Implementation of binary floating-point arithmetic
on embedded integer processors

Polynomial evaluation-based algorithms
and
certified code generation

Guillaume Revy
Advisors: Claude-Pierre Jeannerod and Gilles Villard

Arénaire INRIA project-team (LIP, Ens Lyon) Université de Lyon =~ CNRS

& HEinria S -

Ph.D. Defense — December 1%, 2009

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 1/45

NN
Motivation

m Embedded systems are ubiquitous
» microprocessors dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 2/45

NN
Motivation

m Embedded systems are ubiquitous
» microprocessors dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 2/45

NN
Motivation

m Embedded systems are ubiquitous
» microprocessors dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

m Highly used in audio and video applications
» demanding on floating-point computations

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

NN
Motivation

m Embedded systems are ubiquitous
» microprocessors dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

Embedded systems /
Software implementing
floating-point arithmetic

m Highly used in audio and video applications
» demanding on floating-point computations

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

NN
Motivation

m Embedded systems are ubiquitous
» microprocessors dedicated to one or a few specific tasks
» satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems /
Software implementing
floating-point arithmetic

m Highly used in audio and video applications
» demanding on floating-point computations

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

I
Overview of the ST231 architecture

ST231 core

—’ii m 4-issue VLIW 32-bit integer processor
— no FPU
m Parallel execution unit

> 4 integer ALU
» 2 pipelined multipliers 32 x 32 — 32

m Latencies: ALU — 1 cycle, Mul — 3
cycles

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 3/45

I
Overview of the ST231 architecture

ST231 core

— it m 4-issue VLIW 32-bit integer processor
— no FPU
m Parallel execution unit

> 4 integer ALU
» 2 pipelined multipliers 32 x 32 — 32

m Latencies: ALU — 1 cycle, Mul — 3
cycles

m VLIW (Very Long Instruction Word)
— instructions grouped into bundles

— Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 3/45

Overview of the ST231 architecture

m 4-issue VLIW 32-bit integer processor
— no FPU
m Parallel execution unit

> 4 integer ALU
» 2 pipelined multipliers 32 x 32 — 32

m Latencies: ALU — 1 cycle, Mul — 3
cycles

m VLIW (Very Long Instruction Word)
— instructions grouped into bundles

— Instruction-Level Parallelism (ILP) explicitly exposed by the compiler

uint32_t R1 = A0 + C; l [Issue 1 Issue 2 Issue 3 Issue 4 l
uint32_t R2 = A3 * X;

uint32_t R3 = Al * X; 0 R1 R2 R3
uint32_t R4 = X * X; 1 R4

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 3/45

How to emulate floating-point arithmetic in software?

Design and implementation of efficient software support for
IEEE 754 floating-point arithmetic on integer processors

m Existing software for IEEE 754 floating-point arithmetic:

» Software floating-point support of GCC, Glibc and uClibc, GoFast
Floating-Point Library

» SoftFloat (— STIlib)
» FLIP (Floating-point Library for Integer Processors)
e software support for binary32 floating-point arithmetic on integer processors

e correctly-rounded addition, subtraction, multiplication, division, square root,
reciprocal, ...

e handling subnormals, and handling special inputs

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 4/45

I
Towards the generation of fast and certified codes

m Underlying problem: development “by hand”

» long and tedious, error prone

» new target ? new floating-point format ?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

I
Towards the generation of fast and certified codes

m Underlying problem: development “by hand”
» long and tedious, error prone
> new target ? new floating-point format ?

= need for automation and certification

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 5/45

I
Towards the generation of fast and certified codes

m Underlying problem: development “by hand”

» long and tedious, error prone
» new target ? new floating-point format ?

= need for automation and certification

m Current challenge: tools and methodologies for the automatic generation
of efficient and certified programs

» optimized for a given format, for the target architecture

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 5/45

I
Towards the generation of fast and certified codes

m Arénaire’s developments: hardware (FloPoCo) and software (Sollya,
Metalibm)

m Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 6/45

Towards the generation of fast and certified codes

m Arénaire’s developments: hardware (FloPoCo) and software (Sollya,
Metalibm)

m Spiral project: hardware and software code generation for DSP algorithms

Can we teach computers to write fast libraries?

m Our tool: CGPE (Code Generation for Polynomial Evaluation)

In the particular case of polynomial evaluation, can we teach computers
to write fast and certified codes, for a given target and optimized for a
given format?

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors 6/45

BN
Basic blocks for implementing correctly-rounded operators

(X.Y)
L |

| Special input detection |

no yes

function dependent

function independent |

| Floating-point number unpacking |

Normalization

Range reduction

Objectives

: | — — — Low latency, correctly-rounded
Result sign/exponent Result significand approximation |
computation 1 implementations

| Rounding condition decision |

— ILP exposure

| Correct rounding computation |

Result reconstruction Special output selection

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors 7/45

BN
Basic blocks for implementing correctly-rounded operators

(X,Y)
no
| Floating-point number unpacking | |

Normalization

Range reduction

function independent |

function dependent |

Objectives

- | — — — Low latency, correctly-rounded
Result sign/exponent Result significand approximation |
computation ¥ implementations

| Rounding condition decision |

— ILP exposure

| Correct rounding computation |

Result reconstruction

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 7/45

BN
Basic blocks for implementing correctly-rounded operators

(X,Y)

