A new binary floating-point division algorithm and its implementation in software

Guillaume Revy
joint work with C.-P. Jeannerod, H. Knochel, C. Monat and G. Villard

Arénaire Inria Rhône-Alpes - project team
Laboratoire de l'Informatique du Parallélisme - ENS Lyon

Groupe de travail Arénaire (LIP - ENS Lyon)
Lyon - November 21, 2008

$\alpha i p$

Context and objectives

Context

- FLIP library development
- software implementation of binary floating-point division
\rightarrow targets a VLIW integer processor of the ST200 family
- precision p, register size k, extremal exponents $\left(e_{\min }, e_{\max }\right)$
$\rightarrow 2 \leq p \leq e_{\max }$ and $e_{\text {min }}=1-e_{\max }$
- description of the algorithm in terms of the parameters ($k, p, e_{\max }$)
- implementation for the binary32 format $\Rightarrow\left(k, p, e_{\text {max }}\right)=(32,24,127)$
- no support of subnormal numbers
\rightarrow input/output: $\pm 0, \pm \infty$, qNaN, sNaN or normal binary floating-point number
Objectives
- faster software implementation
- correct rounding-to-nearest-even $\left(\mathrm{RN}_{p}\right)$

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Floating-point data encoding

Definition

Let x be a floating-point datum. Since subnormal numbers are not supported, x is:

- either a special datum: $\pm 0, \pm \infty$, sNaN or $q \mathrm{NaN}$,
- or a normal binary floating-point number

$$
\begin{gathered}
x=(-1)^{s_{x}} \cdot m_{x} \cdot 2^{e_{x}} \\
\text { with } s_{x} \in\{0,1\}, m_{x}=1 . m_{x, 1} \ldots m_{x, p-1} \in[1,2) \text { and } e_{x} \in\left\{e_{\min }, \ldots, e_{\max }\right\} .
\end{gathered}
$$

Floating-point data encoding

Definition

Let x be a floating-point datum. Since subnormal numbers are not supported, x is:

- either a special datum: $\pm 0, \pm \infty$, sNaN or $q \mathrm{NaN}$,
- or a normal binary floating-point number

$$
\begin{gathered}
x=(-1)^{s_{x}} \cdot m_{x} \cdot 2^{e_{x}} \\
\text { with } s_{x} \in\{0,1\}, m_{x}=1 . m_{x, 1} \ldots m_{x, p-1} \in[1,2) \text { and } e_{x} \in\left\{e_{\min }, \ldots, e_{\max }\right\} .
\end{gathered}
$$

Binary interchange encoding

Let X be the k-bit unsigned integer encoding of $x: X=\sum_{i=0}^{k-1} X_{i} \cdot 2^{i}$.

$$
\begin{aligned}
& \underset{1 \text { bit }}{\stackrel{s_{x}}{\leftrightarrows}} \underset{k-p \text { bits }}{E_{x}=e_{x}+e_{\text {max }}} \underset{p-1 \text { bits }}{\longleftrightarrow} \\
& \Rightarrow E_{x}=\sum_{i=0}^{w-1} X_{i+p-1} \cdot 2^{i} \text { and } X_{i}=m_{x, p-1-i} \text { for } i=0, \ldots, p-1 \text {. }
\end{aligned}
$$

IEEE 754 specification

Let x, y be two binary floating-point data:

$$
x / y=(-1)^{s_{r}} \cdot|x| /|y|
$$

with $s_{r}=s_{x}$ XOR s_{y}.

$\|x\| /\|y\|$ $\|y\|$ +0 normal $+\infty$ NaN $\|x\|$ +0 qNaN +0 +0 qNaN normal $+\infty$ $\|x\| /\|y\|$ +0 qNaN $+\infty$ $+\infty$ $+\infty$ qNaN qNaN NaN qNaN qNaN qNaN qNaN								
Special values for							$\|x\| / y \mid$	

IEEE 754 specification

Let x, y be two binary floating-point data:

$$
x / y=(-1)^{s_{r}} \cdot|x| /|y|,
$$

with $s_{r}=s_{x}$ XOR s_{y}.

