
Optimizing correctly-rounded reciprocal square roots

for embedded VLIW cores
Claude-Pierre Jeannerod1, 2 and Guillaume Revy2, 1

1INRIA Grenoble - Rhône-Alpes (Arénaire project-team, LIP, ENS Lyon) 2Université de Lyon

1. Introduction

� Context & Motivation

I Implementation of an efficient software support for IEEE 754
floating-point arithmetic on integer processors

• set of correctly-rounded mathematical operators, handling
of subnormal numbers, and handling of special inputs

• development of the FLIP library [1] for the binary32
floating-point format

I Optimized for the ST231 processor

• 4-issue VLIW integer processor from the ST200 processor
family (STMicroelectronics) → no FPU

• integer processor for embedded media systems
→ highly used in audio and video domains (HD-IPTV, cell
phones, wireless terminals, PDAs)

� Purpose of our work

I Software implementation of correctly-rounded reciprocal
square root (x−1/2) → 29 cycles

• frequently used in digital signal processing [6]

• correctly-rounded implementation recommended by the
latest revision of the IEEE 754 standard [2, §9.2]

I Optimized for the binary32 format and the ST231 core

I Correctly-rounded RoundTiesToEven (rounding to nearest)

I Extension of our bivariate polynomial evaluation-based
method introduced in [4] for square root

I Efficiency achieved by exploiting at best the instruction-level
parallelism (ILP) of the ST231

� Example of application

I Typical use of reciprocal square root = 3D vector normaliza-
tion

[x, y, z] 7→ [x/w, y/w, z/w]

with

w =

√
x2 + y2 + z2

I Without reciprocal square root:
→ 1 sqrt (23 cycles) + 3 div (3× 32 cycles) = 119 cycles

With reciprocal square root:
→ 1 rsqrt (29 cycles) + 3 mul (3× 21 cycles) = 92 cycles

I Latency reduction by over 20 %

2. ST231 architecture and compiler

� ST231, a 4-issue VLIW 32-bit embedded integer architecture

I 4 parallel ALU’s / 2 parallel pipelined 32× 32 → 32-bit multipliers

I 1 leading zero counter

I Predicate execution → select instruction to remove branch penalty

I 64 general purpose 32-bit registers / 8 1-bit branch (condition) registers

I Efficient 32-bit immediate operand encoding

� ST231 Compiler

I Open64 compiler technology

I Instruction level parallelism extractor and scheduler

I Select-based if-conversion → straightline assembly code

→ sequences of select instructions instead of costly control flow

I Linear Assembly Optimizer (LAO): generates schedule very close to the optimal

ICache

DTLB

Mul

Register
file (64
registers
8 read

4 write)

Load

(LSU)

IU IU IU IU

Trap
controller

4 x SDI

STBus

SDI ports

61 interrupts Debuglink

Peripherals

Debug
Timers

3 x
controller support unit 32-bit

I-side
memory
subsystem

Interrupt

register
PC and
branch
unit

Branch

file

DCache

buffer
Write

Prefetch
buffer

SCU

CMC

STBus

64-bit

registers
Control

UTLB
Mul

D-side
memory
subsystem

Store
Unit

ITLB

Instruction
buffer

ST231 core

3. Some properties of reciprocal square root

� Handling of special operands x ∈ {x < 0,±0,±∞,NaN}
I Filter out special operands using the standard binary interchange encoding format

I Compute special results required by [2] in parallel with the generic case

� Positive finite operand x (precision p ≥ 2)

Input: binary32 floating-point number: x = m · 2e = m′ · 2e′, with m′ = m · 2λ, e′ = e− λ, and

e′ ∈ N ∩ [emin − p + 1, emax] and m′ = 1.mλ+1 · · ·mp−1

Output: RN(x−1/2) = correct rounding-to-nearest of x−1/2

x−1/2 = ` · 2d and RN(x−1/2) = RN(`) · 2d, and ` ∈ [1, 2] and emin ≤ d ≤ emax

and where
d = −(e + 1− c)/2, ` = s

√
2/(1 + t), and c = [e′ is odd]

� Two useful properties

I x−1/2 falls in the range of normal floating-point numbers

I x−1/2 cannot be halfway between two consecutive floating-point numbers

4. How to approximate the exact value `?

� Existing method in FLIP 0.3: multiplicative method

I Initial approximation: degree-3 univariate polynomial

I Refinement by Goldschmidt’s iteration [3]

� Our approach: one-sided truncated approximation [4]

I Approximation of ` from above by v

2−p < `− v ≤ 0 and |` + 2−p−1 − v| < 2−p−1

Computation of u = truncation of v after p fraction bits

0 ≤ v − u < 2−p and |`− u| < 2−p

I Approximation v = result of the evaluation of a single bivari-
ate polynomial

P (s, t) = 2−p−1 + s · a(t)

with a(t) a degree-9 truncated Remez approximant com-
puted with Sollya

� How to evaluate P (s, t) efficiently?