! P :

| Problem: function to be evaluated I | ST231 features

Gomputation of polynomial approximant

1"0_1

| Floating-point number unpacking |

Efficient and certified C code
generation
Fully
i automated
Range reducton | .~ = Cm _______ _____________________
Result sign/exponent | Result significand approximation | .
computation . m Uniform approach for nth roots
| Rounding condition decision | and thell’ I’eCIprocals

| Correct rounding computation | - polynomlal evaluatlon

m Extension to division

Result reconstruction

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors 7/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |

Computation of polynomial approximant

| } |

Efficient and certified C code

generation

\ 4 \ 4

C code Certificate

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |

Constraints

Computation of polynomial approximant [Accuracy of approximant and

1 1 1 C code

Efficient and certified C code

generation

\ 4 \ 4

C code Certificate

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |

Constraints

Computation of polynomial approximant ™ Accuracy of approximant and

1 1 1 C code

Efficient and certified C code

generation

m Low evaluation latency on
ST231, ILP exposure

\ 4 \ 4

C code Certificate

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |

Constraints

Computation of polynomial approximant [Accuracy of approximant and
1 1 1 C code
» Sollya
Efficient and certified C code
generation
m Low evaluation latency on
ST231, ILP exposure
\ 4 \ 4
C code Certificate

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |
Constraints
Computation of polynomial approximant ™ Accuracy of approximant and

1 1 1 C code

» Sollya

Efficient and certified C code » interval arithmetic (MPF|)
generation Gappa
m Low evaluation latency on

ST231, ILP exposure

\ 4 \ 4

C code Certificate

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I

| ST231 features |

Computation of polynomial approximant

}

}

}

generation

Efficient and certified C code

Constraints

m Accuracy of approximant and
C code

» Sollya

\ 4

C code

Certificate

> interval arithmetic (MPFI),

CGPE Gappa

m Low evaluation latency on
ST231, ILP exposure
> ?

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Flowchart for generating efficient and certified C codes

| Problem: function to be evaluated I | ST231 features |

Constraints

Computation of polynomial approximant ™ Accuracy of approximant and
1 1 1 C code
» Sollya
Efficient and certified C code » interval arithmetic (MPF|)’
generation CGPE Gappa
m Low evaluation latency on

ST231, ILP exposure

\ 4

C code

> ?
Certificate

m Efficiency of the generation
process

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 8/45

I
Outline of the talk

1. Design and implementation of floating-point operators
Bivariate polynomial evaluation-based approach
Implementation of correct rounding

2. Low latency parenthesization computation
Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency

3. Selection of effective evaluation parenthesizations
General framework
Automatic certification of generated C codes

4. Numerical results

5. Conclusions and perspectives

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

Outline of the talk

1. Design and implementation of floating-point operators
Bivariate polynomial evaluation-based approach
Implementation of correct rounding

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 10/45

Notation and assumptions

(z,y)

-

Division C code

— RN(z/y)

m Input (x, y) and output RN(x/y): normal numbers

— no underflow nor overflow

— precision p, extremal exponents €nin, Emax

X =41 My 1. My 1 . 2%

with ey € {emim ey emax}

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors ~ 11/45

Notation and assumptions

(x,y) =] Division C code |- RN(z/y)

m Input (x, y) and output RN(x/y): normal numbers

— no underflow nor overflow
— precision p, extremal exponents €nin, Emax

Xx=H1.my1...Myp1-2% with ex € {nn,---,Cna}

— RoundTiesToEven

\

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 11/45

Notation and assumptions

(X,Y) =¥|DivisionCcode [R

m Standard binary encoding: k-bit unsigned integer X encodes input x

Ey =€s—€mn—1 " Te =ma ... Map-1 |

1bit w =k — pbits p — 1bits

m Computation: k-bit unsigned integers

— integer and fixed-point arithmetic

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 11/45

Notation and assumptions

(X,Y) = Divisio?& code = R
u

m Standard binary encoding: k-bit unsigned integer X encodes input x

Ey =€s—€mn—1 " Te =ma ... Map-1 |

1bit w =k — pbits p — 1bits

m Computation: k-bit unsigned integers

— integer and fixed-point arithmetic

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 11/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division

m Express the exact result r = x/y as:
r=0-2° = RN(x/y)=RN(/)-2%

with
re1,2) and d€{enn---,Em}

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 12/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division

m Express the exact result r = x/y as:
r=0-2° = RN(x/y)=RN(/)-2%

with
re1,2) and d€{enn---,Em}

m Definition

c=1 it m>m, and c=0 otherwise

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 12/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division

m Express the exact result r = x/y as:
r=0-2° = RN(x/y)=RN(/)-2%

with
re1,2) and d€{enn---,Em}

m Definition

c=1 it m>m, and c=0 otherwise

m Range reduction
x/y=(2"¢-mc/my) - 2% with d=e—e,—1+c
——

=Lle[1,2)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 12/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Range reduction of division

m Express the exact result r = x/y as:
r=0-2° = RN(x/y)=RN(/)-2%

with
re1,2) and d€{enn---,Em}

m Definition

c=1 it m>m, and c=0 otherwise

m Range reduction
x/y=(2"¢-mc/my) - 2% with d=e—e,—1+c
—————
=Lle[1,2)

How to compute the correctly-rounded significand RN(¢) ?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 12/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

m lterative methods: restoring, non-restoring, SRT, ...
» Oberman and Flynn (1997)

