Optimizing correctly-rounded reciprocal square roots
 for embedded VLIW cores

Claude-Pierre Jeannerod ${ }^{1,2}$ and Guillaume Revy ${ }^{2,1}$

${ }^{1}$ INRIA Grenoble - Rhône-Alpes (Arénaire project-team, LIP, ENS Lyon) ${ }^{2}$ Université de Lyon

1. Introduction

■ Context \& Motivation

- Implementation of an efficient software support for IEEE 754 floating-point arithmetic on integer processors
- set of correctly-rounded mathematical operators, handling of subnormal numbers, and handling of special inputs
- development of the FLIP library [1] for the binary32 floating-point format
- Optimized for the ST231 processor
- 4-issue VLIW integer processor from the ST200 processor family (STMicroelectronics) \rightarrow no FPU
- integer processor for embedded media systems
\rightarrow highly used in audio and video domains (HD-IPTV, cell phones, wireless terminals, PDAs)
\square Purpose of our work
- Software implementation of correctly-rounded reciprocal square root $\left(x^{-1 / 2}\right) \rightarrow 29$ cycles
- frequently used in digital signal processing [6]
- correctly-rounded implementation recommended by the latest revision of the IEEE 754 standard [2, §9.2]
- Optimized for the binary32 format and the ST231 core
- Correctly-rounded RoundTiesToEven (rounding to nearest)

Extension of our bivariate polynomial evaluation-based method introduced in [4] for square root

- Efficiency achieved by exploiting at best the instruction-level parallelism (ILP) of the ST231
\square Example of application
Typical use of reciprocal square root $=3 \mathrm{D}$ vector normalization

$$
[x, y, z] \mapsto[x / w, y / w, z / w]
$$

$$
w=\sqrt{x^{2}+y^{2}+z^{2}}
$$

\rightarrow Without reciprocal square root:
$\rightarrow 1$ sqrt $(23$ cycles $)+3$ div $(3 \times 32$ cycles $)=119$ cycles
With reciprocal square root:
$\rightarrow 1$ rsqrt (29 cycles) $+3 \mathrm{mul}(3 \times 21$ cycles $)=92$ cycles

- Latency reduction by over 20%

2. ST231 architecture and compiler

■ ST231, a 4-issue VLIW 32-bit embedded integer architecture

- 4 parallel ALU's / 2 parallel pipelined $32 \times 32 \rightarrow 32$-bit multipliers
- 1 leading zero counter
\rightarrow Predicate execution \rightarrow select instruction to remove branch penalty
- 64 general purpose 32 -bit registers / 81 -bit branch (condition) registers
- Efficient 32-bit immediate operand encoding

- ST231 Compiler

\downarrow Open64 compiler technology

- Instruction level parallelism extractor and scheduler
- Select-based if-conversion \rightarrow straightline assembly code

\rightarrow sequences of select instructions instead of costly control flow
- Linear Assembly Optimizer (LAO): generates schedule very close to the optimal

3. Some properties of reciprocal square root

\square Handling of special operands $x \in\{x<0, \pm 0, \pm \infty, \mathbf{N a N}\}$

- Filter out special operands using the standard binary interchange encoding format
- Compute special results required by [2] in parallel with the generic case
\square Positive finite operand x (precision $p \geq 2$)
Input: binary32 floating-point number: $x=m \cdot 2^{e}=m^{\prime} \cdot 2^{e^{\prime}}$, with $m^{\prime}=m \cdot 2^{\lambda}, e^{\prime}=e-\lambda$, and

```
                                    e
```

Output: RN $\left(x^{-1 / 2}\right)=$ correct rounding-to-nearest of $x^{-1 / 2}$
$x^{-1 / 2}=\ell \cdot 2^{d} \quad$ and $\quad \operatorname{RN}\left(x^{-1 / 2}\right)=\operatorname{RN}(\ell) \cdot 2^{d}, \quad$ and $\quad \ell \in[1,2] \quad$ and $\quad e_{\min } \leq d \leq e_{\max }$
and where

$$
d=-(e+1-c) / 2, \quad \ell=s \sqrt{2 /(1+t)}, \quad \text { and } \quad c=\left[e^{\prime} \text { is odd }\right]
$$

- Two useful properties
$>x^{-1 / 2}$ falls in the range of normal floating-point numbers
- $x^{-1 / 2}$ cannot be halfway between two consecutive floating-point numbers

4. How to approximate the exact value ℓ ?

Existing method in FLIP 0.3: multiplicative method

- Initial approximation: degree-3 univariate polynomial
- Refinement by Goldschmidt's iteration [3]

■ Our approach: one-sided truncated approximation [4] - Approximation of ℓ from above by v

$$
2^{-p}<\ell-v \leq 0 \quad \text { and } \quad\left|\ell+2^{-p-1}-v\right|<2^{-p-1}
$$

Computation of $u=$ truncation of v after p fraction bits

```
0\leqv-u<\mp@subsup{2}{}{-p}\quad\mathrm{ and }|\ell-u|<\mp@subsup{2}{}{-p}
```

- Approximation $v=$ result of the evaluation of a single bivariate polynomial
$P(s, t)=2^{-p-1}+s \cdot a(t)$
with $a(t)$ a degree-9 truncated Remez approximant computed with Sollya

How to evaluate $P(s, t)$ efficiently?

- Horner's rule: 38 cycles, no ILP exposure
- Efficient and certified parenthesization automatically generated using CGPE [5]
- Reduction of evaluation latency
$\rightarrow 13$ cycles on unbounded parallelism, 14 cycles on ST231
- Evaluation error checked with Gappa
\rightarrow ensure correct rounding

6. Validation and performances

Some references

${ }^{[5]}$ Guiluume Rey, CCPEE-Code Ceneration for Polynomial Evaluation. Avilable at

