
Groupe de travail PEQUAN (LIP6, UPMC)
Paris, France, July 7, 2011

Automatic Generation of Fast and Certified Code
for Polynomial Evaluation

Guillaume Revy
DALI project-team

Université de Perpignan Via Domitia
LIRMM (CNRS: UMR 5506 - UM2)

Joint work with Christophe Mouilleron (LIP, ENS Lyon)

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 1/27



Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 2/27



Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 2/27



Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 2/27



Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating-point arithmetic
Software implementing

Applications

FP computations

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 2/27



On the one side: the IEEE 754-2008 standard, ...

Definition of IEEE floating-point arithmetic

I floating-point formats: single precision, double precision, ...
I special values: ±0, ±∞, NaN
I 4 rounding modes: to nearest even, upward, downward, and toward zero
I mathematical function behavior

→ special input (ex:
√
−0 =−0)

→ requires / recommends correct rounding

Motivation:

I make computations reproducible
I and make results architecture-independent

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 3/27



... on the other side: the ST231 processor

ICache

DTLB

Mul

Register
file (64

registers
8 read

4 write)

Load

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32-bit

I-side
memory
subsystem

Interrupt

register
PC and
branch

unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64-bit

registers
Control

UTLB
Mul

D-side
memory
subsystem

Store
Unit

ITLB

Instruction
buffer

ST231 core 4-issue VLIW 32-bit integer processor

→ no FPU

Parallel execution unit

I 4 integer ALUs
I 2 pipelined multipliers 32 × 32→ 32

Latencies: ALU = 1 cycle / Mul = 3 cycles

VLIW (Very Long Instruction Word)

→ instructions grouped into bundles

→ Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 4/27



... on the other side: the ST231 processor

ICache

DTLB

Mul

Register
file (64

registers
8 read

4 write)

Load

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32-bit

I-side
memory
subsystem

Interrupt

register
PC and
branch

unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64-bit

registers
Control

UTLB
Mul

D-side
memory
subsystem

Store
Unit

ITLB

Instruction
buffer

ST231 core 4-issue VLIW 32-bit integer processor

→ no FPU

Parallel execution unit

I 4 integer ALUs
I 2 pipelined multipliers 32 × 32→ 32

Latencies: ALU = 1 cycle / Mul = 3 cycles

VLIW (Very Long Instruction Word)

→ instructions grouped into bundles

→ Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 4/27



Towards the generation of fast and certified codes

This work takes mainly part in the context of the development of FLIP

↪→ software support for binary32 floating-point arithmetic on integer processors

Underlying problem: development “by hand”

I long and tedious, error prone
I new target ? new floating-point format ?

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 5/27



Towards the generation of fast and certified codes

This work takes mainly part in the context of the development of FLIP

↪→ software support for binary32 floating-point arithmetic on integer processors

Underlying problem: development “by hand”

I long and tedious, error prone
I new target ? new floating-point format ?

}
automation and certification

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 5/27



Towards the generation of fast and certified codes

This work takes mainly part in the context of the development of FLIP

↪→ software support for binary32 floating-point arithmetic on integer processors

Underlying problem: development “by hand”

I long and tedious, error prone
I new target ? new floating-point format ?

}
automation and certification

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 5/27



Towards the generation of fast and certified codes

Some works on code generation and transformation:

↪→ code generators: hardware (FloPoCo) and software (Sollya, Metalibm)

↪→ code transformation for increasing numerical accuracy [Martel, 2009]

LEMA project [Lefèvre et al., 2010]: language and library
↪→ design easily a generation toolchain

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, can we teach computers to write fast
and certified codes, for a given target and optimized for a given format?

↪→ adding a systematic certification step

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 6/27



Towards the generation of fast and certified codes

Some works on code generation and transformation:

↪→ code generators: hardware (FloPoCo) and software (Sollya, Metalibm)

↪→ code transformation for increasing numerical accuracy [Martel, 2009]

LEMA project [Lefèvre et al., 2010]: language and library
↪→ design easily a generation toolchain

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, can we teach computers to write fast
and certified codes, for a given target and optimized for a given format?

