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Context and objectives

Context
I FLIP library development
I software implementation of binary floating-point division

→ targets a VLIW integer processor of the ST200 family

I precision p, register size k, extremal exponents (emin, emax)
→ 2 ≤ p ≤ emax and emin = 1− emax

I description of the algorithm in terms of the parameters (k,p,emax)

I implementation for the binary32 format ⇒ (k,p,emax) = (32,24,127)

I no support of subnormal numbers
→ input/output: ±0, ±∞, qNaN, sNaN or normal binary floating-point number

Objectives

I faster software implementation

I correct rounding-to-nearest-even (RNp)
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Properties and division algorithm

Floating-point data encoding

Definition
Let x be a floating-point datum. Since subnormal numbers are not supported,
x is:

I either a special datum: ±0, ±∞, sNaN or qNaN,
I or a normal binary floating-point number

x = (−1)sx ·mx · 2ex ,

with sx ∈ {0, 1}, mx = 1.mx,1 . . . mx,p−1 ∈ [1, 2) and ex ∈ {emin, . . . , emax}.

Binary interchange encoding
Let X be the k-bit unsigned integer encoding of x: X =

Pk−1
i=0 Xi · 2i.

p− 1 bits

mx − 1 = 0.mx,1 . . . mx,p−1Ex = ex + e
max

k − p bits1 bit

sx

⇒ Ex =
Pw−1

i=0 Xi+p−1 · 2i and Xi = mx,p−1−i for i = 0, . . . , p− 1.
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Properties and division algorithm

IEEE 754 specification

Let x, y be two binary floating-point data:

x/y = (−1)sr · |x|/|y|,

with sr = sx XOR sy.

|x|/|y| |y|
+0 normal +∞ NaN

|x|

+0 qNaN +0 +0 qNaN
normal +∞

RNp(

|x|/|y|

)

+0 qNaN
+∞ +∞ +∞ qNaN qNaN
NaN qNaN qNaN qNaN qNaN

Special values for

RNp(

|x|/|y|

)

.

⇒ since RNp(−r) = −RNp(r), for non special inputs:

RNp(x/y) = (−1)sr · RNp(|x|/|y|).
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Properties and division algorithm

Efficient special input handling

Let X and Y the unsigned integers encoding |x| and |y|. How to detect if |x|
or |y| is a special input ?

Solution 1 X == 0 or X ≥ 2k−1 − 2p−1

Solution 2 integer addition modulo 2k / 2’s complement representation

Value or range of integer X Floating-point datum x

0 +0

[2p−1, 2k−1 − 2p−1) positive normal number

2k−1 − 2p−1 +∞

(2k−1 − 2p−1, 2k−1 − 2p−2) sNaN

[2k−1 − 2p−2, 2k−1) qNaN

Floating-point data encoded by X.
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Properties and division algorithm

Efficient special input handling

|x|/|y| |y|
+0 normal +∞ NaN

|x|

+0 qNaN +0 +0 qNaN
normal +∞ RNp(|x|/|y|) +0 qNaN
+∞ +∞ +∞ qNaN qNaN
NaN qNaN qNaN qNaN qNaN

Special values for RNp(|x|/|y|).

Let X and Y the unsigned integers encoding |x| and |y|.

⇒ if max(X − 1, Y − 1) ≥ 2k−1 − 2p−1 − 1

I if
`
X == Y OR max(X, Y) > 2k−1 − 2p−1)→ qNaN

I if
`
X < 2k−1 − 2p−1 AND Y 6= 0

´
→±0

I else→ ±∞
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Properties and division algorithm

General division algorithm

Let x, y be two positive binary floating-point numbers. Then

x/y = mx/my × 2ex−ey ,

that is, assuming c = [mx ≥ my]

x/y =
`
2mx/my · 2−c´× 2ex−ey−1+c,

with ` = (2mx/my · 2−c) = `0.`1`2 . . . `p`p+1 . . . and d = ex − ey − 1 + c.

