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Context and connection with computer-assisted proofs

Floating point computation using IEEE-754 arithmetic

Improving and validating the accuracy of some numerical algorithms thanks to

error-free transformations

Summation and dot product (Ogita-Rump-Oishi:2005), polynomial

evaluation with Horner algorithm (Graillat-PhL-Louvet in JJIAM, to

appear), triangular linear system resolution (PhL-Louvet:2008)

These algorithms are fast in terms of measured computing time

Faster than other existing solutions: double-double, quad-double libraries

Question: how to trust such claim?

Faster than the theoretical complexity that counts floating-point operations

Question: how to explain and verify such claim —at least illustrate?
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measured times”?

2 Instruction-level parallelism (ILP): what is it?
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These algorithms are fast in terms of measured times ???

CompHorner
Horner

DDHorner
Horner

DDHorner
CompHorner

Pentium 4, 3.00 GHz GCC 4.1.2 2.8 8.5 3.0

(x87 fp unit) ICC 9.1 2.7 9.0 3.4

(sse2 fp unit) GCC 4.1.2 3.0 8.9 3.0

(sse2 fp unit) ICC 9.1 3.2 9.7 3.4

Athlon 64, 2.00 GHz GCC 4.1.2 3.2 8.7 3.0

Itanium 2, 1.4 GHz GCC 4.1.1 2.9 7.0 2.4

ICC 9.1 1.5 5.9 3.9

Parameters1 are numerous and most of them have a short expected time life

processor (family, unit, frequency), compiler (family, version, options)

Conclusion: CompHorner runs a least two times faster than DDHorner

it’s not a theorem

it’s only a blurred picture

1Average ratios for polynomials of degree 5 to 200; wp = IEEE-754 double precision
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How to trust non-reproducible experiment results?

Measures are mostly non-reproducible

The execution time of a binary program varies, even using the same data

input and the same execution environment.

Why? Experimental uncertainties

spoiling events: background tasks, concurrent jobs, OS process scheduling,

interrupts

non deterministic dynamic instruction scheduler or branch predictor, initial

state of the branch predictor

external conditions: temperature of the room

accuracy of the timings: no constant cycle period on modern processors

(Intel core, i7, . . . )

Uncertainty increases as computer system complexity does

multicore architectures
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How to explain that the flop count and running time

measures are not proportional?

Horner CompHorner DDHorner DDHorner
CompHorner

Flop count 2n 22n + 5 28n + 4 ≈ 1.3

Flop ratio 1 ≈ 11 ≈ 14

Measured #cycles ratio 1 2.8 – 3.2 8.7 – 9.7 3 – 3.5

Previous results

First question opened by T. Ogita, S.M. Rump and S. Oishi (SISC, 2005).

SCAN 2006 (Duisburg): very first results about instruction level parallelism

(ILP)

Nicolas Louvet’s PhD (nov. 2007), research report (LaLo08)
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Instruction-level parallelism (ILP)

Instruction-level parallelism (ILP) represents the potential of the instructions of

a program that can be executed simultaneously.

An instruction i is data dependent on an instruction j if either

instruction j produces a result that

may be used by instruction i ,

their exists a chain of dependencies

of the first type between i and j .

j

i i

k

j

If two instructions are data dependent, they cannot execute simultaneously

True data dependence (RAW) vs. false data dependence (WAR and WAW):

dynamic register renaming suppresses false dependencies.

Dependencies are properties of the algorithm: the presence of a data dependence

in an instruction sequence reflects a data dependence in the source code.
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How processors are designed to exploit ILP?

For a given instruction set, let the compiler or the processor break the

instruction sequence into an overlapping instruction flow.

Micro-architectural techniques: pipelining, superscalar execution, fetching

blocks of instructions, dynamic branch prediction, dynamic scheduling with

register renaming, out-of-order execution, load address speculation, . . .

Static or dynamic implementation of these techniques

Itanium vs. x86-32, x86-64, PPC, . . .
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ILP: some key points

Pipelining: multiple instructions partially overlap in execution (IPC ≤ 1)

Superscalar execution: multiple execution pipelined units execute multiple

instructions in parallel (IPC > 1)

clock cycle number

inst. number inst. type 1 2 3 4 5 6 7

i Int IF ID EX MEM WB

i + 1 Fl IF ID EX MEM WB

i + 2 Int IF ID EX MEM WB

i + 3 Fl IF ID EX MEM WB

i + 4 Int IF ID EX MEM WB

i + 5 Fl IF ID EX MEM WB

Out-of-order execution just satisfying the data dependencies

11 / 34



How to quantify instruction-level parallelism in a program?