$\|x\| /\|y\|$		$\|y\|$				
	+0	normal	$+\infty$	NaN		
$\|x\|$	+0	qNaN	+0	+0	qNaN	
	normal	$+\infty$	$\mathrm{RN}_{p}(\|x\| /\|y\|)$	+0	qNaN	
	$+\infty$	$+\infty$	$+\infty$	qNaN	qNaN	
	NaN	qNaN	qNaN	qNaN	qNaN	
	Special values for $\mathrm{RN}_{p}(\|x\| /\|y\|)$					

\Rightarrow since $\mathrm{RN}_{p}(-r)=-\mathrm{RN}_{p}(r)$, for non special inputs:

$$
\mathrm{RN}_{p}(x / y)=(-1)^{s_{r}} \cdot \mathrm{RN}_{p}(|x| /|y|)
$$

Efficient special input handling

Let X and Y the unsigned integers encoding $|x|$ and $|y|$. How to detect if $|x|$ or $|y|$ is a special input?

Solution $1 \quad X==0$ or $X \geq 2^{k-1}-2^{p-1}$

Value or range of integer X	Floating-point datum x
0	+0
$\left[2^{p-1}, 2^{k-1}-2^{p-1}\right)$	positive normal number
$2^{k-1}-2^{p-1}$	$+\infty$
$\left(2^{k-1}-2^{p-1}, 2^{k-1}-2^{p-2}\right)$	sNaN
$\left[2^{k-1}-2^{p-2}, 2^{k-1}\right)$	qNaN

Floating-point data encoded by X.

Efficient special input handling

Let X and Y the unsigned integers encoding $|x|$ and $|y|$. How to detect if $|x|$ or $|y|$ is a special input?

Solution $1 X==0$ or $X \geq 2^{k-1}-2^{p-1}$
Solution 2 integer addition modulo $2^{k} / 2^{\prime}$ s complement representation

X

Efficient special input handling

Let X and Y the unsigned integers encoding $|x|$ and $|y|$. How to detect if $|x|$ or $|y|$ is a special input?

Solution $1 X==0$ or $X \geq 2^{k-1}-2^{p-1}$
Solution 2 integer addition modulo $2^{k} / 2$'s complement representation

Efficient special input handling

Let X and Y the unsigned integers encoding $|x|$ and $|y|$. How to detect if $|x|$ or $|y|$ is a special input?

Solution $1 \quad X==0$ or $X \geq 2^{k-1}-2^{p-1}$
Solution 2 integer addition modulo $2^{k} / 2$'s complement representation

Efficient special input handling

$\|x\| /\|y\|$		$\|y\|$				
	+0	normal	$+\infty$	NaN		
$\|x\|$	+0	qNaN	+0	+0	qNaN	
	normal	$+\infty$	$\mathrm{RN}_{p}(\|x\| /\|y\|)$	+0	qNaN	
	$+\infty$	$+\infty$	$+\infty$	qNaN	qNaN	
	NaN	qNaN	qNaN	qNaN	qNaN	
	Special values for $\mathrm{RN}_{p}(\|x\| /\|y\|)$					

Let X and Y the unsigned integers encoding $|x|$ and $|y|$.

$$
\Rightarrow \text { if } \max (X-1, Y-1) \geq 2^{k-1}-2^{p-1}-1
$$

- if $\left(X==Y\right.$ OR max $\left.(X, Y)>2^{k-1}-2^{p-1}\right) \rightarrow \mathrm{qNaN}$
- if $\left(X<2^{k-1}-2^{p-1}\right.$ AND $\left.Y \neq 0\right) \rightarrow \pm 0$
- else $\rightarrow \pm \infty$

General division algorithm

Let x, y be two positive binary floating-point numbers. Then

$$
x / y=m_{x} / m_{y} \times 2^{e_{x}-e_{y}}
$$

that is, assuming $c=\left[m_{x} \geq m_{y}\right]$

$$
x / y=\left(2 m_{x} / m_{y} \cdot 2^{-c}\right) \times 2^{e_{x}-e_{y}-1+c}
$$

with $\ell=\left(2 m_{x} / m_{y} \cdot 2^{-c}\right)=\ell_{0} \cdot \ell_{1} \ell_{2} \ldots \ell_{p} \ell_{p+1} \ldots$ and $d=e_{x}-e_{y}-1+c$.