» minimal ILP exposure, sequential algorithm

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 13/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

m lterative methods: restoring, non-restoring, SRT, ...
» Oberman and Flynn (1997)

» minimal ILP exposure, sequential algorithm

m Multiplicative methods: Newton-Raphson, Goldschmidt
» Pifeiro and Bruguera (2002) — Raina’s Ph.D., FLIP 0.3 (2006)

» exploit available multipliers, more ILP exposure

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 13/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Methods for computing the correctly-rounded significand

m lterative methods: restoring, non-restoring, SRT, ...
» Oberman and Flynn (1997)

» minimal ILP exposure, sequential algorithm

m Multiplicative methods: Newton-Raphson, Goldschmidt
» Pifeiro and Bruguera (2002) — Raina’s Ph.D., FLIP 0.3 (2006)

» exploit available multipliers, more ILP exposure

m Polynomial-based methods

» Agarwal, Gustavson and Schmookler (1999)
— univariate polynomial evaluation

» Our approach
— bivariate polynomial evaluation: maximal ILP exposure

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

13/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Correct rounding via truncated one-sided approximation

m How to compute RN(¢), with £ =2'"¢-m,/m, ?

m Three steps for correct rounding computation
1. compute v=1.vy...v_osuchthat -2 P </—v <0
— implied by [(/+2 P 1) —v| <2 P
— bivariate polynomial evaluation
2. compute u as the truncation of v after p fraction bits

3. determine RN(¥) after possibly adding 27

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 14/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Correct rounding via truncated one-sided approximation

m How to compute RN(¢), with £ =2'"¢-m,/m, ?

m Three steps for correct rounding computation
1. compute v=1.vy...v_osuchthat -2 P </—v <0
— implied by [(¢+27P 1) —v| <27P"
— bivariate polynomial evaluation
2. compute u as the truncation of v after p fraction bits

3. determine RN(¥) after possibly adding 27

How to compute the one-sided approximation v and then deduce RN(¢)?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 14/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials

1. Consider /+2P~" as the exact result of the function
F(s,t)=s/(14t)+2P"

at the points s* =2'"¢-m, and t* = m, — 1

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 15/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider /+2 P~ as the exact result of the function
F(s,t)=s/(1+t)+2 P
at the points s* =2'"¢-m, and t* = m, — 1
2. Approximate F(s,t) by a bivariate polynomial P(s, t)
P(s,t)=s-a(t)+2 P

— a(t): univariate polynomial approximant of 1/(1 +t)
— approximation error E.gq

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 15/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider /+2P~" as the exact result of the function
F(s,t)=s/(14t)+2P"

at the points s* =2'"¢-m, and t* = m, — 1

2. Approximate F(s,t) by a bivariate polynomial P(s, t)
P(s,t)=s-a(t)+2 P

— a(t): univariate polynomial approximant of 1/(1 +t)
— approximation error E.gq

3. Evaluate P(s,t) by a well-chosen efficient evaluation program P

v=P(s", 1)
— evaluation error £,

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 15/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

One-sided approximation via bivariate polynomials
1. Consider /+2P~" as the exact result of the function
F(s,t)=s/(14t)+2P"

at the points s* =2'"¢-m, and t* = m, — 1

2. Approximate F(s,t) by a bivariate polynomial P(s, t)
P(s,t)=s-a(t)+2 P

— a(t): univariate polynomial approximant of 1/(1 +t)
— approximation error E.gq

3. Evaluate P(s,t) by a well-chosen efficient evaluation program P

v=P(s", 1)
— evaluation error £,

How to ensure that [({+27P~ 1) —v| <27P~1 2

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 15/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

m Toensure |[((+27P 1) —v|<27P!
it suffices to ensure that w1+ E, e + Eos <27P71,
since

((+27P7") = V| Sp Eupoe+ Eos~ With p=4-2%"P

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 16/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

m Toensure |[((+27P 1) —v|<27P!
it suffices to ensure that w1+ E, e + Eos <27P71,
since

((+27P7") = V| Sp Eupoe+ Eos~ With p=4-2%"P

m This gives the following sufficient conditions

Eapprox < 27'071 /‘Ll = Eeval < 27'071 — M Eapprox

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Sufficient error bounds

m Toensure |[((+27P 1) —v|<27P!
it suffices to ensure that w1+ E, e + Eos <27P71,
since

((+27P7") = V| Sp Eupoe+ Eos~ With p=4-2%"P

m This gives the following sufficient conditions

EHPPTOX S e W|th 6 < 27'071 /‘Ll = Eeval < T] == 27'071 _,u . 9

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 16/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Example for the binary32 division

m Sufficient conditions with y = 4 — 2721

Eapprox S 0 with 6< 2725/[1 and Eeval < T] = 2725 —u- 0

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

17/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Example for the binary32 division

m Sufficient conditions with y = 4 — 2721

Eapprox S 0 with 6< 2725/[1 and Eeval < T] = 2725 —u- 0

m Approximation of 1/(1 4 t) by a Remez-like polynomial of degree 10

8e-09 [q

6e-09

4e-09 | > Eapprox S 9,
2e-09 |-
0 with =322 ~6.107°
-2e-09 —
= AV AVARVARY
1 > Eeval < ni

-6e-09

Absolute approximation error

-8e-09 [1 I 1 I 1 1 1 I 1 |

0 01 02 03 04 05 06 07 08 09 with T]%7.4'1079

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 17/45

Design and implementation of floating-point operators Bivariate polynomial evaluation-based approach

Flowchart for generating efficient and certified C codes

F(s,t) E..<6 E.<y

} } }

Computation of polynomial approximant

}
?

