Faster floating-point square root for integer processors

Guillaume Revy ${ }^{a}$, jointly with Claude-Pierre Jeannerod ${ }^{a}$, Hervé Knochel ${ }^{b}$ and Christophe Monat ${ }^{b}$.

Arénaire INRIA project-team ${ }^{a}$ / STMicroelectronics Compilation Expertise Centre ${ }^{b}$

dip

Context and motivation

Context

- Fast and accurate software for floating-point mathematical functions

$$
+,-, \times, /, \sqrt{ }, 1 / \sqrt{ }, \ldots
$$

- ST231 = integer processor for embedded media systems \rightarrow no FPU
- Floating-Point Library for Integer Processors
\rightarrow single precision / various rounding modes (IEEE-754 standard)
https://lipforge.ens-lyon.fr/projects/flip/
Why start with square root?
- ST231 : used in audio/video domains (HD-IPTV, cell phones, ...)
\rightarrow highly demanding on floating-point square root computations
- The square root : one of the simplest functions

Goal

Exploit at best the ST231 architecture features : ILP / 32-bit registers
\rightarrow to implement fast algorithms using polynomial approximation evaluation,
\rightarrow to achieve correct rounding-to-nearest of square root.

Some properties of square root computation

Input : normal single precision floating-point number (IEEE-754 standard)

$$
\begin{gathered}
x=(-1)^{s} \cdot 1 . f \cdot 2^{e}, \\
\text { with } s \in\{0,1\}, e \in \mathbb{N} \cap[-126,127], \text { and } f=0 . f_{1} f_{2} \ldots f_{23} \in[0,1) . \\
\frac{s E_{1} E_{2} E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} f f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} f_{10} f_{11} f_{12} f_{13} f_{4} f_{15} f_{16} f_{17} f_{18} f_{19} f_{20} f_{21} f_{22} f_{23}}{E=e+127}
\end{gathered}
$$

Output : correct rounding-to-nearest of $\sqrt{x}: \circ(\sqrt{x})$ or exception.

Some properties of square root computation

Input : normal single precision floating-point number (IEEE-754 standard)

$$
\begin{gathered}
x=(-1)^{s} \cdot 1 . f \cdot 2^{e}, \\
\text { with } s \in\{0,1\}, e \in \mathbb{N} \cap[-126,127], \text { and } f=0 . f_{1} f_{2} \ldots f_{23} \in[0,1) . \\
\begin{array}{l|l}
s & E_{1} E_{2} E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} f_{10} f_{11} f_{12} f_{13} f_{14} f_{15} f_{16} f_{17} f_{18} f_{19} f_{20} f_{21} f_{22} f_{23} \\
E=e+127
\end{array}
\end{gathered}
$$

Output : correct rounding-to-nearest of $\sqrt{x}: \circ(\sqrt{x})$ or exception.

Main step : computation of $\sqrt{1 . f}$
\rightarrow Restoring/Non-restoring methods
\rightarrow Newton-Raphson/Goldschmidt iterations

Results and perspectives

Evaluation of polynomial approximation

- Approximation of $\sqrt{1+X}$, for $X \in[0,1)$, using one or several polynomials
- Evaluation using fast, parallel schemes (Estrin-like)

Results for rounding-to-nearest and normal numbers

- 2 polynomials of degree 6
- 25 cycles \rightarrow speedup $\approx 50 \%$ (previous version : 48 cycles)
- Other rounding modes / Subnormal floating-point numbers
- Extension to other functions

Results and perspectives

Evaluation of polynomial approximation

- Approximation of $\sqrt{1+X}$, for $X \in[0,1)$, using one or several polynomials
- Evaluation using fast, parallel schemes (Estrin-like)

Results for rounding-to-nearest and normal numbers

- 2 polynomials of degree 6
- 25 cycles \rightarrow speedup $\approx 50 \%$ (previous version : 48 cycles)

Actual works

- Other rounding modes / Subnormal floating-point numbers

Perspectives

- Extension to other functions : $1 / \sqrt{x}, x^{-1 / 4}, 1 / x, x / y, \ldots$

