Techniques for the automatic
debugging of scientific floating-point

LI

David H. Bailey', James Demmel’, William Kahanr’,

programs

Guillaume Revy?’, and Koushik Sen?

'Berkeley Lab Computing Sciences, Computational Research Division, Lawrence Berkeley National Laboratory
‘Parallel Computing Laboratory, EECS Department, University of California at Berkeley

| 1. Context and purpose of our work |

B Tool for automatically detecting and remedying anomalies in scientific floating-point programs

large-scale scientific single/multi-threaded applications has been growing rapidly
anomalies may cause rare but critical bugs that are hard for nonexperts to find or fix [1]

detection and remedy either at C code level or at run-time

B What are the usual anomalies?

rounding error accumulations

conditional branches involving floating-point comparisons
< may go astray due to the subtleties of floating-point arithmetic, eg NaN

— convergence misbehavior

difficulties of programming languages

— Fortran: constants converted in full double precision accuracy if written with the d__ notation,
otherwise not, unlike C

under/overflows, resolution of ill-conditioned problems

— returned result may be completely wrong

cancellation, benign or catastrophic, ...

2. Usual approaches for finding anomalies in floating-point
programs?

B Some techniques for detecting these usual anomalies [1],[3]

altering rounding mode of floating-point arithmetic hardware
— may not normally be usable to remedy the problems

extending precision of floating-point computation

< may increase run time significantly (due to the use of software interface)

using interval arithmetic
— produces a certificate, but run time cost is the greatest

B Example of precision extension

int main (void) int main (void)
{ {
float a = 1lelb5f;
float b = 1.0f;
float ¢ = a + b;
float d = ¢ - a;

double a = 1lel5f;
double b = 1.0f;
double ¢ = a + Db;
double d = ¢ - a;

printf ("The value of d is: %1.19e\n", d); printf ("The value of d is: %1.19e\n", d);
return O; return O;

} }

$ The value of d is: 0.0000000000000000000e+00)(' $ The value of d is: 1.0000000000000000000e+00

Only two variables (eg b and c) have to be declared in double. How to detect
quickly the parts of a C program the most sensitive to given parameters?

3. Detection of anomalies using delta-debugging algorithm and code transformations

B General flowchart of the framework

General principle: find a local minimal set of changes on a
given C code, so that the computed result remains within a

B Delta-debugging algorithm [5]

B Code transformation and instrumentation done using
CIL (C Intermediate Language) [4]

analysis and source-to-source transformation of C programs

given threshold of a known and more accurate result (exact, C program — tree structure: definition of transformations for
C cod Ccode L___________ : PP
SO0 — - high precision, ...) each kind of node (variable declaration, constants, function
(ie. float) (ie. double) — implementation like binary search deﬁnition,)
................... lmmmmemmmmm. [| ecueton o e —" FloatToDouble: float — double,
CIL ‘_" Code transformation / instrumentation | k _ ™ I increase o f granulariy RoundingMode: RN — {RU;RD;RZ}7
[] RS FlipFunction: flipping between two implementations
Delta-Debugging (ddmin) —em— Local minimum set of changes : L 1—' :
- : | - of the same computation,
lll V .
[= DoubleToDD: double — double-double (implemented
using QD package [2]).
C code l ' 1
_____________________ X X

(ie. mixed precision)

1-minimal

| 4. Some examples |

M Inaccurate computation of the arc length of a given function [1]

g(x)=1x+ Z 2 Fsin(2¥z), over (0, 7).
0<k<H

summing for x;. € (0, 7) divided into n subintervals

\/h2 +(g(zp + h) — g(h))?, with h = 7/n and ;. = kh.

For n. = 1000000: sum = 5.795776322412856 (double-double) — 20 x slower
= 5.795776322413031 (double)
= 5.795776322412856 (double-double sum of doubles)

— only 1 change is necessary: found in =~ 30 sec.

B Bug in dgges subroutine of LAPACK

| have the following problem with dgges. For version 3.1.1 and sooner, | get a
reasonable result, for version 3.2 and 3.2.1, | get info=n+2.

the only difference between LAPACK 3.1.1 and 3.2.x: some call to dlarfqg replaced by dlarfp

— which call(s) to dlar fp made the program fail?

Result obtained in =~/ 1 m. 50 sec.

> 25610 possible changes
>34 (47) tests done
> all changes but 1 did not matter

— the computed local minimal subset of changes is

Combinaison of delta-debugging and code
transformations for finding areas of a C code the
most sensitive to given parameters

‘ 5. Conclusion and future work |

B Current work on the automatic debugging of scientific floating-point applications

CIL for applying transformations on a given C code,

delta-debugging algorithm for finding a minimal set of effective changes to be applied on a given C
code to improve its accuracy.

B Future work

implementation of other transformations (eg FloatToFF: float to float-float)

application of these automated techniques to bug reports of widely used library (eg LAPACK), and
automation of techniques that are originally done by hand

— behavior when NaNs are input or occur during the run

detection of some infinite loops, exception handling, ...

automatic and careful addition of an adjustable “fuzz” (small numerical value) on one side of the
comparisons that go astray due to the subtleties of floating-point arithmetic

automatic user’'s program scanning and modification when a constant is not converted to full ex-
pected precision because of difficulties of the programming language

‘ Some references I

[1] David H. Bailey. Resolving Numerical Anomalies in Scientific Computation. 2008.
Available at http://crd.1lbl.gov/~dhbailey/dhbpapers/numerical-bugs.pdf.

[2] David H. Bailey, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. QD — C++/Fortran-90 double-double and quad-double package.
Available at http://crd.1lbl.gov/~dhbailey/mpdist/.

[3] William Kahan. How Futile are Mindless Assessments of Roundoff in Floating-point Computation? 2006.
Available at http://www.eecs.berkeley.edu/~wkahan/Mindless.pdf.

[4] George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. CIL: Intermediate language and tools for analysis and transformation of C programs. In Proceedings
of Conference on Compiler Construction, 2002.

[5] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering, 28(2):183-200, 2002.

ParLab Summer Retreat 2010 — Santa Cruz, CA, USA, 24-26 May, 2010.