↪→ adding a systematic certification step

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 6/27



Towards the generation of fast and certified codes

Some works on code generation and transformation:

↪→ code generators: hardware (FloPoCo) and software (Sollya, Metalibm)

↪→ code transformation for increasing numerical accuracy [Martel, 2009]

LEMA project [Lefèvre et al., 2010]: language and library
↪→ design easily a generation toolchain

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, can we teach computers to write fast
and certified codes, for a given target and optimized for a given format?

↪→ adding a systematic certification step

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 6/27



Basic blocks for implementing correctly-rounded operators

no

Floating-point number unpacking

Normalization

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

Range reduction

Result sign/exponent
computation

Special output selection

yes

Special input detection

R {±0, ±∞, NaN}

X

function independent

function dependent

Objectives

→ Low latency, correctly-rounded
implementations

→ ILP exposure

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 7/27



Basic blocks for implementing correctly-rounded operators

no

Floating-point number unpacking

Normalization

Result significand approximation

Rounding condition decision

Correct rounding computation

Result reconstruction

Range reduction

Result sign/exponent
computation

Special output selection

yes

Special input detection

R {±0, ±∞, NaN}

X

yes

Special input detection

Special output selection

{±0, ±∞, NaN}

automated
Fully

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Uniform approach for nth roots
and their reciprocals
→ polynomial evaluation

Extension to division

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 7/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant
Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant
Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant
Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant
Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Flowchart for generating efficient and certified C codes

generation

Problem: function to be evaluated

Fast and certified C code

ST231 features

C code Certificate

Computation of polynomial approximant

CGPECGPE

Constraints

Accuracy of approximant and
C code

I Sollya

I interval arithmetic (MPFI),
Gappa

Low evaluation latency on
ST231, ILP exposure

I ?

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 8/27



Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 9/27



Background on polynomial evaluation

Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 10/27



Background on polynomial evaluation

Our objective

Compute fast and certified schemes for evaluating a polynomial
P(x ,y) = α+ y ·a(x)

→ using only additions and multiplications

→ reducing the evaluation latency on unbounded parallelism

Evaluation program = main part of the full software implementation

→ dominates the cost

↪→ make it as efficient as possible

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1973), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 11/27



Background on polynomial evaluation

Our objective

Compute fast and certified schemes for evaluating a polynomial
P(x ,y) = α+ y ·a(x)

→ using only additions and multiplications

→ reducing the evaluation latency on unbounded parallelism

Evaluation program = main part of the full software implementation

→ dominates the cost

↪→ make it as efficient as possible

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1973), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 11/27



Background on polynomial evaluation

Our objective

Compute fast and certified schemes for evaluating a polynomial
P(x ,y) = α+ y ·a(x)

→ using only additions and multiplications

→ reducing the evaluation latency on unbounded parallelism

Evaluation program = main part of the full software implementation

→ dominates the cost

↪→ make it as efficient as possible

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1973), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 11/27



Background on polynomial evaluation

Our objective

Compute fast and certified schemes for evaluating a polynomial
P(x ,y) = α+ y ·a(x)

→ using only additions and multiplications

→ reducing the evaluation latency on unbounded parallelism

Evaluation program = main part of the full software implementation

→ dominates the cost

↪→ make it as efficient as possible

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1973), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 11/27