I Horner’s rule: 38 cycles, no ILP exposure

I Efficient and certified parenthesization automatically gener-
ated using CGPE [5]

• Reduction of evaluation latency

→ 13 cycles on unbounded parallelism, 14 cycles on ST231

• Evaluation error checked with Gappa

→ ensure correct rounding

� CGPE generation flowchart

multiplication (3 cycles)

addition (1 cycle)

2−p−1

s

a0

t a1

r0

r1

r2

r3

s

t t

r4

r5

a2

t a3

r6

r7

r8

r9

a4

t a5

r10

r11

r12

r13

r14

r15

r16

a6

t a7

r17

r18

a8

t a9

r19

r20

r21

r22

r23

r24

C evaluation code

CGPE

Problem

- evaluate P (s, t) = 2−p−1 + s ·
∑

9

i=0
ait

i

- evaluation error no larger than η

- exploit at best the ILP of the ST231

ST231 features

Gappa certificate

uint32_t __rsqrt_eval__(uint32_t T, uint32_t S)
{

uint32_t r0 = mul(T, 0x5a82685d); // 1.31
uint32_t r1 = 0xb504f31f - r0; // 1.31
uint32_t r2 = mul(S, r1); // 2.30
uint32_t r3 = 0x00000020 + r2; // 2.30
uint32_t r4 = mul(T, T); // 0.32
uint32_t r5 = mul(S, r4); // 1.31
uint32_t r6 = mul(T, 0x386fd5f4); // 1.31
uint32_t r7 = 0x43df72f7 - r6; // 1.31
uint32_t r8 = mul(r5, r7); // 2.30
uint32_t r9 = r3 + r8; // 2.30
uint32_t r10 = mul(T, 0x28724100); // 1.31
uint32_t r11 = 0x308b1798 - r10; // 1.31
uint32_t r12 = mul(r4, r11); // 1.31
uint32_t r13 = mul(r5, r12); // 2.30
uint32_t r14 = r9 + r13; // 2.30
uint32_t r15 = mul(r4, r4); // 0.32
uint32_t r16 = mul(r5, r15); // 1.31
uint32_t r17 = mul(T, 0x106c5cd9); // 1.31
uint32_t r18 = 0x1d7bf968 - r17; // 1.31
uint32_t r19 = mul(T, 0x00fa9aa4); // 1.31
uint32_t r20 = 0x05dfffa4 - r19; // 1.31
uint32_t r21 = mul(r4, r20); // 1.31
uint32_t r22 = r18 + r21; // 1.31
uint32_t r23 = mul(r16, r22); // 2.30
uint32_t r24 = r14 + r23; // 2.30
return r24;

}
/* Feasible scheduling
* > issues : 4
* > multipliers : 2
--
| | Is1 | Is2 | Is3 | Is4 |
--
Cycle 0	r0	r4		
Cycle 1	r6	r10		
Cycle 2	r17	r19		
Cycle 3	r1	r5		
Cycle 4	r2	r15		
Cycle 5	r11	r20		
Cycle 6	r12	r21		
Cycle 7	r7	r16		
Cycle 8	r8	r18		
Cycle 9	r3	r13	r22	
Cycle 10	r23			
Cycle 11	r9			
Cycle 12	r14			
Cycle 13	r24			
--

*/

5. How to deduce RN(`) from the approximation v?

� Deduce RN(`): decide whether u ≥ `, which is equivalent to

u2 · (1 + t) ≥ 2 · s2, with 2 · s2 ∈ {2, 4}

I u, t, and 2 · s2 exactly representable with 32 bits

u

u
2

1 + t

u
2

· (1 + t)

2 · s
2

� Computing the first 64 bits of the exact product are enough

� Test done on the first 32 bits of the exact product

6. Validation and performances

� Exhaustive comparison with Glibc and MPFR

� Performances on ST231 FLIP 1.0 FLIP 0.3 Speedup

(with subnormal) (without subnormal) (without subnormal)

29 cycles 28 cycles 67 cycles 2.3

� Interest of the specialization of
the reciprocal square root operator

Code sequence used Number N of Latency L N/L

for computing x−1/2 instructions (cycles)

div(1.0f,sqrt(x)) 147 [124] 53 [47] 2.7 [2.6]

inv(sqrt(x)) 121 [115] 49 [47] 2.5 [2.4]

rsqrt(x) 68 [63] 29 [28] 2.3 [2.2]

Some references

[1] FLIP - Floating-point Library for Intger Processors. Available at http://flip.gforge.inria.fr/.

[2] IEEE standard for floating-point arithmetic. IEEE Std. 754-2008, pp.1-58, Aug. 29 2008.

[3] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2004.

[4] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and Guillaume Revy. Computing floating-point square roots via bivariate polynomial evaluation. Technical Report RR2008-38, LIP, October
2008.

[5] Guillaume Revy. CGPE - Code Generation for Polynomial Evaluation. Available at http://cgpe.gforge.inria.fr/.

[6] Michael J. Schulte and Kent E. Wires. High-speed inverse square roots. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages 124–131. IEEE Computer Society, 1999.

43rd Asilomar Conference on Signals, Systems and Computers – Pacific Grove, CA, USA, 1-4 November, 2009.