A 4 A 4

N b op=1y o~ o—p—1
v el Gooode Certificate ¥ 1(C+27F7) —vf <27P

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 18/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
m Approximation u of £ with

(=2""°m/m,

m The exact value ¢ may have an infinite number of bits
— the sticky bit cannot always be computed

u u

|1y

el L ‘

——

floating-point midpoint

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 19/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
m Approximation u of £ with

(=2""°m/m,

m The exact value ¢ may have an infinite number of bits
— the sticky bit cannot always be computed

u u

|1y

el L ‘

——

floating-point midpoint

m Compute RN(¥) requires to be able to decide whether u > ¢
— £ cannot be a midpoint

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 19/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: definition
m Approximation u of £ with

(=2""°m/m,

m The exact value ¢ may have an infinite number of bits
— the sticky bit cannot always be computed

u u

|1y

el L ‘

——

floating-point midpoint

m Compute RN(¥) requires to be able to decide whether u > ¢
— £ cannot be a midpoint

m Rounding condition: u > /¢

u>t <— u-my221_°~mx

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 19/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic
m Rounding condition: u-m, >2'"¢.m,

m Approximation u and m,: representable with 32 bits

X my

(u-m,)

> u-my is exactly representable with 64 bits

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors ~ 20/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic

m Rounding condition: u-m, >2'"¢.m,

m Approximation u and m,: representable with 32 bits

II

'

U my]

1—

> u-my is exactly representable with 64 bits

» 2'7¢.m, is representable with 32 bits since ¢ € {0,1}

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors

20/45

Design and implementation of floating-point operators Implementation of correct rounding

Rounding condition: implementation in integer arithmetic
m Rounding condition: u-m, >2'"¢.m,

m Approximation u and m,: representable with 32 bits

Y

> u-my is exactly representable with 64 bits
» 2'7¢.m, is representable with 32 bits since ¢ € {0,1}

= one 32 x 32 — 32-bit multiplication and one comparison

Implementation of binary floating-point arithmetic on embedded integer processors ~ 20/45

Guillaume Revy — December 18t 2009.

Flowchart for generating efficient and certified C codes

F(s,t) E..<0 E.<y

} ! }

Computation of polynomial approximant

}
?

Y \ 4

C code Certificate

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 21/45

Flowchart for generating efficient and certified C codes

F(s,t) Epu<0 E.<y [ST231 features I

Computation of polynomial approximant

| oo |

Computation of low latency parenthesizations

2

Y \ 4

C code Certificate

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 21/45

Outline of the talk

2. Low latency parenthesization computation
Classical evaluation methods
Computation of all parenthesizations
Towards low evaluation latency

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 22/45

Objectives

m Compute an efficient parenthesization for evaluating P(s, t)

— reduces the evaluation latency on unbounded parallelism

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 23/45

Objectives

m Compute an efficient parenthesization for evaluating P(s, t)
— reduces the evaluation latency on unbounded parallelism

m Evaluation program P = main part of the full software implementation

— dominates the cost

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 23/45

Objectives

m Compute an efficient parenthesization for evaluating P(s, t)

— reduces the evaluation latency on unbounded parallelism

m Evaluation program P = main part of the full software implementation

— dominates the cost

m Two families of algorithms

» algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and
Stockmeyer (1964), ...

— ill-suited in the context of fixed-point arithmetic

» algorithms without coefficient adaptation

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 23/45

Objectives

m Compute an efficient parenthesization for evaluating P(s, t)

— reduces the evaluation latency on unbounded parallelism

m Evaluation program P = main part of the full software implementation

— dominates the cost

m Two families of algorithms

» algorithms with coefficient adaptation: Knuth and Eve (60’s), Paterson and
Stockmeyer (1964), ...

— ill-suited in the context of fixed-point arithmetic

» algorithms without coefficient adaptation

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 23/45

Classical parenthesizations for binary32 division
P(s,)=2"%+s-) a-t
0<i<10

m Horner's rule: (34 1) x 11 = 44 cycles

— no ILP exposure

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 24/45

Low latency parenthesization computation Classical evaluation methods

Classical parenthesizations for binary32 division
P(s,)=2"%+s-) a-t
0<i<10
m Horner's rule: (34 1) x 11 = 44 cycles

— no ILP exposure

m Second-order Horner’s rule: 27 cycles

— evaluation of odd and even parts independently with Horner, more ILP

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 24/45

Classical parenthesizations for binary32 division

P(s,)=2"%+s-) a-t
0<i<10
m Horner's rule: (34 1) x 11 = 44 cycles

— no ILP exposure

m Second-order Horner’s rule: 27 cycles

— evaluation of odd and even parts independently with Horner, more ILP

m Estrin’s method: 19 cycles
— evaluation of high and low parts in parallel, even more ILP
— distributing the multiplication by s in the evaluation of a(t) — 16 cycles

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 24/45

Classical parenthesizations for binary32 division
P(s,)=2"%+s-) a-t
0<i<10

m Horner's rule: (34 1) x 11 = 44 cycles

— no ILP exposure

m Second-order Horner’s rule: 27 cycles

— evaluation of odd and even parts independently with Horner, more ILP

m Estrin’s method: 19 cycles
— evaluation of high and low parts in parallel, even more ILP
— distributing the multiplication by s in the evaluation of a(t) — 16 cycles

We can do better.