Background on polynomial evaluation

Classical evaluation schemes

Naive evaluation

↪→ 3 additions
5 multiplications

↪→ latency: 12 cycles

+

a0 +

×

a1 x

+

×

a2 ×

x x

×

a3 ×

x ×

x x

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 12/27



Background on polynomial evaluation

Classical evaluation schemes

Horner’s rule

↪→ 3 additions
3 multiplications

↪→ latency: 12 cycles

⊕ optimal in terms of multiplication number
[Pan, 1966], [Borodin, 1971],

	 fully sequential

+

a0 ×

x +

a1 ×

x +

a2 ×

x a3

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 12/27



Background on polynomial evaluation

Classical evaluation schemes

Second-order Horner’s rule

↪→ 3 additions
4 multiplications

↪→ latency: 11 cycles

⊕ some ILP exposure

	 subparts evaluated in a fully sequential
way: at most 2 ways used

+

+

a0 ×

×

x x

a2

×

x +

a1 ×

×

x x

a3

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 12/27



Background on polynomial evaluation

Classical evaluation schemes

Estrin’s rule

↪→ 3 additions
4 multiplications

↪→ latency: 8 cycles

⊕ “divide and conquer” strategy

⊕ more ILP exposure

+

×

×

x x

+

a2 ×

x a3

+

a0 ×

x a1

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 12/27



Background on polynomial evaluation

Definition of evaluation schemes

Mathematical expression a0 +a1 · x +a2 · x2 1y
Common parenthesizations (a0 +(a1 · x))+(a2 · (x · x)) 1

y commutativity
associativity
distributivity

Feasible parenthesizations [. . . ] 160y + and × are only commutative
in fixed-point arithmetic

Evaluation schemes
(a0 +(a1 ·x))+(a2 ·(x ·x)) (a0 +(a1 ·x))+((a2 ·x)·x))

(a0 +(a2 ·(x ·x)))+(a1 ·x) (a0 +((a2 ·x)·x))+(a1 ·x)

a0 +((a1 ·x)+(a2 ·(x ·x))) a0 +((a1 ·x)+((a2 ·x)·x)))

a0 +(a1 +(a2 ·x))·x

7

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 13/27



Background on polynomial evaluation

Definition of evaluation schemes

Mathematical expression a0 +a1 · x +a2 · x2 1y
Common parenthesizations (a0 +(a1 · x))+(a2 · (x · x)) 1

y commutativity
associativity
distributivity

Feasible parenthesizations (a0 +(a1 · x))+(a2 · (x · x)) 160

(a0 +(a1 · x))+((a2 · x) · x)

a0 +((a1 · x))+((a2 · x) · x))

a0 +((a1 +(a2 · x)) · x)

((a1 +(a2 · x)) · x)+a0 . . .

Feasible parenthesizations [. . . ] 160y + and × are only commutative
in fixed-point arithmetic

Evaluation schemes
(a0 +(a1 ·x))+(a2 ·(x ·x)) (a0 +(a1 ·x))+((a2 ·x)·x))

(a0 +(a2 ·(x ·x)))+(a1 ·x) (a0 +((a2 ·x)·x))+(a1 ·x)

a0 +((a1 ·x)+(a2 ·(x ·x))) a0 +((a1 ·x)+((a2 ·x)·x)))

a0 +(a1 +(a2 ·x))·x

7

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 13/27



Background on polynomial evaluation

Definition of evaluation schemes

Mathematical expression a0 +a1 · x +a2 · x2 1y
Common parenthesizations (a0 +(a1 · x))+(a2 · (x · x)) 1

y commutativity
associativity
distributivity

Feasible parenthesizations [. . . ] 160y + and × are only commutative
in fixed-point arithmetic

Evaluation schemes
(a0 +(a1 ·x))+(a2 ·(x ·x)) (a0 +(a1 ·x))+((a2 ·x)·x))

(a0 +(a2 ·(x ·x)))+(a1 ·x) (a0 +((a2 ·x)·x))+(a1 ·x)

a0 +((a1 ·x)+(a2 ·(x ·x))) a0 +((a1 ·x)+((a2 ·x)·x)))

a0 +(a1 +(a2 ·x))·x

7

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 13/27



Background on polynomial evaluation

Remarks on polynomial evaluation

There are several other schemes for evaluating a polynomial a(x)

I can be adapted for bivariate polynomial P(x ,y) = α+ y ·a(x)

Constant number of +, while number of × is non-constant

I reducing the latency⇔ increasing the number of × to expose ILP
I trade-off latency / number of multiplications

Evaluation error

I different theoretical error bounds
I difference between numerical quality in practice [Revy, 2006]

 We need a tool for exploring the space of evaluation schemes.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 14/27



Background on polynomial evaluation

Remarks on polynomial evaluation

There are several other schemes for evaluating a polynomial a(x)

I can be adapted for bivariate polynomial P(x ,y) = α+ y ·a(x)