Step 1: let us consider an ideal processor (Hennessy-Patterson)

The ideal processor runs the program such that

an instruction is scheduled on the cycle immediately following

the execution of the predecessor on which it depends

all but true data dependencies are removed

conditional branches/loops are perfectly predicted

memory accesses are also perfect

name dependencies are removed

an unlimited number of instructions can be executed in the same cycle

every instruction is executed in one clock cycle

Step 2: compute its optimal IPC = IPC on the ideal processor

IPC = average number of instructions executed in one clock cycle

=
Total number of instructions

Total latency of the program

Conclusion

More IPC implies better performances on modern processors.
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Optimal IPC of CompHorner: the manual analysisOptimal IPC of CompHorner: the manual analysis

C implementation of CompHorner

double CompHorner(double *P, int n, double x) {

double p, r, c, pi, sig;

double x_hi, x_lo, hi, lo, t;

int i;

/* Split(x_hi, x_lo, x) */

t = x * _splitter_;

x_hi = t - (t - x); x_lo = x - x_hi;

r = P[n]; c = 0.0;

for(i=n-1; i>=0; i--) {

/* TwoProd(p, pi, s, x); */

p = r * x;

t = r * _splitter_;

hi = t - (t - r);

lo = r - hi;

pi = (((hi*x_hi - p) + hi*x_lo)

+ lo*x_hi) + lo*x_lo;

/* TwoSum(s, sigma, p, P[i]); */

r = p + P[i];

t = r - p;

sig = (p - (r - t)) + (P[i] - t);

/* Computation of the error term */

c = c * x + (pi+sig);

}

return(r+c);

}

Counting the number of flop in the algorithm

22n + 5 flop in the accurate evaluation of a

degree n polyomial

Find the execution lattency within the data flow

graph (for one iteration)

the latency of one iteration is 10 cycles.

consecutive iterations overlap by 8 cycles
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Measured performances vs. potential of performances

Horner CompHorner DDHorner DDHorner
CompHorner

Flop count 2n 22n + 5 28n + 4 ≈ 1.3

Optimal IPC 1 11 1.6 ≈ 6.8

Optimal #cycles: avg. 2n 2n 17.5n

Optimal #cycles: ratio 1 ≈ 1 ≈ 8.75 ≈ 8.75

Measured #cycles: ratio 1 2.7 – 3.2 8.5 – 9.7 2.9 – 3.3

More ILP available in CompHorner than in DDHorner,

so better practical performances on modern processors

Observing that on the ideal processor,

optimal average number of cycles = Flop count / Optimal IPC

CompHorner run as fast as Horner

CompHorner run about 8 times faster than DDHorner

We need processors exploiting more ILP to verify this performance potential

16 / 34



Outline

1 Can you trust me when I claim that “these algorithms are fast in terms of

measured times”?

2 Instruction-level parallelism (ILP): what is it?

3 Evaluating ILP: pen and paper

4 Evaluating ILP: an automatic approach with two simulation tools

5 Conclusion

17 / 34



Simulation of processor

Software simulation is classic for processor design

complexity, costly, one step final process.

SimpleScalar, System C, Liberty, Asim (Intel ppty), MaxCore (ARM ppty)

Unisim: INRIA + CEA + Princeton U. + HiPEAC (IST Network of Excellence

on High-Performance Embedded Architectures and Compilers = 10 EEC

countries + STMicroelectronics, ARM, Philips, Infineon)

Library of processors (PowerPC, ARM), of processor component: processor,

memory (main, caches), network (buses)

Open simulation framework

Cycle-level simulators are cycle accurate models characterized by an high

accuracy on performance evaluation comparing to the real hardware.
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Very basic principles of UniSim

Starting with a block diagram

Main hardware components of a 5-stage

pipelined DLX

One component = One module

= One C++ object

its processes: C++ methods

its state: C++ class properties

Port-based communication between modules +

a clock
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Our ideal processor simulation

OoOSim

a simulated Power PC with an arbitrary superscalar rate

RISC instruction set, 7-stage pipeline, out-of-order execution

How to simulate the ideal processor? in orderout of order

 F   A    S   R   E WB  G

in order

F: the branch prediction is perfect (emulation of the true result)