How to explore the solution space of parenthesizations?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 24/45

Low latency parenthesization computation Computation of all parenthesizations

Algorithm for computing all parenthesizations

ax,y)=Y Y a;x-y wih n=n.+n, and a,, #0

0<i<n,0<j<ny

Example
Let a(x,y) = @+ @ X+ & y+a.-x-y. Then

a,+a,,y isavalidexpression, while - X+a,-x isnot.

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 25/45

Low latency parenthesization computation Computation of all parenthesizations

Algorithm for computing all parenthesizations

ax,y)=Y Y a;x-y wih n=n.+n, and a,, #0

0<i<n,0<j<ny

Example
Let a(x,y) = @+ @ X+ & y+a.-x-y. Then

a,+a,,y isavalidexpression, while - X+a,-x isnot.
m Exhaustive algorithm: iterative process
— step k = computation of all the valid expressions of total degree k

m 3 building rules for computing all parenthesizations

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

25/45

Low latency parenthesization computation Computation of all parenthesizations

Rules for building valid expressions

Consider step k of the algorithm
m E(): valid expressions of total degree k
m P*): powers x'y/ of total degree k = i+

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 26/45

Low latency parenthesization computation Computation of all parenthesizations

Rules for building valid expressions

Consider step k of the algorithm
m E(): valid expressions of total degree k
m P*): powers x'y/ of total degree k = i+

Rule R1 for building the powers

deg(p) = deg(p1) + deg(p2)

b1 P2
deg(py) < [k/2] [k/2] < deg(ps) <k

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 26/45

Low latency parenthesization computation Computation of all parenthesizations

Rules for building valid expressions

Consider step k of the algorithm
m E(): valid expressions of total degree k
m P*): powers x'y/ of total degree k = i+

Rule R2 for expressions by multiplications

deg(e) = deg(e’) + deg(p)

/

e P
deg(e’) < k deg(p) <k

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 26/45

Low latency parenthesization computation Computation of all parenthesizations

Rules for building valid expressions

Consider step k of the algorithm
m E(): valid expressions of total degree k
m P*): powers x'y/ of total degree k = i+

Rule R3 for expressions by additions

deg(e) = max (deg(ey), deg(ez))

€1 €2

deg(er) =k deg(es) <k

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 26/45

Low latency parenthesization computation Computation of all parenthesizations

Number of parenthesizations

ny =1 ny =2 ny =3 ny =4 ny=>5 ny =6
ny =0 1 7 163 11602 2334244 1304066578
ny =1 51 67467 1133220387 207905478247998
ny=2 67467 106191222651 10139277122276921118

Number of generated parenthesizations for evaluating a bivariate polynomial

m Timings for parenthesization computation
— for univariate polynomial of degree 5 ~ 1h on a 2.4 GHz core
— for bivariate polynomial of degree (2,1) ~ 30s
— for P(s,t) of degree (3,1) =~ 7s (88384 schemes)

m Optimization for univariate polynomial and P(s, t)
— univariate polynomial of degree 5 ~ 4min
— for P(s,t) of degree (3,1) ~ 2s (88384 schemes)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 27/45

Computation of all parenthesizations

Low latency parenthesization computation

Number of parenthesizations

le+06,

100000

10000

1000

of degree-5 pas

100

20

Latency on unbounded parallelism (# cycles)

— minimal latency for univariate polynomial of degree 5: 10 cycles
(36 schemes)

27/45

Implementation of binary floating-point arithmetic on embedded integer processors

Guillaume Revy — December 18t 20

Low latency parenthesization computation Computation of all parenthesizations

Number of parenthesizations

le+06,

100000

10000

1000

100

Number of degree-5 parenthesizations

10 I I I I
10 12 14 16 18 20

Latency on unbounded parallelism (# cycles)

— minimal latency for univariate polynomial of degree 5: 10 cycles
(36 schemes)

How to compute only parenthesizations of low latency?

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

Determination of a farget latency

m Target latency = minimal cost for evaluating

Qoo+ @n - XYY

» if no scheme satisfies T then increase T and restart

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 28/45

Determination of a farget latency

m Target latency = minimal cost for evaluating

a0,0 + anx‘ny . anyny

» if no scheme satisfies T then increase T and restart

m Static target latency Ty
» as general as evaluating ay, + x>+

Totatic = A+ M X |—|092(nx + ny +1)—‘

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 28/45

Determination of a farget latency

m Target latency = minimal cost for evaluating

a0,0 + anx‘ny . anyny

» if no scheme satisfies T then increase T and restart

m Static target latency Ty
» as general as evaluating ay, + x>+

Totatic = A+ M X |—|092(nx + ny +1)—‘

m Dynamic target latency Tyynamic

» cost of operator on a,, , and delay on intederminates
» dynamic programming

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 28/45

Determination of a farget latency

m Target latency = minimal cost for evaluating

a0,0 + anx,ny . anyny
» if no scheme satisfies T then increase T and restart
Example

m Degree-9 bivariate polynomial: n, =8 and n, =1
m Latencies: A=1and M =3
m Delay: y available 9 cycles later than x