Constant number of +, while number of × is non-constant

I reducing the latency⇔ increasing the number of × to expose ILP
I trade-off latency / number of multiplications

Evaluation error

I different theoretical error bounds
I difference between numerical quality in practice [Revy, 2006]

 We need a tool for exploring the space of evaluation schemes.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 14/27



Background on polynomial evaluation

Remarks on polynomial evaluation

There are several other schemes for evaluating a polynomial a(x)

I can be adapted for bivariate polynomial P(x ,y) = α+ y ·a(x)

Constant number of +, while number of × is non-constant

I reducing the latency⇔ increasing the number of × to expose ILP
I trade-off latency / number of multiplications

Evaluation error

I different theoretical error bounds
I difference between numerical quality in practice [Revy, 2006]

 We need a tool for exploring the space of evaluation schemes.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 14/27



Background on polynomial evaluation

How many schemes for evaluating a polynomial?
n µn → a(x) µ′n → α+ y ·a(x)

wn (2n−1)!!

1 1 10

1 1

2 7 481

1 3

3 163 88384

1 15

4 11602 57363910

2 105

5 2334244 122657263474

3 945

6 1304066578 829129658616013

6 10395

7 1972869433837 17125741272619781635

11 135135

8 8012682343669366 1055157310305502607244946

23 2027025

9 86298937651093314877 190070917121184028045719056344

46 34459425

10 2449381767217281163362301 98543690848554380947490522591191672

98 654729075

Two well-known special cases
I the number of evaluation schemes for xn [Wedderburn, Etherington]

wn ∼
ηξn

n3/2
or

{
ξ≈ 2.48325

η≈ 0.31877
[Otter, 1948],

I the number of evaluation schemes for
n

∑
i=1

ai est (2n−1)!!∼
√

2
(

2n
e

)n
.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 15/27



Background on polynomial evaluation

How many schemes for evaluating a polynomial?
n µn → a(x) µ′n → α+ y ·a(x) wn

(2n−1)!!

1 1 10 1

1

2 7 481 1

3

3 163 88384 1

15

4 11602 57363910 2

105

5 2334244 122657263474 3

945

6 1304066578 829129658616013 6

10395

7 1972869433837 17125741272619781635 11

135135

8 8012682343669366 1055157310305502607244946 23

2027025

9 86298937651093314877 190070917121184028045719056344 46

34459425

10 2449381767217281163362301 98543690848554380947490522591191672 98

654729075

Two well-known special cases
I the number of evaluation schemes for xn [Wedderburn, Etherington]

wn ∼
ηξn

n3/2
or

{
ξ≈ 2.48325

η≈ 0.31877
[Otter, 1948],

I the number of evaluation schemes for
n

∑
i=1

ai est (2n−1)!!∼
√

2
(

2n
e

)n
.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 15/27



Background on polynomial evaluation

How many schemes for evaluating a polynomial?
n µn → a(x) µ′n → α+ y ·a(x) wn (2n−1)!!

1 1 10 1 1

2 7 481 1 3

3 163 88384 1 15

4 11602 57363910 2 105

5 2334244 122657263474 3 945

6 1304066578 829129658616013 6 10395

7 1972869433837 17125741272619781635 11 135135

8 8012682343669366 1055157310305502607244946 23 2027025

9 86298937651093314877 190070917121184028045719056344 46 34459425

10 2449381767217281163362301 98543690848554380947490522591191672 98 654729075

Two well-known special cases
I the number of evaluation schemes for xn [Wedderburn, Etherington]

wn ∼
ηξn

n3/2
or

{
ξ≈ 2.48325

η≈ 0.31877
[Otter, 1948],

I the number of evaluation schemes for
n

∑
i=1

ai est (2n−1)!!∼
√

2
(

2n
e

)n
.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 15/27



Background on polynomial evaluation

Schemes of low evaluation latency

What is the latency of degree-5 evaluation schemes?