General division algorithm

Let x, y be two positive binary floating-point numbers. Then

$$
x / y=m_{x} / m_{y} \times 2^{e_{x}-e_{y}}
$$

that is, assuming $c=\left[m_{x} \geq m_{y}\right]$

$$
x / y=\left(2 m_{x} / m_{y} \cdot 2^{-c}\right) \times 2^{e_{x}-e_{y}-1+c}
$$

with $\ell=\left(2 m_{x} / m_{y} \cdot 2^{-c}\right)=\ell_{0} \cdot \ell_{1} \ell_{2} \ldots \ell_{p} \ell_{p+1} \ldots$ and $d=e_{x}-e_{y}-1+c$.

Property 1

If $m_{x} \geq m_{y}$ then $\ell \in\left[1,2-2^{1-p}\right]$ else $\ell \in\left(1,2-2^{1-p}\right)$.

$$
x / y=\ell \times 2^{d} \Rightarrow \mathrm{RN}_{p}(x / y)=\mathrm{RN}_{p}(\ell) \times 2^{d} \text {, with } \quad \mathrm{RN}_{p}(\ell) \in\left[1,2-2^{1-p}\right]
$$

Remark: the computation of the result exponent d is trivial.

Underflow / Overflow detection

Since $\mathrm{RN}_{p}(\ell) \in\left[1,2-2^{1-p}\right] \Rightarrow$ no result exponent update is required

- Overflow: if $d \geq e_{\max }+1 \rightarrow+\infty$
- Underflow: if $d \leq e_{\text {min }}-1 \rightarrow+0$

Underflow / Overflow detection

Since $\mathrm{RN}_{p}(\ell) \in\left[1,2-2^{1-p}\right] \Rightarrow$ no result exponent update is required

- Overflow: if $d \geq e_{\max }+1 \rightarrow+\infty$
- Underflow: if $d \leq e_{\min }-1 \rightarrow+0$
\Rightarrow exception: if $\left(1-2^{-p}\right) \cdot 2^{e_{\text {min }}} \leq x / y<2^{e_{\text {min }}}$
- "as if subnormals were supported" $\rightarrow \mathrm{RN}_{p}(x / y)=2^{e_{\text {min }}}$

Underflow / Overflow detection

Since $\mathrm{RN}_{p}(\ell) \in\left[1,2-2^{1-p}\right] \Rightarrow$ no result exponent update is required

- Overflow: if $d \geq e_{\max }+1 \rightarrow+\infty$
- Underflow: if $d \leq e_{\text {min }}-1 \rightarrow+0$
\Rightarrow exception: if $\left(1-2^{-p}\right) \cdot 2^{e_{\text {min }}} \leq x / y<2^{e_{\text {min }}}$
- "as if subnormals were supported" $\rightarrow \mathrm{RN}_{p}(x / y)=2^{e_{\text {min }}}$

Property 2

One has $\left(1-2^{-p}\right) \cdot 2^{e_{\text {min }}} \leq x / y<2^{e_{\text {min }}}$ if and only if $d=e_{\text {min }}-1$ and $m_{x}=2-2^{1-p}$ and $m_{y}=1$.
\Rightarrow early detection

How to compute a correctly rounded significand?

M.D. Ercegovac \& T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ℓ from above, such that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}
$$

with $v=01 . v_{1} v_{2} \ldots v_{k-2}$.

How to compute a correctly rounded significand?

M.D. Ercegovac \& T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ℓ from above, such that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}
$$

with $v=01 . v_{1} v_{2} \ldots v_{k-2}$.
$\Rightarrow w=v$ truncated after p bits

$$
w=01 . v_{1} v_{2} \ldots v_{p} 00 \ldots 00 \quad \text { and } \quad-2^{-p}<\ell-w<2^{-p}
$$

How to compute a correctly rounded significand?

M.D. Ercegovac \& T. Lang, Digital Arithmetic, 2004.

Let v be a value that approximates ℓ from above, such that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}
$$

with $v=01 . v_{1} v_{2} \ldots v_{k-2}$.
$\Rightarrow w=v$ truncated after p bits

$$
w=01 . v_{1} v_{2} \ldots v_{p} 00 \ldots 00 \quad \text { and } \quad-2^{-p}<\ell-w<2^{-p}
$$

Property 3

The value $\ell=2 m_{x} / m_{y} \cdot 2^{-c}$ cannot be halfway between two normal binary floating-point numbers.