Property 1
If mx ≥ my then ` ∈ [1, 2− 21−p] else ` ∈ (1, 2− 21−p).

x/y = `× 2d ⇒ RNp (x/y) = RNp(`)× 2d, with RNp (`) ∈ [1, 2− 21−p].

Remark: the computation of the result exponent d is trivial.
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Properties and division algorithm

Underflow / Overflow detection

Since RNp (`) ∈ [1, 2− 21−p] ⇒ no result exponent update is required

I Overflow: if d ≥ emax + 1 → +∞
I Underflow: if d ≤ emin − 1 → +0

⇒ exception: if (1− 2−p) · 2emin ≤ x/y < 2emin

I “as if subnormals were supported”→ RNp (x/y) = 2emin

Property 2
One has (1− 2−p) · 2emin ≤ x/y < 2emin if and only if d = emin − 1 and
mx = 2− 21−p and my = 1.

⇒ early detection
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Properties and division algorithm

How to compute a correctly rounded significand ?
M.D. Ercegovac & T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ` from above, such that

|(` + 2−p−1)− v| < 2−p−1,

with v = 01.v1v2 . . . vk−2.

⇒ w = v truncated after p bits

w = 01.v1v2 . . . vp00 . . . 00 and −2−p < `− w < 2−p.

Property 3
The value ` = 2mx/my · 2−c cannot be halfway between two normal binary
floating-point numbers.

w ww

ℓ ℓ

⇒ implementation of the test w ≥ `: w ×my ≥ 2mx · 2−c
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Sufficient conditions to ensure correct rounding

General principle
C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that |(` + 2−p−1)− v| < 2−p−1.

⇒ ` + 2−p−1 = exact result of F : (s, t) 7→ 2−p−1 + s/(1 + t) at the point

(s∗, t∗) = (2mx · 2−c, my − 1),

with s∗ ∈ S = [1, 2− 21−p] ∪ [2, 4− 23−p] and t∗ ∈ T = [0, 1− 21−p].

⇒ approximation of F by a suitable bivariate polynomial P over S × T :

P (s, t) = 2−p−1 + s · a(t).

I evaluation at run-time: smallest degree for polynomial a

⇒ evaluate P with an accurately enough evaluation program P
I v = P(s∗, t∗)
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Sufficient conditions to ensure correct rounding

Approximation and rounding error conditions
C.P. Jeannerod, H. Knochel, C. Monat & G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let α(a) and ρ(P) be the approximation and rounding errors:

α(a) = max
t∈T

|1/(1 + t)− a(t)| and ρ(P) = max
(s,t)∈S×T

|P(s, t)− P(s, t)|.

We can check that

|(` + 2−p−1)− v| ≤ (4− 23−p)α(a) + ρ(P)

Property 4
If (4− 23−p)α(a) + ρ(P) < 2−p−1 then |(` + 2−p−1)− v| < 2−p−1.

Since ρ(P) > 0, the approximation error α(a) must satisfy

(4− 23−p)α(a) < 2−p−1 i.e. α(a) < 2−p−1/(4− 23−p).

Finally, the rounding error ρ(P) must satisfy

ρ(P) < 2−p−1 − (4− 23−p)α(a).
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Sufficient conditions to ensure correct rounding

Example for the binary32 implementation

Example

I polynomial degree δ = 10

I truncated Remez’ polynomial / 32-bit coefficients

I α(a) ≤ θ0 = 3 · 2−29 ≈ 2−27.41

I ρ(P) < η0 = 2−25 − (4− 2−21) · θ0 ≈ 2−26.9999 → checked with Gappa ?