10

100

1000

10000

100000

1e+06

10 11 12 13 14 15 16 17 18 19 20

N
u
m

b
er

of
d
eg

re
e-

5
ev

al
u
at

io
n

sc
h
em

es

Latency on unbounded parallelism (# cycles)

Total number of schemes: 2334244

 minimal latency for degree-5 univariate polynomial: 10 cycles

 number of schemes of minimal latency: 36

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 16/27



The CGPE tool

Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 17/27



The CGPE tool

Overview of CGPE and related works

Goal of CGPE [Mouilleron and Revy, 2011]: automate the design of fast
and certified C codes for evaluating univariate/bivariate polynomials

I in fixed-point arithmetic
I by using the target architecture features (as much as possible)

Remarks:

 fast = that reduces the evaluation latency on a given target

 certified = we can bound the error entailed by the evaluation within the
given target’s arithmetic

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 18/27



The CGPE tool

Overview of CGPE and related works

Some related works
I [Cheung et al., 2005] and [Lee and Villasenor, 2009]: methodology for

implementing automatically mathematical function in a given precision

	 based on small degree polynomial evaluation using Horner’s→ no ILP

I [Harrison et al., 1999]: method for generating optimal evaluation scheme to
evaluate univariate polynomials on Itanium R© using fma

	 ST231 has only addition and multiplication, but no fma

I [Green, 2002]: brute force method for generating polynomial evaluation
schemes using at best SIMD instructions of the processor of
PlayStation R© 2

	 objective: generation at compile-time→ brute force method is unfeasible

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 19/27



The CGPE tool

Global architecture of CGPE

Input of CGPE

1. polynomial coefficients and variables: value intervals, fixed-point format, ...

2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. delay of one of the variable

4. some architectural constraints: operator cost, parallelism, ...

CGPE works in two steps:

1. computation of evaluation schemes: reducing evaluation latency on
unbounded parallelism and exposing as much ILP as possible

2. selection among the generated schemes, according to different criteria:

• evaluation using only unsigned fixed-point arithmetic

• scheduling feasible on ST231

• evaluation error bound satisfying the required error bound

At the end: CGPE automatically writes C codes with accuracy certificates

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 20/27



The CGPE tool

Global architecture of CGPE

Input of CGPE

1. polynomial coefficients and variables: value intervals, fixed-point format, ...

2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. delay of one of the variable

4. some architectural constraints: operator cost, parallelism, ...

CGPE works in two steps:

1. computation of evaluation schemes: reducing evaluation latency on
unbounded parallelism and exposing as much ILP as possible

2. selection among the generated schemes, according to different criteria:

• evaluation using only unsigned fixed-point arithmetic

• scheduling feasible on ST231

• evaluation error bound satisfying the required error bound

At the end: CGPE automatically writes C codes with accuracy certificates

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 20/27



The CGPE tool

Heuristics in DAG set computation

Determination of the minimal target latency on unbounded parallelism

I gives a good estimation of the best evaluation latency of the polynomial on
the target architecture

I takes some problem parameters (operator costs, delay, ...) into account

Non exhaustive computation of evaluation schemes

I elimination of the schemes that do not satisfy latency constraint
I limitation to some splittings: evaluation of high and low parts separately
I restriction to N schemes at each step of the computation

At the end of the computation: set of DAG evaluating the input polynomial
and satisfying the latency constraint on unbounded parallelism.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 21/27



The CGPE tool

Heuristics in DAG set computation

Determination of the minimal target latency on unbounded parallelism

I gives a good estimation of the best evaluation latency of the polynomial on
the target architecture

I takes some problem parameters (operator costs, delay, ...) into account

Non exhaustive computation of evaluation schemes

I elimination of the schemes that do not satisfy latency constraint
I limitation to some splittings: evaluation of high and low parts separately
I restriction to N schemes at each step of the computation

At the end of the computation: set of DAG evaluating the input polynomial
and satisfying the latency constraint on unbounded parallelism.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 21/27



The CGPE tool

Heuristics in DAG set computation

Determination of the minimal target latency on unbounded parallelism

I gives a good estimation of the best evaluation latency of the polynomial on
the target architecture

I takes some problem parameters (operator costs, delay, ...) into account

Non exhaustive computation of evaluation schemes

I elimination of the schemes that do not satisfy latency constraint
I limitation to some splittings: evaluation of high and low parts separately
I restriction to N schemes at each step of the computation

