(i)} \leq \theta^{(i)} \quad \text{with} \quad \theta^{(i)} < 2^{-25}/\mu \qquad \text{and} \qquad E_{\text{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot \theta^{(i)}$$



Sufficient conditions for each subinterval, with $\mu = 4 - 2^{-21}$

$$E_{ ext{approx}}^{(i)} \leq heta^{(i)} \quad ext{with} \quad heta^{(i)} < 2^{-25}/\mu \qquad ext{and} \qquad E_{ ext{eval}}^{(i)} < \eta^{(i)} = 2^{-25} - \mu \cdot heta^{(i)}$$



$$E_{approx}^{(i)} \leq \theta^{(i)}$$

$$E_{\text{eval}}^{(i)} < \eta^{(i)}$$

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - ▶ for each T⁽ⁱ⁾
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - ▶ for each T⁽ⁱ⁾
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

Sollya

Sollya

Gappa

Guillaume Revy - December 16, 2009.

Certification using a dichotomy-based strategy

- Implementation of the splitting by dichotomy
 - ▶ for each T⁽ⁱ⁾
 - 1. compute a certified approximation error bound $\theta^{(i)}$
 - 2. determine an evaluation error bound $\eta^{(i)}$
 - 3. check this bound: $E_{\text{eval}}^{(i)} < \eta^{(i)}$
 - \Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals
- Example of *binary32* implementation
 - → launched on a 64 processor grid
 - \rightarrow 36127 subintervals found in several hours (\approx 5h.)

Sollva

Sollya

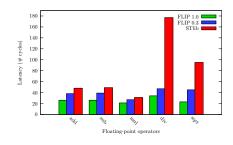
Gappa

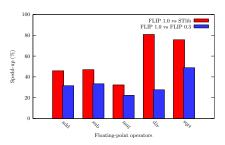
Guillaume Revy - December 16, 2009.

Outline of the talk

- 1. Design and implementation of floating-point operators
- 2. Low latency parenthesization computation
- Selection of effective evaluation parenthesizations
- 4. Numerical results
- Conclusions and perspectives

Performances of FLIP on ST231

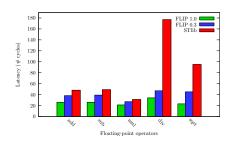


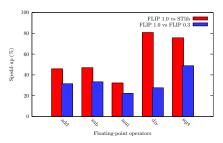


Performances on ST231, in RoundTiesToEven

⇒ Speed-up between 20 and 50 %

Performances of FLIP on ST231





Performances on ST231, in RoundTiesToEven

- ⇒ Speed-up between 20 and 50 %
- Implementations of other operators

x^{-1}	$x^{-1/2}$	$x^{1/3}$	$x^{-1/3}$	$x^{-1/4}$
25	29	34	40	42

Performances on ST231, in RoundTiesToEven (in number of cycles)

Impact of dynamic target latency

	x ^{1/3}	$x^{-1/3}$
Degree (n_x, n_y)		(9,1)
Delay on the operand s (# cycles)		9
Static target latency		13
Dynamic target latency		16
Latency on unbounded parallelism and on ST231		16

Latency (# cycles) on unbounded parallelism and on ST231

Impact of dynamic target latency

	x ^{1/3}	$x^{-1/3}$
Degree (n_x, n_y)	(8,1)	(9,1)
Delay on the operand <i>s</i> (# cycles)		9
Static target latency	13	13
Dynamic target latency		16
Latency on unbounded parallelism and on ST231	16	16

Latency (# cycles) on unbounded parallelism and on ST231

⇒ Conclude on the optimality in terms of polynomial evaluation latency

Timings for code generation

	x ^{1/2}	$x^{-1/2}$	x ^{1/3}	$x^{-1/3}$	x ⁻¹
Degree (n_X, n_y)	(8,1)	(9,1)	(8,1)	(9,1)	(10,0)
Static target latency	13	13	13	13	13
Dynamic target latency	13	13	16	16	13
Latency on unbounded parallelism	13	13	16	16	13
Latency on ST231	13	14	16	16	13
Parenthesization generation	172ms	152ms	53s	56s	168ms
Arithmetic Operator Choice	6ms	6ms	7ms	11ms	4ms
Scheduling	29s	4m21s	32ms	132ms	7s
Certification (Gappa)	6s	4s	1m38s	1m07s	11s
Total time ($pprox$)	35s	4m25s	2m31s	2m03s	18s