\Rightarrow implementation of the test $w \geq \ell: w \times m_{y} \geq 2 m_{x} \cdot 2^{-c}$

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

General principle

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$.

$$
\Rightarrow \ell+2^{-p-1}=\text { exact result of } F:(s, t) \mapsto 2^{-p-1}+s /(1+t) \text { at the point }
$$

$$
\left(s^{*}, t^{*}\right)=\left(2 m_{x} \cdot 2^{-c}, m_{y}-1\right)
$$

$$
\text { with } s^{*} \in \mathcal{S}=\left[1,2-2^{1-p}\right] \cup\left[2,4-2^{3-p}\right] \text { and } t^{*} \in \mathcal{T}=\left[0,1-2^{1-p}\right]
$$

General principle

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$.
$\Rightarrow \ell+2^{-p-1}=$ exact result of $F:(s, t) \mapsto 2^{-p-1}+s /(1+t)$ at the point

$$
\begin{gathered}
\left(s^{*}, t^{*}\right)=\left(2 m_{x} \cdot 2^{-c}, m_{y}-1\right), \\
\text { with } s^{*} \in \mathcal{S}=\left[1,2-2^{1-p}\right] \cup\left[2,4-2^{3-p}\right] \text { and } t^{*} \in \mathcal{T}=\left[0,1-2^{1-p}\right] .
\end{gathered}
$$

\Rightarrow approximation of F by a suitable bivariate polynomial P over $\mathcal{S} \times \mathcal{T}$:

$$
P(s, t)=2^{-p-1}+s \cdot a(t) .
$$

- evaluation at run-time: smallest degree for polynomial a

General principle

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Goal
Computation of the value v such that $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$.
$\Rightarrow \ell+2^{-p-1}=$ exact result of $F:(s, t) \mapsto 2^{-p-1}+s /(1+t)$ at the point

$$
\begin{gathered}
\left(s^{*}, t^{*}\right)=\left(2 m_{x} \cdot 2^{-c}, m_{y}-1\right) \\
\text { with } s^{*} \in \mathcal{S}=\left[1,2-2^{1-p}\right] \cup\left[2,4-2^{3-p}\right] \text { and } t^{*} \in \mathcal{T}=\left[0,1-2^{1-p}\right] .
\end{gathered}
$$

\Rightarrow approximation of F by a suitable bivariate polynomial P over $\mathcal{S} \times \mathcal{T}$:

$$
P(s, t)=2^{-p-1}+s \cdot a(t)
$$

- evaluation at run-time: smallest degree for polynomial a
\Rightarrow evaluate P with an accurately enough evaluation program \mathcal{P}
- $v=\mathcal{P}\left(s^{*}, t^{*}\right)$

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let $\alpha(a)$ and $\rho(\mathcal{P})$ be the approximation and rounding errors:
$\alpha(a)=\max _{t \in \mathcal{T}}|1 /(1+t)-a(t)| \quad$ and $\quad \rho(\mathcal{P})=\max _{(s, t) \in \mathcal{S} \times \mathcal{T}}|P(s, t)-\mathcal{P}(s, t)|$.

We can check that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq\left(4-2^{3-p}\right) \alpha(a)+\rho(\mathcal{P})
$$

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let $\alpha(a)$ and $\rho(\mathcal{P})$ be the approximation and rounding errors:
$\alpha(a)=\max _{t \in \mathcal{T}}|1 /(1+t)-a(t)| \quad$ and $\quad \rho(\mathcal{P})=\max _{(s, t) \in \mathcal{S} \times \mathcal{T}}|P(s, t)-\mathcal{P}(s, t)|$.

We can check that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq\left(4-2^{3-p}\right) \alpha(a)+\rho(\mathcal{P})
$$

Property 4
If $\left(4-2^{3-p}\right) \alpha(a)+\rho(\mathcal{P})<2^{-p-1}$ then $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$.

Approximation and rounding error conditions

C.P. Jeannerod, H. Knochel, C. Monat \& G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2008.

Let $\alpha(a)$ and $\rho(\mathcal{P})$ be the approximation and rounding errors:
$\alpha(a)=\max _{t \in \mathcal{T}}|1 /(1+t)-a(t)| \quad$ and $\quad \rho(\mathcal{P})=\max _{(s, t) \in \mathcal{S} \times \mathcal{T}}|P(s, t)-\mathcal{P}(s, t)|$.