At the end of the computation: set of DAG evaluating the input polynomial
and satisfying the latency constraint on unbounded parallelism.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 21/27



The CGPE tool

Filters for adding numerical constraints

1. Arithmetic operator choice

I ensure that all intermediate variables are of constant sign
I avoid an extra cost due to sign handling / gain 1 bit of accuracy

2. Scheduling on a simplified model of the target (like the ST231)

I constraints of architecture: cost of operators, instruction bundling, ...
I delays on variables

3. Evaluation error bound checking

I straightline polynomial evaluation program
I “C code certification” using Gappa
 we can bound the evaluation error in integer arithmetic

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 22/27



The CGPE tool

Filters for adding numerical constraints

1. Arithmetic operator choice

I ensure that all intermediate variables are of constant sign
I avoid an extra cost due to sign handling / gain 1 bit of accuracy

2. Scheduling on a simplified model of the target (like the ST231)

I constraints of architecture: cost of operators, instruction bundling, ...
I delays on variables

3. Evaluation error bound checking

I straightline polynomial evaluation program
I “C code certification” using Gappa
 we can bound the evaluation error in integer arithmetic

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 22/27



The CGPE tool

Filters for adding numerical constraints

1. Arithmetic operator choice

I ensure that all intermediate variables are of constant sign
I avoid an extra cost due to sign handling / gain 1 bit of accuracy

2. Scheduling on a simplified model of the target (like the ST231)

I constraints of architecture: cost of operators, instruction bundling, ...
I delays on variables

3. Evaluation error bound checking

I straightline polynomial evaluation program
I “C code certification” using Gappa
 we can bound the evaluation error in integer arithmetic

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 22/27



Experimental results

Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 23/27



Experimental results

Timings for certified code generation

x1/2 x−1/2 x1/3 x−1/3 log2(1+ x) 1√
1+x2

exp(1+x)
1+x

Degree (dx ,dy ) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0)

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13

Achieved latency 13 14 16 16 11 11 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms

[50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms

[35] [29] [30] [26] [2] [12] [27]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s

[11] [1] [30] [24] [1] [5] [5]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s

[11] [1] [30] [24] [1] [5] [4]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s

1. Impact of the target latency on the first step of the generation

2. What may dominate the cost: scheduling and certification using Gappa

3. Optimality of some generated codes, in terms of evaluation latency

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 24/27



Experimental results

Timings for certified code generation

x1/2 x−1/2 x1/3 x−1/3 log2(1+ x) 1√
1+x2

exp(1+x)
1+x

Degree (dx ,dy ) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0)

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13

Achieved latency 13 14 16 16 11 11 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms

[50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms

[35] [29] [30] [26] [2] [12] [27]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s

[11] [1] [30] [24] [1] [5] [5]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s

[11] [1] [30] [24] [1] [5] [4]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s

1. Impact of the target latency on the first step of the generation

2. What may dominate the cost: scheduling and certification using Gappa

3. Optimality of some generated codes, in terms of evaluation latency

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 24/27



Experimental results

Timings for certified code generation

x1/2 x−1/2 x1/3 x−1/3 log2(1+ x) 1√
1+x2

exp(1+x)
1+x

Degree (dx ,dy ) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0)

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13

Achieved latency 13 14 16 16 11 11 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms

[50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms

[35] [29] [30] [26] [2] [12] [27]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s

[11] [1] [30] [24] [1] [5] [5]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s

[11] [1] [30] [24] [1] [5] [4]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s

1. Impact of the target latency on the first step of the generation

2. What may dominate the cost: scheduling and certification using Gappa

3. Optimality of some generated codes, in terms of evaluation latency

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 24/27



Experimental results

Timings for certified code generation

x1/2 x−1/2 x1/3 x−1/3 log2(1+ x) 1√
1+x2

exp(1+x)
1+x

Degree (dx ,dy ) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0)

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13

Achieved latency 13 14 16 16 11 11 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms

[50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms

[35] [29] [30] [26] [2] [12] [27]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s

