Faster floating-point square root for integer processors

Guillaume Revy^a, jointly with Claude-Pierre Jeannerod^a, Hervé Knochel^b and Christophe Monat^b.

Arénaire INRIA project-team^a / STMicroelectronics Compilation Expertise Centre^b

Context and motivation

Context

► Fast and accurate software for floating-point mathematical functions

$$+, -, \times, /, \sqrt{,} 1/\sqrt{,} ...$$

- ST231 = integer processor for embedded media systems → no FPU
- Floating-Point Library for Integer Processors
 - → single precision / various rounding modes (IEEE-754 standard)

```
https://lipforge.ens-lyon.fr/projects/flip/
```

Why start with square root?

- ST231 : used in audio/video domains (HD-IPTV, cell phones, ...)
 - → highly demanding on floating-point square root computations
- ▶ The square root : one of the simplest functions

Goal

Exploit at best the ST231 architecture features : ILP / 32-bit registers

- → to implement fast algorithms using polynomial approximation evaluation,
- → to achieve correct rounding-to-nearest of square root.

Some properties of square root computation

Input: normal single precision floating-point number (IEEE-754 standard)

$$x = (-1)^s \cdot 1.f \cdot 2^e,$$

with $s \in \{0, 1\}$, $e \in \mathbb{N} \cap [-126, 127]$, and $f = 0.f_1f_2...f_{23} \in [0, 1)$.

Output : correct rounding-to-nearest of \sqrt{x} : $\circ(\sqrt{x})$ or exception.

Main step: computation of $\sqrt{1.f}$

- → Restoring/Non-restoring methods
- → Newton-Raphson/Goldschmidt iterations

Some properties of square root computation

Input: normal single precision floating-point number (IEEE-754 standard)

$$x = (-1)^s \cdot 1.f \cdot 2^e,$$

with $s \in \{0, 1\}$, $e \in \mathbb{N} \cap [-126, 127]$, and $f = 0.f_1f_2...f_{23} \in [0, 1)$.

Output : correct rounding-to-nearest of \sqrt{x} : $\circ(\sqrt{x})$ or exception.

Main step : computation of $\sqrt{1.f}$

- → Restoring/Non-restoring methods
- → Newton-Raphson/Goldschmidt iterations

Results and perspectives

Evaluation of polynomial approximation

- ▶ Approximation of $\sqrt{1+X}$, for $X \in [0,1)$, using one or several polynomials
- Evaluation using fast, parallel schemes (Estrin-like)

Results for rounding-to-nearest and normal numbers

- 2 polynomials of degree 6
- ≥ 25 cycles → speedup ≈ 50 % (previous version : 48 cycles)

Actual works

Other rounding modes / Subnormal floating-point numbers

Perspectives

► Extension to other functions : $1/\sqrt{x}$, $x^{-1/4}$, 1/x, x/y, ...

Results and perspectives

Evaluation of polynomial approximation

- ▶ Approximation of $\sqrt{1+X}$, for $X \in [0,1)$, using one or several polynomials
- Evaluation using fast, parallel schemes (Estrin-like)

Results for rounding-to-nearest and normal numbers

- 2 polynomials of degree 6
- ≥ 25 cycles → speedup ≈ 50 % (previous version : 48 cycles)

Actual works

Other rounding modes / Subnormal floating-point numbers

Perspectives

► Extension to other functions : $1/\sqrt{x}$, $x^{-1/4}$, 1/x, x/y, ...