Tstatic ‘ Tdynamic

143 x [log,(10)] = 13 cycles ‘ 16 cycles

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 28/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

(ao,o+a1,o'x+ao,1 '}/) + (31,1 'X'y)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

((ao,o+a1,o'x) +ao,1 '}/) + (31,1 'X’y>

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

<a0,07L (31,0'X+ao,1 }/)) + (31,1 'X’y>

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

(ao,o+a1,o 'X> + (30,1 'yJFam 'X'y)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

ao,0+<a1,o'X+ao,1'Y+a1,1'X'y>

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Low latency parenthesization computation Towards low evaluation latency

Optimized search of best parenthesizations

Example
Let a(x, y) be a degree-2 bivariate polynomial

a(Xay) :a0,0+a1,0'x+ao,1 ‘y+a1y1 Xy

= find a best splitting of the polynomial — low latency

Level 1

afz m/\“z...q;,—‘"

a"(z.y)

d(r,y) \if support < max
exhaustive search

Level 2

a(ay).- Swd(ay)

ajy(x,y) h
di(z,y) oy
di(r.y)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 29/45

Efficient evaluation parenthesization generation

P(s,t)=2"%+s-) gt

0<i<10

m First target latency T =13
— no parenthesization found

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 30/45

Efficient evaluation parenthesization generation

P(s,t)=2"%+s-) gt

0<i<10

m First target latency T =13
— no parenthesization found

m Second target latency T = 14
— obtained in about 10 sec.

m Classical methods
» Horner: 44 cycles,
» Estrin: 19 cycles,
» Estrin by distributing s: 16 cycles

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 30/45

Flowchart for generating efficient and certified C codes

F(s,t) Epu<0 E.<y [ST231 features I

Computation of polynomial approximant

| oo |

Computation of low latency parenthesizations

2

Y \ 4

C code Certificate

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 31/45

Flowchart for generating efficient and certified C codes

F(s,t) Epu<0 E.<y [ST231 features I

Computation of polynomial approximant

| oo |

Computation of low latency parenthesizations

Selection of effective parenthesizations

Y \ 4

C code Certificate

Guillaume Revy — December 18t 20 Implementation of binary floating-point arithmetic on embedded integer processors ~ 31/45

Outline of the talk

3. Selection of effective evaluation parenthesizations
General framework
Automatic certification of generated C codes

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 32/45

Selection of effective parenthesizations

1. Arithmetic Operator Choice

» all intermediate variables are of constant sign

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 33/45

Selection of effective parenthesizations

1. Arithmetic Operator Choice

» all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

» constraints of architecture: cost of operators, instructions bundling, ...
» delays on indeterminates

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 33/45

Selection of effective parenthesizations

1. Arithmetic Operator Choice

» all intermediate variables are of constant sign

2. Scheduling on a simplified model of the ST231

» constraints of architecture: cost of operators, instructions bundling, ...
» delays on indeterminates

3. Certification of generated C code

» straightline polynomial evaluation program
» “certified C code”: we can bound the evaluation error in integer arithmetic

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 33/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division
m Sufficient conditions with u = 4 — 2721

Eapprox S 0 with © < 2_25/‘11 and Eeval < T] = 2_25 —u- 0

8e-09 [1 > Eapprox S es

6e-09 - N

49_09/\ /\ A A with 6=3.22~6.10"°
2e-09

0

4e-09 : > Eeval <m,

-6e-09

Absolute approximation error

-8e-09 £ L L L L L L L L L -]

0 01 02 03 04 05 06 07 08 09 with ng741079

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 34/45

Selection of effective evaluation parenthesizations

Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Absolute approximation error

m Case 1: my > m, — condition satisfied
m Case 2: my, < m, — condition not satisfied: E.. >N

s* = 3.935581684112548828125 and t* = 0.97490441799163818359375

LS U s s e s m— |— -

6e-09
4e-09 /
2e-09 |-

0

-2e-09
-4e-09 -
-6e-09

8e-09 L—1—

i | | [1 -

0.965 0.97 0.975 0.98 0.985 0.99 0.995

t

Approximation error

Required bound 272°/(4 — 2721) & 8- 1072 ------
Approximation error bound =322 ~ 61072 - - - -

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors

35/45

Selection of effective evaluation parenthesizations

Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Absolute approximation error

m Case 1: my > m, — condition satisfied
m Case 2: my, < m, — condition not satisfied: E.. >N

s* = 3.935581684112548828125 and t* = 0.97490441799163818359375

LS U s s e s m— |— -

6e-09
4e-09 /
2e-09 |-

0

-2e-09
-4e-09 -
-6e-09

8e-09 L—1—

i | | [1 -

0.965 0.97 0.975 0.98 0.985 0.99 0.995

t

1. determine an interval I around this point

Approximation error

Required bound 272°/(4 —272!) ~ 8- 107 ------
Approximation error bound =322 ~ 61072 - - - -

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors ~ 35/45

Selection of effective evaluation parenthesizations

Automatic certification of generated C codes

Certification of evaluation error for binary32 division

Absolute approximation error

m Case 1: my > m, — condition satisfied
m Case 2: my, < m, — condition not satisfied: E.. >N

s* = 3.935581684112548828125 and t* = 0.97490441799163818359375

LS U s s e s m— |— -

6e-09
4e-09 /
2e-09 |-

0

-2e-09
-4e-09 -
-6e-09

8e-09 L—1—

i | | [1 -

0.965 0.97 0.975 0.98 0.985 0.99 0.995

t

1. determine an interval I around this point
compute Egpprox OVEr 1

determine an evaluation error bound 1

Eal A

check if Eqy <M ?