⇒ the condition is not satisfied, particularly when mx < my

s∗ = 3.935581684112548828125 and t∗ = 0.97490441799163818359375

→ ρ(P) = 2−26.9988
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Sufficient conditions to ensure correct rounding

Subdomain-based error conditions

⇒ splitting T into n subintervals: T =
Sn

i=1 T
(i)

⇒ check that, for each subinterval T (i),

(4− 23−p) · α(i)(a) + ρ(i)(P) < 2−p−1.
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Sufficient conditions to ensure correct rounding

Implementation steps

1. determine minimal degree δ for polynomial a

2. compute a polynomial a that satisfies α(a) < 2−p−1/(4− 23−p)

3. find in an automatic way an efficient evaluation code P

4. validate automatically the resulting evaluation program P
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Generation and validation of efficient evaluation codes

Description of the problem

Goal
Produce/validate automatically an efficient evaluation program P.

I target features:
→ 4 issues and at most 2 mul./cycle
→ latencies: addition = 1 cycle / multiplication = 3 cycles

I Horner’s scheme: (3 + 1)× 11 = 44 cycles
→ sequential scheme
→ no ILP exposure

⇒ efficient = reduction of the evaluation latency / nb. of multiplications

⇒ express more ILP
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Generation and validation of efficient evaluation codes

Description of the problem

Data implementation

I fixed-point evaluation program: V = div eval(S, T ), with

s∗ = S · 2−30, t∗ = T · 2−32 and v = V · 2−30

with S and T computed from inputs X and Y respectively.

I implementation of polynomial coefficients in absolute value

a(t) =
10X

i=0

ait
i with ai = (−1) ·Ai · 2−32 ∈ (−1, 1).

⇒ the sign is not stored→ appropriate choice of arithmetic operators

I implementation using only positive intermediate variables
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Generation and validation of efficient evaluation codes

Evaluation tree generation
J. Harrison, T. Kubaska, S. Story & P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

I Requirement / Assumption:
→ operator cost: mul. = 3 cycles / add. = 1 cycle
→ delay between S and T

→ unbounded parallelism

I Two substeps:

1. determine a target latency τ

2. generate automatically a set of evaluation trees, with height ≤ τ

⇒ number of evaluation trees = extremely large → several filters

⇒ if no tree satisfies τ then increase τ and restart
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Generation and validation of efficient evaluation codes

Example for the binary32 implementation

S

A0

T A1

r0

r1

r2

r3

T T

r4

r5

A2

T A3

r6

r8

r4 r5

r10

A4

T A5

r11

r12

r4

A6

T A7

r13

r14

r15

r16

r10

r4 r4

r19

T A9

r20

r21

r4 A10

r22

r23

r24

r25

V

r18

0x20

S A8

r17

r7

r9

addition (1 cycle)

multiplication (3 cycles)

14 cycles
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Generation and validation of efficient evaluation codes

Arithmetic operator choice

Second step: handle coefficient signs through an appropriate arithmetic
operator choice

I label evaluation tree by appropriate arithmetic operator: + or −

I polynomial coefficients are implemented in absolute value

I for example, a0 > 0 and a1 < 0

⇒ a0 − |a1|t instead of a0 + a1t

I ensure that all intermediate values have constant sign

⇒ if the sign of an intermediate value changes when the input varies then
the evaluation tree is rejected

⇒ implementation with MPFI
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Generation and validation of efficient evaluation codes

Example for the binary32 implementation

addition (1 cycle)

S

A0

T A1

r0

r1

r2

r3

T T

r4

r5

A2

T A3

r6

r8

r4 r5

r10

A4

T A5

r11

r12

r4

A6

T A7

r13

r14

r15

r16

r10

r4 r4

r19

T A9

r20

r21

r4 A10

r22

r23

r24

r25

V

r18

0x20

S A8

r17

r7

r9

multiplication (3 cycles)

(1 cycle)

subtraction
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Generation and validation of efficient evaluation codes

Scheduling verification
J. Harrison, T. Kubaska, S. Story & P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

