Faster floating-point square root for integer processors

Guillaume Revya, jointly with Claude-Pierre Jeanneroda, Hervé Knochelb and Christophe Monatb

aAréna INRIA project-team / STMicroelectronics Compilation Expertise Centreb

1. Introduction

- \textbf{Context & Motivation}
 - ST231 = integer processor for embedded media systems \cite{ST231} \rightarrow no FPU
 - Emulation of single precision floating-point arithmetic \cite{Emulation}
 - Audio/Video (HD-IPTV, cell phones, wireless terminals, PDAs)
 \rightarrow highly demanding on floating-point square root computations
 - Fast and accurate floating-point arithmetic software for mathematical functions

- \textbf{Goals}
 - Exploit at best the ST231 architecture: ILP 32-bit registers
 - Achieve correct rounding-to-nearest (even) of \sqrt{x}, for x a normal number
 - Simpler algorithms/implementations using polynomial approximants evaluation

2. ST231 architecture and compiler

- \textbf{Architecture}
 - 4-way VLIW architecture
 - Efficient 32-bit immediate encoding (2 per cycle)
 - Select instruction to remove branch penalty
- \textbf{Compiler}
 - Open64 compiler technology
 - Instruction Level Parallelism (ILP) extractor and scheduler
 - Full ISA access through intrinsics

3. Square root implementation - General principle

- \textbf{Some properties of the square root function}
 - Input: normal single precision floating-point number $x = (\pm1)^e m \cdot 2^d$, with $e \in \{0, 1\}$, $m \in \mathbb{N} \cap [-128, 127]$ and $m \cdot f = 1.0, f, f_2, \ldots, f_4 \in [0, 1)$
 - Output: correct rounding-to-nearest of \sqrt{x}. $\delta(x)$ or exception
 - $\sqrt{x} = 2^d \cdot \sqrt{\frac{1}{2^d}}$ and $\delta(x) = \delta(e) \cdot 2^d$,
 with $d = \{\lfloor e/2 \rfloor, \lfloor e/4 \rfloor \} \in \{\lfloor 1/2 \rfloor \}$.
 - x is normal number $\rightarrow \sqrt{x}$ is normal number
 - $\delta(e) \in [1, 2] \rightarrow$ no renormalization
- \textbf{Square root computation steps}
 1. Input $x = 32$-bit register \rightarrow Unpack $= \text{masks} / \text{shifts}$
 2. Compute d and e: $|e| - 1 \leq 2^\chi$
 \rightarrow sufficient condition to get $\delta(e)$
 3. Round/Pack result
 \rightarrow same format as for input x

4. Square root implementation - Methods to achieve

- \textbf{Existing methods}
 - Restoring/Nonrestoring algorithms: one result digit per iteration
 - Newton-Raphson/Goldschmidt iterations \cite{Goldschmidt}: refine approximations of \sqrt{X} or $\frac{1}{\sqrt{X}}$
- \textbf{Our approach: evaluation of polynomial approximants}
 - Approximate $\sqrt{1+x}$ for $x \in [0, 1]$ by one or several minimax polynomials
 - Evaluate such polynomials with fast, parallel schemes similar to Estrin’s

- \textbf{Pipeline}
 - $2X$ = same method with polynomials of lower degree
 - $3X$ = same method with polynomials of lower degree

5. Results for rounding-to-nearest and normal numbers

- \textbf{Latencies for generic input values}
- \textbf{Pipeline}

6. Some preliminary results for other rounding modes, numbers and formats

- \textbf{Other rounding modes}
 - downward / to zero / upward / faithful
 - $x \in (0, 2^{-n})$ \rightarrow low extra cost ≈ 5 cycles
 - $x \in (0, 2^{-n})$ \rightarrow high extra cost ≈ 5 cycles

- \textbf{Subnormal numbers}
 - $x \in (0, 2^{-127}) = (0, 2^{-128})$
 - $x \in (0, 2^{-127}) = (0, 2^{-128})$
 - $x \in (0, 2^{-127}) = (0, 2^{-128})$

- \textbf{Medim precision / High precision}
 - High precision (24 bits)
 - Medium precision (16 bits)
 - \rightarrow with no subnormals / 2 polynomial approximations

- \textbf{Special input values}
 - Graphics applications (OpenGL ES) / GPU (Nvidia/ATI)

Some references

\begin{thebibliography}{9}
\bibitem[1]{Eratovic} Mikol D. Erroovic and Toniang Lam, Digital Arithmetic, Morgan Kaufmann, 2003.
\end{thebibliography}