Approximation error

Required bound 272°/(4 —272!) ~ 8- 107 ------
Approximation error bound =322 ~ 61072 - - - -

Guillaume Revy — December 18t 2009.

Implementation of binary floating-point arithmetic on embedded integer processors ~ 35/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

m Sufficient conditions for each subinterval, with y = 4 — 272

EW <

approx —

8e-09

4e-09
2e-09

-2e-09
-4e-09

Absolute approximation error

-6e-09
-8e-09

6e-09

00 with 80 <272/, and EY <q® =272 _,.¢0)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors

36/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification of evaluation error for binary32 division

m Sufficient conditions for each subinterval, with y = 4 — 272

ED <o with 80 <25/, and EY <@ =272 _;.90)

approx —

8e-09 al

6e-09 =

sew | /\ A A
C 0 I > Eeg;))rox < e(l)

-2e-09 *\

-4e-09 =

-6e-09 - B > Eeval < n

-8e-09 | 1 I 1 I 1 I I 1 3

Absolute approximation error

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 36/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy
m Implementation of the splitting by dichotomy

» for each 7()

1. compute a certified approximation error bound o)
2. determine an evaluation error bound n(’)

; . () (i)
3. check this bound: E,; <N

= if this bound is not satisfied, 7 is split up into 2 subintervals

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 37/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy
m Implementation of the splitting by dichotomy

» for each 7()

1. compute a certified approximation error bound o)

Sollya
2. determine an evaluation error bound n(’)

Sollya
3. check this bound: E), < ()

Gappa

= if this bound is not satisfied, 7 is split up into 2 subintervals

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 37/45

Selection of effective evaluation parenthesizations Automatic certification of generated C codes

Certification using a dichotomy-based strategy
m Implementation of the splitting by dichotomy

» for each 7()

1. compute a certified approximation error bound o)

Sollya
2. determine an evaluation error bound n(’)

Sollya
3. check this bound: E), < ()

Gappa

= if this bound is not satisfied, 7 is split up into 2 subintervals

m Example of binary32 implementation

— launched on a 64 processor grid
— 36127 subintervals found in several hours (=~ 5h.)

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors 37/45

Outline of the talk

4. Numerical results

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 38/45

Performances of FLIP on ST231

100
180 |- FLIP 1.0 o FLIP 1.0 vs STIih,
N FLIP 0.3 - FLIP 1.0 vs FLIP 0.3 S
160 [STlib m—
80 1
140 - B
20 4
120 60 - b
100 1
80 - B 10 4
60 1
a0 F B 20 i
20 q
0 0

p 5 4 %
2 “ “ a

Yy “, %

Floating-point operators Floating-point operators

Performances on ST231, in RoundTiesToEven

= Speed-up between 20 and 50 %

Guillaume Revy — December 15t 200! Implementation of binary floating-point arithmetic on embedded integer processors

Numerical results

Performances of FLIP on ST231

100
180 FLIP 1.0 o FLIP 1.0 vs STIib
. FLIP (.3 o FLIP 1.0 vs FLIP 0.3 S|
160 - STlib m—
80 g
0 B
T a0t B I
g 1 S i
#0100 e g
: S0r 7 g a0t 4
g &
E 60 g
a0 F g 20 L i
2 F i
0 0

P 5 4 %
2 “ “ a

Yy “, %

Floating-point operators Floating-point operators

Performances on ST231, in RoundTiesToEven

= Speed-up between 20 and 50 %
m Implementations of other operators

1 12 18 13 14
25 29 34 40 42

Performances on ST231, in RoundTiesToEven (in number of cycles)

Guillaume Revy — December 18t 20

Implementation of binary floating-point arithmetic on embedded integer processors

Impact of dynamic target latency

X1/3 x—1/3
Degree (ny,ny) 81 (9.1)
Delay on the operand s (# cycles) 9 9
Static target latency 13 13
Dynamic target latency 16 16
Latency on unbounded parallelism and on ST231 16 16

Latency (# cycles) on unbounded parallelism and on ST231

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 40/45

Numerical results

Impact of dynamic target latency

X1/3 x—1/3
Degree (ny,ny) 81 (9.1)
Delay on the operand s (# cycles) 9 9
Static target latency 13 13
Dynamic target latency 16 16
Latency on unbounded parallelism and on ST231 16 16

Latency (# cycles) on unbounded parallelism and on ST231

— Conclude on the optimality in terms of polynomial evaluation latency

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 40/45

Numerical results

Timings for code generation

x1/2 x—1/2 x1/3 x—1/3 X1

Degree (ny,ny) (8,1) 9,1) (8,1) (9,1) (10,0)
Static target latency 13 13 13 13 13
Dynamic target latency 13 13 16 16 13
Latency on unbounded parallelism 13 13 16 16 13
Latency on ST231 13 14 16 16 13
Parenthesization generation 172ms 152ms 53s 56s 168ms
Arithmetic Operator Choice 6ms 6ms 7ms 11ms 4ms
Scheduling 29s 4m21s 32ms 132ms 7s
Certification (Gappa) 6s 4s 1m38s 1m07s 11s
Total time (~) 35s 4m25s 2m31s 2m03s [18s ‘