Third step: check the practical scheduling

I schedule the evaluation tree on a simplified model of a real target
architecture (operator costs / nb. issues / constraints on operators)

I check if no increase of latency

⇒ if practical latency > theoretical latency then the evaluation tree is
rejected

⇒ implementation using a naive list scheduling algorithm
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Generation and validation of efficient evaluation codes

Example for the binary32 implementation

Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r0 r4

Cycle 1 r6 r13

Cycle 2 r11 r20

Cycle 3 r1 r5 r22

Cycle 4 r2 r14 r19

Cycle 5 r12 r15 r21

Cycle 6 r7 r10 r23

Cycle 7 r3 r8 r24

Cycle 8 r16

Cycle 9 r17

Cycle 10 r9 r25

Cycle 11
Cycle 12 r18

Cycle 13 V

Feasible scheduling on ST231.

⇒ 3 issues are enough

Demo
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Generation and validation of efficient evaluation codes

Evaluation program validation strategy

Objective
Find a splitting of T into n subinterval(s) T (i), and check that

(4− 23−p) · α(i)(a) + ρ(i)(P) < 2−p−1 for i ∈ {1, . . . , n}.

I implementation of the splitting by dichotomy

I for each T (i)

1. compute an approximation error bound α(i) with Sollya

2. determine an evaluation error bound for ρ(P)

3. check this bound with Gappa

⇒ if this bound is not satisfied, T (i) is split up into 2 subintervals

I launched on the LIP “grid”
I ≈ 5 hours / 36127 subintervals found
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Generation and validation of efficient evaluation codes

Evaluation program validation strategy

∗ Does the condition

(4− 23−p) · α(i)(a) + ρ(i)(P) < 2−p−1

hold for i ∈ {1, . . . , n} ?

Depth Subintervals α(·)(a) ≤ ρ(·)(P) < *

1 I1,1 = [2−23, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

2
I2,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

I2,2 = [0.5, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

· · ·

j

Ij,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

Ij,2 = [0.5, 0.75 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 yes

Ij,19309 = [0.921875, 0.92578113079071044921875] θ3 ≈ 2−27.44 η3 ≈ 2−26.90 yes

Ij,19533 = [0.97490406036376953125, 0.97490441799163818359375] θ4 ≈ 2−27.49 η4 ≈ 2−26.77 yes

Splitting steps when mx < my.
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Experimental results

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion
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Experimental results

Validation and performance evaluation

I Validation of the complete code:

→ the Extremal Rounding Tests Set (D.W. Matula)

→ TestFloat package

→ exhaustive tests on mantissa (with fixed result exponent)

I Performances evaluation on ST231 architecture

→ VLIW integer processor of ST200 family
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Experimental results

Performances on ST231

Nb. of instructions Latency IPC Code size
87 27 cycles 87/27 ≈ 3.22 424 bytes

I if-conversion mechanism: fully straight-line assembly (branch-free)

I high IPC value: confirms the parallel nature of our approach

I 87 instructions: latency ≥ 1 (slct/return) + d85 instr./4 issuese = 23

I speed-up by a factor of ≈ 1.78 compared to the previous implementation
(48 cycles)
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Current work and conclusion

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion
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Current work and conclusion

Implementation of subnormal numbers support

I the exact result x/y can be halfway between two consecutive subnormal
binary floating-point numbers
→ the implementation of rounding test (w ≥ `) is more complicated

I no need to detect underflow a priori
→ directly detect through the rounding algorithm

I same principle / same polynomial evaluation
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Current work and conclusion

Future work and conclusion

I implementation of other rounding modes, with and without subnormal
numbers support

I algorithmics of exception handling (inexact, division by zero,...)

→ full IEEE 754-2008 compliance
→ what is the overhead ?

I development of a binary floating-point division generator (already exists
for square root)

→ automatic generation of division in other formats

→ validation of our approach

I acceleration of the validation of the resulting evaluation code
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