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Motivation

Embedded systems are ubiquitous
I microprocessors dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications
I demanding on floating-point computations
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On the one side: the IEEE 754-2008 standard, ...

Definition of IEEE floating-point arithmetic

I floating-point formats: single precision, double precision, ...
I special values: ±0, ±∞, NaN
I 4 rounding modes: to nearest even, upward, downward, and toward zero
I mathematical function behavior

→ special input (ex:
√
−0 =−0)

→ requires / recommends correct rounding

Motivation:

I make computations reproducible
I and make results architecture-independent

Guillaume Revy (Groupe de travail PEQUAN – July 7, 2011) Automatic Generation of Fast and Certified Code for Polynomial Evaluation 3/27



... on the other side: the ST231 processor
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ST231 core 4-issue VLIW 32-bit integer processor

→ no FPU

Parallel execution unit

I 4 integer ALUs
I 2 pipelined multipliers 32 × 32→ 32

Latencies: ALU = 1 cycle / Mul = 3 cycles

VLIW (Very Long Instruction Word)

→ instructions grouped into bundles

→ Instruction-Level Parallelism (ILP) explicitly exposed by the compiler
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Towards the generation of fast and certified codes

This work takes mainly part in the context of the development of FLIP

↪→ software support for binary32 floating-point arithmetic on integer processors

Underlying problem: development “by hand”

I long and tedious, error prone
I new target ? new floating-point format ?

Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

I optimized for a given format, for the target architecture
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Towards the generation of fast and certified codes

Some works on code generation and transformation:

↪→ code generators: hardware (FloPoCo) and software (Sollya, Metalibm)

↪→ code transformation for increasing numerical accuracy [Martel, 2009]

LEMA project [Lefèvre et al., 2010]: language and library
↪→ design easily a generation toolchain

Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, can we teach computers to write fast
and certified codes, for a given target and optimized for a given format?

↪→ adding a systematic certification step
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Basic blocks for implementing correctly-rounded operators
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Floating-point number unpacking
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function independent

function dependent

Objectives

→ Low latency, correctly-rounded
implementations

→ ILP exposure
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Flowchart for generating efficient and certified C codes
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Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion
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Background on polynomial evaluation

Our objective

Compute fast and certified schemes for evaluating a polynomial
P(x ,y) = α+ y ·a(x)

→ using only additions and multiplications

→ reducing the evaluation latency on unbounded parallelism

Evaluation program = main part of the full software implementation

→ dominates the cost

↪→ make it as efficient as possible

Two families of algorithms
I algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and

Stockmeyer (1973), ...
→ ill-suited in the context of fixed-point arithmetic

I algorithms without coefficient adaptation
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Background on polynomial evaluation

Classical evaluation schemes

Naive evaluation

↪→ 3 additions
5 multiplications

↪→ latency: 12 cycles

+

a0 +

×

a1 x

+

×

a2 ×

x x

×

a3 ×

x ×

x x
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Background on polynomial evaluation

Classical evaluation schemes

Horner’s rule

↪→ 3 additions
3 multiplications

↪→ latency: 12 cycles

⊕ optimal in terms of multiplication number
[Pan, 1966], [Borodin, 1971],

	 fully sequential

+
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Background on polynomial evaluation

Classical evaluation schemes

Second-order Horner’s rule

↪→ 3 additions
4 multiplications

↪→ latency: 11 cycles

⊕ some ILP exposure

	 subparts evaluated in a fully sequential
way: at most 2 ways used

+

+

a0 ×

×

x x

a2

×

x +

a1 ×

×

x x

a3
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Background on polynomial evaluation

Classical evaluation schemes

Estrin’s rule

↪→ 3 additions
4 multiplications

↪→ latency: 8 cycles

⊕ “divide and conquer” strategy

⊕ more ILP exposure

+

×

×

x x

+

a2 ×

x a3

+

a0 ×

x a1
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Background on polynomial evaluation

Definition of evaluation schemes

Mathematical expression a0 +a1 · x +a2 · x2 1y
Common parenthesizations (a0 +(a1 · x))+(a2 · (x · x)) 1

y commutativity
associativity
distributivity

Feasible parenthesizations [. . . ] 160y + and × are only commutative
in fixed-point arithmetic

Evaluation schemes
(a0 +(a1 ·x))+(a2 ·(x ·x)) (a0 +(a1 ·x))+((a2 ·x)·x))

(a0 +(a2 ·(x ·x)))+(a1 ·x) (a0 +((a2 ·x)·x))+(a1 ·x)

a0 +((a1 ·x)+(a2 ·(x ·x))) a0 +((a1 ·x)+((a2 ·x)·x)))

a0 +(a1 +(a2 ·x))·x

7
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Background on polynomial evaluation

Remarks on polynomial evaluation

There are several other schemes for evaluating a polynomial a(x)

I can be adapted for bivariate polynomial P(x ,y) = α+ y ·a(x)

Constant number of +, while number of × is non-constant

I reducing the latency⇔ increasing the number of × to expose ILP
I trade-off latency / number of multiplications

Evaluation error

I different theoretical error bounds
I difference between numerical quality in practice [Revy, 2006]

 We need a tool for exploring the space of evaluation schemes.
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Background on polynomial evaluation

How many schemes for evaluating a polynomial?
n µn → a(x) µ′n → α+ y ·a(x)

wn (2n−1)!!