Timing of each step of the generation flow

41/45

f binary floating-point arithmetic on embedded integer processors

18t,

llaume Revy — December

Numerical results

Timings for code generation

x1/2 x—1/2 x1/3 x—1/3 X1
Degree (ny,ny) (8,1) 9,1) (8,1) (9,1) (10,0)
Static target latency 13 13 13 13 13
Dynamic target latency 13 13 16 16 13
Latency on unbounded parallelism 13 13 16 16 13
Latency on ST231 13 14 16 16 13
Parenthesization generation 172ms 152ms 53s 56s 168ms
Arithmetic Operator Choice 6ms 6ms 7ms 11ms 4ms
Scheduling 29s 4m21s 32ms 132ms 7s
Certification (Gappa) 6s 4s 1m38s 1m07s 11s
Total time (~) 35s 4m25s 2m31s 2m03s [18s ‘

Timing of each step of the generation flow

m Impact of the target latency on the first step of the generation

Implementation of binary floating-point arithmetic on embedded integer processors ~ 41/45

Guillaume Revy — December 18t 2

Numerical results

Timings for code generation

x1/2 x—1/2 x1/3 x—1/3 X1

Degree (ny,ny) (8,1) 9,1) (8,1) (9,1) (10,0)
Static target latency 13 13 13 13 13
Dynamic target latency 13 13 16 16 13
Latency on unbounded parallelism 13 13 16 16 13
Latency on ST231 13 14 16 16 13
Parenthesization generation 172ms 152ms 53s 56s 168ms
Arithmetic Operator Choice 6ms 6ms 7ms 11ms 4ms
Scheduling 29s 4m21s 32ms 132ms 7s
Certification (Gappa) 6s 4s 1m38s 1m07s 11s

Total time (~) 35s 4m25s 2m31s 2m03s [18s ‘

Timing of each step of the generation flow

m Impact of the target latency on the first step of the generation

m What may dominate the cost
— scheduling algorithm

— certification using Gappa
41/45

Implementation of binary floating-point arithmetic on embedded integer processors

Guillaume Revy — December 18t 2

Outline of the talk

5. Conclusions and perspectives

Guillaume Revy — December 18t 2 Implementation of binary floating-point arithmetic on embedded integer processors ~ 42/45

Conclusions

m Design and implementation of floating-point operators
» uniform approach for correctly-rounded roots and their reciprocals
» extension to correctly-rounded division

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 43/45

Conclusions

m Design and implementation of floating-point operators
» uniform approach for correctly-rounded roots and their reciprocals
» extension to correctly-rounded division

» polynomial evaluation-based method, very high ILP exposure

= new, much faster version of FLIP

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 43/45

Conclusions

m Design and implementation of floating-point operators
» uniform approach for correctly-rounded roots and their reciprocals
» extension to correctly-rounded division

» polynomial evaluation-based method, very high ILP exposure

= new, much faster version of FLIP

m Code generation for efficient and certified polynomial evaluation

» methodologies and tools for automating polynomial evaluation
implementation

» heuristics and techniques for generating quickly efficient and certified C
codes

= CGPE: allows to write and certify automatically ~ 50 % of the codes of FLIP

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 43/45

Perspectives

m Faithful implementation of floating-point operators

— other floating-point operators:
® log,(1+x) over [0.5,1), 1/v/1+ x2 over [0,0.5), ...

— roots and their reciprocals: rounding condition decision not automated yet

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 44/45

Perspectives

m Faithful implementation of floating-point operators

— other floating-point operators:
® log,(1+x) over [0.5,1), 1/v/1+ x2 over [0,0.5), ...

— roots and their reciprocals: rounding condition decision not automated yet

m Extension to other binary floating-point formats

— square root in binary64: 171 cycles on ST231, 396 cycles with STlib

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 44/45

Perspectives

m Faithful implementation of floating-point operators

— other floating-point operators:
® log,(1+x) over [0.5,1), 1/v/1+ x2 over [0,0.5), ...

— roots and their reciprocals: rounding condition decision not automated yet

m Extension to other binary floating-point formats

— square root in binary64: 171 cycles on ST231, 396 cycles with STlib

m Extension to other architectures, typically FPGAs

— polynomial evaluation-based approach: already seems to be a good
alternative to multiplicative methods on FPGAs

— the other techniques introduced of this thesis: should be investigated further

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 44/45

Conclusions and perspectives Perspectives

Implementation of binary floating-point arithmetic
on embedded integer processors

Polynomial evaluation-based algorithms
and
certified code generation

Guillaume Revy
Advisors: Claude-Pierre Jeannerod and Gilles Villard

Arénaire INRIA project-team (LIP, Ens Lyon) Université de Lyon =~ CNRS

= BIINRIA lip il ® @

Ph.D. Defense — December 1%, 2009

Guillaume Revy — December 15t 2009. Implementation of binary floating-point arithmetic on embedded integer processors ~ 45/45

	Ph.D. Defense - 1st December, 2009
	Design and implementation of floating-point operators
	Bivariate polynomial evaluation-based approach
	Implementation of correct rounding

	Low latency parenthesization computation
	Classical evaluation methods
	Computation of all parenthesizations
	Towards low evaluation latency

	Selection of effective evaluation parenthesizations
	General framework
	Automatic certification of generated C codes

	Numerical results
	Conclusions and perspectives
	
	