Timing of each step of the generation flow

Timings for code generation

	x ^{1/2}	$x^{-1/2}$	x ^{1/3}	$x^{-1/3}$	x ⁻¹
Degree (n_X, n_Y)	(8,1)	(9,1)	(8,1)	(9,1)	(10,0)
Static target latency	13	13	13	13	13
Dynamic target latency	13	13	16	16	13
Latency on unbounded parallelism	13	13	16	16	13
Latency on ST231	13	14	16	16	13
Parenthesization generation	172ms	152ms	53s	56s	168ms
Arithmetic Operator Choice	6ms	6ms	7ms	11ms	4ms
Scheduling	29s	4m21s	32ms	132ms	7s
Certification (Gappa)	6s	4s	1m38s	1m07s	11s
Total time ($pprox$)	35s	4m25s	2m31s	2m03s	18s

Timing of each step of the generation flow

Impact of the target latency on the first step of the generation

Timings for code generation

	x ^{1/2}	$x^{-1/2}$	x ^{1/3}	x ^{-1/3}	x ⁻¹
Degree (n_X, n_Y)	(8,1)	(9,1)	(8,1)	(9,1)	(10,0)
Static target latency	13	13	13	13	13
Dynamic target latency	13	13	16	16	13
Latency on unbounded parallelism	13	13	16	16	13
Latency on ST231	13	14	16	16	13
Parenthesization generation	172ms	152ms	53s	56s	168ms
Arithmetic Operator Choice	6ms	6ms	7ms	11ms	4ms
Scheduling	29s	4m21s	32ms	132ms	7s
Certification (Gappa)	6s	4s	1m38s	1m07s	11s
Total time (≈)	35s	4m25s	2m31s	2m03s	18s

Timing of each step of the generation flow

- Impact of the target latency on the first step of the generation
- What may dominate the cost
 - → scheduling algorithm
 - → certification using Gappa

Outline of the talk

- Design and implementation of floating-point operators
- Low latency parenthesization computation
- Selection of effective evaluation parenthesizations
- 4. Numerical results
- 5. Conclusions and perspectives

Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division

Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division
 - polynomial evaluation-based method, very high ILP exposure
 - ⇒ new, much faster version of FLIP

Conclusions

- Design and implementation of floating-point operators
 - uniform approach for correctly-rounded roots and their reciprocals
 - extension to correctly-rounded division
 - polynomial evaluation-based method, very high ILP exposure
 - ⇒ new, much faster version of FLIP
- Code generation for efficient and certified polynomial evaluation
 - methodologies and tools for automating polynomial evaluation implementation
 - heuristics and techniques for generating quickly efficient and certified C codes
 - \Rightarrow CGPE: allows to write and certify automatically \approx 50 % of the codes of FLIP

Perspectives

- Faithful implementation of floating-point operators
 - → other floating-point operators:
 - $\log_2(1+x)$ over [0.5,1), $1/\sqrt{1+x^2}$ over [0,0.5), ...
 - → roots and their reciprocals: rounding condition decision not automated yet

Perspectives

- Faithful implementation of floating-point operators
 - → other floating-point operators:
 - $\log_2(1+x)$ over [0.5,1), $1/\sqrt{1+x^2}$ over [0,0.5), ...
- Extension to other binary floating-point formats
 - → square root in binary64: 171 cycles on ST231, 396 cycles with STlib

Perspectives

- Faithful implementation of floating-point operators
 - → other floating-point operators:
 - $\log_2(1+x)$ over [0.5,1), $1/\sqrt{1+x^2}$ over [0,0.5), ...
 - → roots and their reciprocals: rounding condition decision not automated yet
- Extension to other binary floating-point formats
 - → square root in binary64: 171 cycles on ST231, 396 cycles with STlib
- Extension to other architectures, typically FPGAs
 - polynomial evaluation-based approach: already seems to be a good alternative to multiplicative methods on FPGAs

Séminaire STMicroelectronics Grenoble Grenoble, France, December 16, 2009

Implementation of binary floating-point arithmetic on embedded integer processors

Polynomial evaluation-based algorithms and certified code generation

Guillaume Revy

Advisors: Claude-Pierre Jeannerod and Gilles Villard

Arénaire INRIA project-team (LIP. Ens Lyon) Université de Lvon CNRS