A: the register renaming step avoids all but true dependencies

S: the instruction queue is arbitrarily large (to encompass poor ILP cases)

R: the length of the register file is arbitrarily large (“infinite” number of

physical registers)

E: the number of execution units of every type (iop, flop, ) at least equals

the superscalar degree

WB: the number of WB at least equals the superscalar degree

G: the length of the ROB queue is arbitrarily large and the number of

retired instructions at least equals the superscalar degree

The experimental process

We increase the superscalar rate at least until the IPC becomes constant

In practice, superscalar rates 1, 2, 4, 16 and 32 have been used

Every program is compiled with option

-O3 -finline-functions -Wall -mno-fused-madd
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A picture of the processor state at every cycle

 f: 8969  a: 8977  s: 9237  r: 9238  e: 9239  w: 9240  r: 9243

 f: 9243  a: 9244  s: 9245  r: 9246  e: 9247  w: 9248  r: 9251

 f: 9243  a: 9244  s: 9245  r: 9246  e: 9247  w: 9248  r: 9251

 f: 9243  a: 9244  s: 9245  r: 9248  e: 9249  w: 9250  r: 9253

 f: 9243  a: 9244  s: 9245  r: 9250  e: 9251  w: 9252  r: 9255

 f: 9243  a: 9244  s: 9245  r: 9246  e: 9247  w: 9248  r: 9255

10001a6c   lis r9, 4104  f: 9243  a: 9244  s: 9245  r: 9246  e: 9247  w: 9248  r: 9255

 f: 9243  a: 9244  s: 9245  r: 9248  e: 9249  w: 9252  r: 9255

10001a74   lis r9, 4104  f: 9243  a: 9244  s: 9245  r: 9246  e: 9247  w: 9248  r: 9255

 f: 9243  a: 9245  s: 9246  r: 9248  e: 9249  w: 9250  r: 9255

 f: 9243  a: 9245  s: 9246  r: 9252  e: 9253  w: 9254  r: 9257

 f: 9243  a: 9245  s: 9246  r: 9254  e: 9255  w: 9256  r: 9259

 f: 9243  a: 9245  s: 9246  r: 9250  e: 9251  w: 9252  r: 9259

100088bc   li r0, 1  f: 9243  a: 9245  s: 9246  r: 9247  e: 9248  w: 9249  r: 9259

 f: 9243  a: 9245  s: 9246  r: 9247  e: 9248  w: 9249  r: 9259

100088a0   sc

100088a4   mfcr r0

100088a8   mr r31, r3

100088ac   andis. r9, r0, 4096

100088b0   bc 13, 2, 0x100088bc

100088b4   bl 0x10001a6c

10001a70   lwz r0, 3540(r9)

10001a78   addi r3, r9, 3668

10001a7c   cmpi cr0, 0, r0, 0

10001a80   bclr 13, 2

100088b8   stw r31, 0(r3)

100088c0   mr r3, r30
21 / 34



A picture of the processor state at every cycle
Feuille1

Page 1

 RetIns: 34652  sim_num_ins: 34556  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34653  sim_num_ins: 34557  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34654  sim_num_ins: 34558  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34655  sim_num_ins: 34559  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34656  sim_num_ins: 34560  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34657  sim_num_ins: 34561  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34658  sim_num_ins: 34562  sim_num_refs: 6212  sim_num_loads: 3544  stall_sched: 3189

 RetIns: 34659  sim_num_ins: 34563  sim_num_refs: 6213  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34660  sim_num_ins: 34564  sim_num_refs: 6213  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34661  sim_num_ins: 34565  sim_num_refs: 6213  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34662  sim_num_ins: 34566  sim_num_refs: 6213  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34663  sim_num_ins: 34567  sim_num_refs: 6213  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34664  sim_num_ins: 34568  sim_num_refs: 6214  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34665  sim_num_ins: 34569  sim_num_refs: 6214  sim_num_loads: 3545  stall_sched: 3189

 RetIns: 34666  sim_num_ins: 34570  sim_num_refs: 6214  sim_num_loads: 3545  stall_sched: 3189
22 / 34



The simulated ideal proc runs accurate Horner algorithms
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Simulation results vs. current processors experiments

Simulated IPC vs. theoretical IPC and consequences

Horner CompHorner DDHorner DDHorner
CompHorner

Measured #cycles ratio 1 2.7 – 3.2 8.5 – 9.7 2.9 – 3.3

Simulated #cycles ratio 1 3.09 8.49 ≈ 2.75

for superscal.rate = 2

Simulated Optimal IPC 2.5 12.44 1.82 6.83

Optimal IPC (by hand) 1 11 1.6 ≈ 6.8

IPC explains the measured performances compared to Flop count

Simulated optimal IPC ≈ Optimal IPC by hand for CompHorner and DDHorner

Small differences comes from instructions vs. flop

Consequence: the number of cycles for CompHorner equals the Horner one

for superscalar rate larger than 16
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With a binary instrumentation tool: PinTool

1 Can you trust me when I claim that “these algorithms are fast in terms of

measured times”?