1 1 10

1 1

2 7 481

1 3

3 163 88384

1 15

4 11602 57363910

2 105

5 2334244 122657263474

3 945

6 1304066578 829129658616013

6 10395

7 1972869433837 17125741272619781635

11 135135

8 8012682343669366 1055157310305502607244946

23 2027025

9 86298937651093314877 190070917121184028045719056344

46 34459425

10 2449381767217281163362301 98543690848554380947490522591191672

98 654729075

Two well-known special cases
I the number of evaluation schemes for xn [Wedderburn, Etherington]

wn ∼
ηξn

n3/2
or

{
ξ≈ 2.48325

η≈ 0.31877
[Otter, 1948],

I the number of evaluation schemes for
n

∑
i=1

ai est (2n−1)!!∼
√

2
(

2n
e

)n
.
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Background on polynomial evaluation

Schemes of low evaluation latency

What is the latency of degree-5 evaluation schemes?
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Latency on unbounded parallelism (# cycles)

Total number of schemes: 2334244

 minimal latency for degree-5 univariate polynomial: 10 cycles

 number of schemes of minimal latency: 36
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The CGPE tool

Outline of the talk

1. Background on polynomial evaluation

2. The CGPE tool

3. Experimental results

4. Conclusion
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The CGPE tool

Overview of CGPE and related works

Goal of CGPE [Mouilleron and Revy, 2011]: automate the design of fast
and certified C codes for evaluating univariate/bivariate polynomials

I in fixed-point arithmetic
I by using the target architecture features (as much as possible)

Remarks:

 fast = that reduces the evaluation latency on a given target

 certified = we can bound the error entailed by the evaluation within the
given target’s arithmetic
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The CGPE tool

Overview of CGPE and related works

Some related works
I [Cheung et al., 2005] and [Lee and Villasenor, 2009]: methodology for

implementing automatically mathematical function in a given precision

	 based on small degree polynomial evaluation using Horner’s→ no ILP

I [Harrison et al., 1999]: method for generating optimal evaluation scheme to
evaluate univariate polynomials on Itanium R© using fma

	 ST231 has only addition and multiplication, but no fma

I [Green, 2002]: brute force method for generating polynomial evaluation
schemes using at best SIMD instructions of the processor of
PlayStation R© 2

	 objective: generation at compile-time→ brute force method is unfeasible
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The CGPE tool

Global architecture of CGPE

Input of CGPE

1. polynomial coefficients and variables: value intervals, fixed-point format, ...

2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. delay of one of the variable

4. some architectural constraints: operator cost, parallelism, ...

CGPE works in two steps:

1. computation of evaluation schemes: reducing evaluation latency on
unbounded parallelism and exposing as much ILP as possible

2. selection among the generated schemes, according to different criteria:

• evaluation using only unsigned fixed-point arithmetic

• scheduling feasible on ST231

• evaluation error bound satisfying the required error bound

At the end: CGPE automatically writes C codes with accuracy certificates
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The CGPE tool

Heuristics in DAG set computation

Determination of the minimal target latency on unbounded parallelism

I gives a good estimation of the best evaluation latency of the polynomial on
the target architecture

I takes some problem parameters (operator costs, delay, ...) into account

Non exhaustive computation of evaluation schemes

I elimination of the schemes that do not satisfy latency constraint
I limitation to some splittings: evaluation of high and low parts separately
I restriction to N schemes at each step of the computation

At the end of the computation: set of DAG evaluating the input polynomial
and satisfying the latency constraint on unbounded parallelism.
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The CGPE tool

Filters for adding numerical constraints

1. Arithmetic operator choice

I ensure that all intermediate variables are of constant sign
I avoid an extra cost due to sign handling / gain 1 bit of accuracy

2. Scheduling on a simplified model of the target (like the ST231)

I constraints of architecture: cost of operators, instruction bundling, ...
I delays on variables

3. Evaluation error bound checking

I straightline polynomial evaluation program
I “C code certification” using Gappa
 we can bound the evaluation error in integer arithmetic
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Experimental results

Timings for certified code generation

x1/2 x−1/2 x1/3 x−1/3 log2(1+ x) 1√
1+x2

exp(1+x)
1+x

Degree (dx ,dy ) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0)

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13

Achieved latency 13 14 16 16 11 11 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms

[50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms

[35] [29] [30] [26] [2] [12] [27]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s

[11] [1] [30] [24] [1] [5] [5]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s

[11] [1] [30] [24] [1] [5] [4]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s

1. Impact of the target latency on the first step of the generation

2. What may dominate the cost: scheduling and certification using Gappa

3. Optimality of some generated codes, in terms of evaluation latency
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Conclusion

Conclusions

Code generation for fast and certified polynomial evaluation
I in fixed-point arithmetic
I methodologies and tools to automate polynomial evaluation implementation
I heuristics and techniques for generating quickly fast and certified C codes

I implemented in the tool CGPE (Code Generation for Polynomial Evaluation)

http://cgpe.gforge.inria.fr/

Speed-up significantly the development time of mathematical library

I CGPE: allows to write and certify automatically ≈ 50 % of the codes of FLIP
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Conclusion

Current work and perspectives

Current work

I precomputation in order to help the DAG set computation in choosing the
appropriate splittings: the ones leading to DAGs with optimal latency on
unbounded parallelism

I earlier DAG elimination, by checking accuracy during generation step

Perspectives

I extend CGPE to handle floating-point arithmetic,

I make CGPE more general to tackle other problems, like evaluation of a
polynomial at a matrix point.
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