[11] [1] [30] [24] [1] [5] [5]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s

[11] [1] [30] [24] [1] [5] [4]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s

1. Impact of the target latency on the first step of the generation

2. What may dominate the cost: scheduling and certification using Gappa

3. Optimality of some generated codes, in terms of evaluation latency

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 24/27



Conclusion

Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 25/27



Conclusion

Conclusions

Code generation for fast and certified polynomial evaluation
I in fixed-point arithmetic
I methodologies and tools to automate polynomial evaluation implementation
I heuristics and techniques for generating quickly fast and certified C codes

I implemented in the tool CGPE (Code Generation for Polynomial Evaluation)

http://cgpe.gforge.inria.fr/

Speed-up significantly the development time of mathematical library

I CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 26/27

http://cgpe.gforge.inria.fr/


Conclusion

Current work and perspectives

Current work

I precomputation in order to help the DAG set computation in choosing the
appropriate splittings: the ones leading to DAGs with optimal latency on
unbounded parallelism

I earlier DAG elimination, by checking accuracy during generation step

Perspectives

I extend CGPE to handle floating-point arithmetic,

I make CGPE more general to tackle other problems, like evaluation of a
polynomial at a matrix point.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 27/27



Conclusion

Current work and perspectives

Current work

I precomputation in order to help the DAG set computation in choosing the
appropriate splittings: the ones leading to DAGs with optimal latency on
unbounded parallelism

I earlier DAG elimination, by checking accuracy during generation step

Perspectives

I extend CGPE to handle floating-point arithmetic,

I make CGPE more general to tackle other problems, like evaluation of a
polynomial at a matrix point.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 27/27



Conclusion

Borodin, A. (1971).

Horner’s rule is uniquely optimal.

Theory of machines and computations, pages 45–58.

Cheung, R. C. C., Lee, D.-U., Mencer, O., Luk, W., and Cheung, P. Y. K. (2005).

Automating custom-precision function evaluation for embedded processors.

In CASES’05: Proceedings of the 2005 international conference on Compilers,
architectures and synthesis for embedded systems, pages 22–31, New York, NY,
USA. ACM.

Green, R. (2002).

Faster Math Functions.

Tutorial at Game Developers Conference.

Harrison, J., Kubaska, T., Story, S., and Tang, P. (1999).

The computation of transcendental functions on the IA-64 architecture.

Intel Technology Journal, 1999-Q4:1–7.

Lee, D.-U. and Villasenor, J. D. (2009).

Optimized Custom Precision Function Evaluation for Embedded Processors.
Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 27/27



Conclusion

IEEE Transactions on Computers, 58(1):46–59.

Lefèvre, V., Théveny, P., de Dinechin, F., Jeannerod, C.-P., Mouilleron, C.,
Pfannholzer, D., and Revol, N. (2010).

LEMA: towards a language for reliable arithmetic.

ACM Communications in Computer Algebra, 44:41–52.

Martel, M. (2009).

Enhancing the Implementation of Mathematical Formulas for Fixed-Point and
Floating-Point Arithmetics.

In Journal of Formal Methods in System Design, volume 35, pages 265–278.
Springer.

Mouilleron, C. and Revy, G. (2011).

Automatic Generation of Fast and Certified Code for Polynomial Evaluation.

In Proc. of the 20th IEEE Symposium on Computer Arithmetic (ARITH’20),
Tuebingen, Germany.

Otter, R. (1948).

The number of trees.

The Annals of Mathematics, 49(3):pp. 583–599.
Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 27/27



Conclusion

Pan, V. Y. (1966).

Methods of Computing Values of Polynomials.

Russian Mathematical Surveys, 21(1):105–136.

Revy, G. (2006).

Analyse et implantation d’algorithmes rapides pour l’évaluation polynomiale sur
les nombres flottants.

Master’s thesis, École normale supérieure de Lyon, 46 allée d’Italie, F-69364
Lyon cedex 07, France.

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 27/27


	Groupe de travail PEQUAN (LIP6, UPMC) - Paris, France, July 7, 2011
	Background on polynomial evaluation
	The CGPE tool
	Experimental results
	Conclusion