We can check that

$$
\left|\left(\ell+2^{-p-1}\right)-v\right| \leq\left(4-2^{3-p}\right) \alpha(a)+\rho(\mathcal{P})
$$

Property 4
If $\left(4-2^{3-p}\right) \alpha(a)+\rho(\mathcal{P})<2^{-p-1}$ then $\left|\left(\ell+2^{-p-1}\right)-v\right|<2^{-p-1}$.
Since $\rho(\mathcal{P})>0$, the approximation error $\alpha(a)$ must satisfy

$$
\left(4-2^{3-p}\right) \alpha(a)<2^{-p-1} \quad \text { i.e. } \quad \alpha(a)<2^{-p-1} /\left(4-2^{3-p}\right) .
$$

Finally, the rounding error $\rho(\mathcal{P})$ must satisfy

$$
\rho(\mathcal{P})<2^{-p-1}-\left(4-2^{3-p}\right) \alpha(a) .
$$

Example for the binary32 implementation

Example

- polynomial degree $\delta=10$
- truncated Remez' polynomial / 32-bit coefficients
- $\alpha(a) \leq \theta_{0}=3 \cdot 2^{-29} \approx 2^{-27.41}$
- $\rho(\mathcal{P})<\eta_{0}=2^{-25}-\left(4-2^{-21}\right) \cdot \theta_{0} \approx 2^{-26.9999} \rightarrow$ checked with Gappa?

Example for the binary32 implementation

Example

- polynomial degree $\delta=10$
- truncated Remez' polynomial / 32-bit coefficients
- $\alpha(a) \leq \theta_{0}=3 \cdot 2^{-29} \approx 2^{-27.41}$
- $\rho(\mathcal{P})<\eta_{0}=2^{-25}-\left(4-2^{-21}\right) \cdot \theta_{0} \approx 2^{-26.9999} \rightarrow$ checked with Gappa ?
\Rightarrow the condition is not satisfied, particularly when $m_{x}<m_{y}$

$$
\begin{gathered}
s^{*}=3.935581684112548828125 \text { and } t^{*}=0.97490441799163818359375 \\
\rightarrow \quad \rho(\mathcal{P})=2^{-26.9988}
\end{gathered}
$$

Subdomain-based error conditions

\Rightarrow splitting \mathcal{T} into n subintervals: $\mathcal{T}=\bigcup_{i=1}^{n} \mathcal{T}^{(i)}$
\Rightarrow check that, for each subinterval $\mathcal{T}^{(i)}$,

$$
\left(4-2^{3-p}\right) \cdot \alpha^{(i)}(a)+\rho^{(i)}(\mathcal{P})<2^{-p-1} .
$$

Implementation steps

1. determine minimal degree δ for polynomial a
2. compute a polynomial a that satisfies $\alpha(a)<2^{-p-1} /\left(4-2^{3-p}\right)$
3. find in an automatic way an efficient evaluation code \mathcal{P}
4. validate automatically the resulting evaluation program \mathcal{P}

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Description of the problem

Goal

Produce/validate automatically an efficient evaluation program \mathcal{P}.

- target features:
$\rightarrow 4$ issues and at most 2 mul./cycle
\rightarrow latencies: addition $=1$ cycle $/$ multiplication $=3$ cycles
- Horner's scheme: $(3+1) \times 11=44$ cycles
\rightarrow sequential scheme
\rightarrow no ILP exposure
\Rightarrow efficient $=$ reduction of the evaluation latency $/ \mathrm{nb}$. of multiplications
\Rightarrow express more ILP

Description of the problem

Data implementation

- fixed-point evaluation program: $V=$ div_eval (S, T), with

$$
s^{*}=S \cdot 2^{-30}, \quad t^{*}=T \cdot 2^{-32} \quad \text { and } \quad v=V \cdot 2^{-30}
$$

with S and T computed from inputs X and Y respectively.