2 Instruction-level parallelism (ILP): what is it?

3 Evaluating ILP: pen and paper

4 Evaluating ILP: an automatic approach with two simulation tools

5 Conclusion
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Simulating the ideal processor with Pin (Intel)

http://www.pintool.org

Pin allows us to instrument the binary code (for Intel architectures)

Insert extra code into the program to collect run-time information

Execution trace: the instrumentation applies dynamically

A PinTool to compute the Optimal IPC: principles

For every executed instruction i , Pin returns its characteristics: operation

code, source register, destination, memory address. . .

Resolution of the data dependencies between i and its sources:

recovering of cycle c = max{cycle that produces a source for instruction i}.

Tag i as being executed and its destination as being available at cycle c +1,

increment the instruction counter

Optimal IPC = # instructions / # cycles

26 / 34
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counter++

mov p, Rp p= p * x;

counter++

mul x, Rp

counter++

mov a, Ra p = p + a;

counter++
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Simulation produces reproducible results

     start : _start

          start : .plt

               start : __libc_csu_init

                    start : _init

                         start : call_gmon_start

                         stop : call_gmon_start::I[13]::C[9]::ILP[1.44444]

                         start : frame_dummy

                         stop : frame_dummy::I[7]::C[3]::ILP[2.33333]

                         start : __do_global_ctors_aux

                         stop : __do_global_ctors_aux::I[11]::C[6]::ILP[1.83333]

                    stop : _init::I[41]::C[26]::ILP[1.57692]

               stop : __libc_csu_init::I[63]::C[39]::ILP[1.61538]

               start : main

                    start : .plt

                         start : .plt

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                         stop : main::I[20129]::C[7012]::ILP[2.87065]

                         start : _fini

                              start : __do_global_dtors_aux

                              stop : __do_global_dtors_aux::I[11]::C[4]::ILP[2.75]

                         stop : _fini::I[23]::C[13]::ILP[1.76923]

Global ILP ::I[20236]::C[7065]::ILP[2.86426]
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The simulated ideal processor runs CompHorner4
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The simulated ideal processor runs accurate dot product

(OgRO:05)
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The simulated ideal processor runs accurate dot product

Dot Dot2 DotXBLAS

Measured2 # cycles ratio

Avg. for Pentium4-32 1 5 9.5

Simulated #cycles ratio

for superscal.rate = 2 1 ≈ 7 ≈ 9

for superscal.rate = 4 1 ≈ 3 ≈ 9

Simulated min #cycles ratio 1 ≈ 2 ≈ 9

Simulated max IPC 4 15 2

Compensated Dot2 has an impressive high IPC: ≈ 15;

it will provide twice more accurate dot product for twice more computing

times than the original result

2From OgRO:05
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Outline

1 Can you trust me when I claim that “these algorithms are fast in terms of

measured times”?

2 Instruction-level parallelism (ILP): what is it?

3 Evaluating ILP: pen and paper

4 Evaluating ILP: an automatic approach with two simulation tools

5 Conclusion
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Conclusions about simulation

Pros

Reliable: results are reproducible both in time and location

Realistic: simulation results can be correlated with measured ones

Exploratory tool: gives us the taste of the behavior of our algorithms within

“tomorrow” processors

Optimisation tool: simulation provides a simple way to analyse the effect of

some hardware constraints

Useful: providing a very detailed picture of the behavior of the algorithm

Cons . . . at the current state

It remains some architecture dependencies: the instruction set

Assembler program or High level programming language?

IPC and Floating Operations per Cycle may be different for too

arithmetically simple algorithms
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Todo list

Focus on Floating Operations per Cycle

Improve the simulators running-time performance

Make them available on-line and usable as black-box

Towards computed-assisted proof for performance evaluation

Pro: simulation provides automatic results

Cons: reliability of the simulation result depends on the reliability of the

compiler and on the simulator
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