
Approach based on instruction selection
for fast and certified code generation

Christophe Mouilleron1,2,3 Amine Najahi1,2,3 Guillaume Revy1,2,3

1 Univ. Perpignan Via Domitia, DALI, F-66860, Perpignan, France
2 Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France

3 CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

{amine.najahi,christophe.mouilleron,guillaume.revy}@univ-perp.fr

Keywords: fixed-point arithmetic, automatic code generation, instruction se-
lection, numerical certification

Abstract: Nowadays floating-point arithmetic [1] has become ubiquitous in
the specification and implementation of programs, including those targeted at
embedded systems. However, for the sake of chip area or power consumption
constraints, some of these embedded systems are still shipped with no floating-
point unit. In this case, only integer arithmetic is available at the hardware
level. Hence, in order to run floating-point programs, we need either to use
a library that emulates floating-point arithmetic in software (like the FLIP1

library), or to rewrite the programs so as to rely on fixed-point arithmetic
instead [2]. Yet both approaches require the design of fixed-point routines,
which appears to be a tedious and error prone task especially since it is still
partly done by hand. Thus, one of the current challenges is to design automatic
tools to generate fixed-point programs as fast as possible while satisfying some
accuracy constraints. In this sense, we have developed the CGPE2 software tool,
dedicated to the generation of fast and certified codes for evaluating bivariate
polynomials in fixed-point arithmetic. This tool, based on the generation of
several fast evaluation codes combined with a systematic numerical verification
step, is well suited for VLIW integer processors using only binary adders and
multipliers. We propose here an extension of CGPE, which consists in adding
a step based on instruction selection [4, §8.9] in order to improve the speed and
the accuracy of the generated codes for more advanced architectures.

Given an instruction set architecture, instruction selection is the compilation
process that aims at finding a sequence of instructions implementing “at best”
a given program. It works on a target-independent intermediate representation

1Floating-point Library for Integer Processors (see http://flip.gforge.inria.fr).
2Code Generation for Polynomial Evaluation (see http://cgpe.gforge.inria.fr and [3]).

1



of this program, represented as a tree or a directly acyclic graph (DAG), and is
usually used to optimize the code size or latency on the target architecture, while
no guarantee is provided concerning the accuracy of the generated code. The
general problem of instruction selection has been well studied and, although
it has been proven to be NP-complete even for simple machines in the case
of DAGs [5], several algorithms exist to tackle this problem (see [5] and the
references therein).

In the context of CGPE, where we represent polynomial evaluation expres-
sions with DAGs, we can benefit from this work on instruction selection by
combining it with the numerical verification step already implemented. The
advantage of our new approach is twofold. First it is much more flexible than
writing a generation algorithm for each available processor. Indeed, it mainly
needs to work on the DAG representation of the expression to be implemented,
which is independent of the target architecture, and thus it makes easier to han-
dle various architectures shipping different kind of instructions. Second it allows
us to generate automatically codes optimized for a given target and satisfying
various criteria like accuracy and performance, as well as code size. So far, this
approach has been tested on the evaluation of polynomials, where it allows us
to write efficient codes using at best some advanced architecture features like a
fused-multiply-add operator.

References

[1] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, 2008.

[2] D. Menard, D. Chillet, and O. Sentieys. Floating-to-fixed-point conversion
for digital signal processors. In EURASIP Journal on Applied Signal Pro-
cessing, pp. 1–15, 2006.

[3] C. Mouilleron and G. Revy. Automatic Generation of Fast and Certified
Code for Polynomial Evaluation. In Proc. of the 20th IEEE Symposium
on Computer Arithmetic, pp. 233–242, Tuebingen, Germany, 2011. IEEE
Computer Society.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[5] D. R. Koes and S. C. Goldstein. Near-optimal instruction selection on DAGs.
In Proc. of the 6th IEEE/ACM international Symposium on Code Genera-
tion and Optimization, pp. 45–54, New York, NY, USA, 2008. ACM.

2