- implementation of polynomial coefficients in absolute value

$$
a(t)=\sum_{i=0}^{10} a_{i} t^{i} \quad \text { with } \quad a_{i}=(-1) \cdot A_{i} \cdot 2^{-32} \in(-1,1) .
$$

\Rightarrow the sign is not stored \rightarrow appropriate choice of arithmetic operators

- implementation using only positive intermediate variables

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story \& P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

- Requirement / Assumption:
\rightarrow operator cost: mul. $=3$ cycles $/$ add. $=1$ cycle
\rightarrow delay between S and T
\rightarrow unbounded parallelism

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story \& P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

- Requirement / Assumption:
\rightarrow operator cost: mul. $=3$ cycles $/$ add. $=1$ cycle
\rightarrow delay between S and T
\rightarrow unbounded parallelism
- Two substeps:

1. determine a target latency τ
2. generate automatically a set of evaluation trees, with height $\leq \tau$

Evaluation tree generation

J. Harrison, T. Kubaska, S. Story \& P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

First step: generate a set of efficient evaluation trees

- Requirement / Assumption:
\rightarrow operator cost: mul. $=3$ cycles $/$ add. $=1$ cycle
\rightarrow delay between S and T
\rightarrow unbounded parallelism
- Two substeps:

1. determine a target latency τ
2. generate automatically a set of evaluation trees, with height $\leq \tau$
\Rightarrow number of evaluation trees $=$ extremely large \rightarrow several filters
\Rightarrow if no tree satisfies τ then increase τ and restart

Example for the binary32 implementation

Arithmetic operator choice

Second step: handle coefficient signs through an appropriate arithmetic operator choice

- label evaluation tree by appropriate arithmetic operator: + or -
- polynomial coefficients are implemented in absolute value
- for example, $a_{0}>0$ and $a_{1}<0$

$$
\Rightarrow \quad a_{0}-\left|a_{1}\right| t \text { instead of } a_{0}+a_{1} t
$$

- ensure that all intermediate values have constant sign

Arithmetic operator choice

Second step: handle coefficient signs through an appropriate arithmetic operator choice

- label evaluation tree by appropriate arithmetic operator: + or -
- polynomial coefficients are implemented in absolute value
- for example, $a_{0}>0$ and $a_{1}<0$

$$
\Rightarrow \quad a_{0}-\left|a_{1}\right| t \text { instead of } a_{0}+a_{1} t
$$

- ensure that all intermediate values have constant sign
\Rightarrow if the sign of an intermediate value changes when the input varies then the evaluation tree is rejected
\Rightarrow implementation with MPFI

Example for the binary32 implementation

Scheduling verification

J. Harrison, T. Kubaska, S. Story \& P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

Third step: check the practical scheduling

- schedule the evaluation tree on a simplified model of a real target architecture (operator costs / nb. issues / constraints on operators)
- check if no increase of latency

Scheduling verification

J. Harrison, T. Kubaska, S. Story \& P.T.P. Tang, The computation of transcendental functions on IA-64 architecture, 1999.

Third step: check the practical scheduling

- schedule the evaluation tree on a simplified model of a real target architecture (operator costs / nb. issues / constraints on operators)
- check if no increase of latency
\Rightarrow if practical latency $>$ theoretical latency then the evaluation tree is rejected
\Rightarrow implementation using a naive list scheduling algorithm

Example for the binary32 implementation

	Issue 1	Issue 2	Issue 3	Issue 4
Cycle 0	r_{0}	r_{4}		
Cycle 1	r_{6}	r_{13}		
Cycle 2	r_{11}	r_{20}		
Cycle 3	r_{1}	r_{5}	r_{22}	
Cycle 4	r_{2}	r_{14}	r_{19}	
Cycle 5	r_{12}	r_{15}	r_{21}	
Cycle 6	r_{7}	r_{10}	r_{23}	
Cycle 7	r_{3}	r_{8}	r_{24}	
Cycle 8	r_{16}			
Cycle 9	r_{17}			
Cycle 10	r_{9}	r_{25}		
Cycle 11				
Cycle 12	r_{18}			
Cycle 13	V			

Feasible scheduling on ST231.
$\Rightarrow 3$ issues are enough

Evaluation program validation strategy

Objective

Find a splitting of \mathcal{T} into n subinterval(s) $\mathcal{T}^{(i)}$, and check that

$$
\left(4-2^{3-p}\right) \cdot \alpha^{(i)}(a)+\rho^{(i)}(\mathcal{P})<2^{-p-1} \text { for } i \in\{1, \ldots, n\} .
$$

- implementation of the splitting by dichotomy
- for each $\mathcal{T}^{(i)}$

1. compute an approximation error bound $\alpha^{(i)}$ with Sollya
2. determine an evaluation error bound for $\rho^{(\mathcal{P})}$
3. check this bound with Gappa
\Rightarrow if this bound is not satisfied, $\mathcal{T}^{(i)}$ is split up into 2 subintervals

- launched on the LIP "grid"
- ≈ 5 hours / 36127 subintervals found

Evaluation program validation strategy

Does the condition

$$
\left(4-2^{3-p}\right) \cdot \alpha^{(i)}(a)+\rho^{(i)}(\mathcal{P})<2^{-p-1}
$$

hold for $i \in\{1, \ldots, n\}$?

Depth	Subintervals	$\alpha^{(\cdot)}(a) \leq$	$\rho^{(\cdot)}(\mathcal{P})<$	${ }^{*}$
1	$\mathrm{I}_{1,1}=\left[2^{-23}, 1-2^{-23}\right]$	$\theta_{1} \approx 2^{-27.41}$	$\eta_{1} \approx 2^{-26.99}$	no
2	$\mathrm{I}_{2,1}=\left[2^{-23}, 0.5-2^{-23}\right]$	$\theta_{2} \approx 2^{-27.41}$	$\eta_{2} \approx 2^{-26.99}$	yes
	$\mathrm{I}_{2,2}=\left[0.5,1-2^{-23}\right]$	$\theta_{1} \approx 2^{-27.41}$	$\eta_{1} \approx 2^{-26.99}$	no
\ldots				
	$\mathrm{I}_{j, 1}=\left[2^{-23}, 0.5-2^{-23}\right]$	$\theta_{2} \approx 2^{-27.41}$	$\eta_{2} \approx 2^{-26.99}$	yes
	$\mathrm{I}_{j, 2}=\left[0.5,0.75-2^{-23}\right]$	$\theta_{1} \approx 2^{-27.41}$	$\eta_{1} \approx 2^{-26.99}$	yes
	$\mathrm{I}_{j, 19309}=[0.921875,0.92578113079071044921875]$	$\theta_{3} \approx 2^{-27.44}$	$\eta_{3} \approx 2^{-26.90}$	yes
	$\mathrm{I}_{j, 19533}=[0.97490406036376953125,0.97490441799163818359375]$	$\theta_{4} \approx 2^{-27.49}$	$\eta_{4} \approx 2^{-26.77}$	yes

Splitting steps when $m_{x}<m_{y}$.

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Validation and performance evaluation

- Validation of the complete code:
\rightarrow the Extremal Rounding Tests Set (D.W. Matula)
\rightarrow TestFloat package
\rightarrow exhaustive tests on mantissa (with fixed result exponent)
- Performances evaluation on ST231 architecture
\rightarrow VLIW integer processor of ST200 family

Performances on ST231

Nb. of instructions	Latency	IPC	Code size
87	27 cycles	$87 / 27 \approx 3.22$	424 bytes

- if-conversion mechanism: fully straight-line assembly (branch-free)
- high IPC value: confirms the parallel nature of our approach
- 87 instructions: latency ≥ 1 (slct/return) $+\lceil 85$ instr. $/ 4$ issues $\rceil=23$
- speed-up by a factor of ≈ 1.78 compared to the previous implementation (48 cycles)

Outline of the talk

Properties and division algorithm

Sufficient conditions to ensure correct rounding

Generation and validation of efficient evaluation codes

Experimental results

Current work and conclusion

Implementation of subnormal numbers support

- the exact result x / y can be halfway between two consecutive subnormal binary floating-point numbers
\rightarrow the implementation of rounding test $(w \geq \ell)$ is more complicated
- no need to detect underflow a priori
\rightarrow directly detect through the rounding algorithm
- same principle / same polynomial evaluation

Future work and conclusion

- implementation of other rounding modes, with and without subnormal numbers support
- algorithmics of exception handling (inexact, division by zero,...)
\rightarrow full IEEE 754-2008 compliance
\rightarrow what is the overhead?
- development of a binary floating-point division generator (already exists for square root)
\rightarrow automatic generation of division in other formats
\rightarrow validation of our approach
- acceleration of the validation of the resulting evaluation code

