Computer Assisted Proofs – tools, methods and applications Dagstuhl Seminar, 16-20 november 2009, Germany

Processor simulation: a new way for the performance analysis of numerical algorithms

### Bernard Goossens, Philippe Langlois, David Parello

University of Perpignan Via Domitia DALI Research Project





Participation at this seminar is granted by EVA-Flo: Evaluation and Automatic Validation for Floating-Point Computing. ANR funded project 2007-2010. Chair: Nathalie Revol. Floating point computation using IEEE-754 arithmetic

Improving and validating the accuracy of some numerical algorithms thanks to error-free transformations

 Summation and dot product (Ogita-Rump-Oishi:2005), polynomial evaluation with Horner algorithm (Graillat-PhL-Louvet in JJIAM, to appear), triangular linear system resolution (PhL-Louvet:2008)

These algorithms are fast in terms of measured computing time

- Faster than other existing solutions: double-double, quad-double libraries Question: how to trust such claim?
- Faster than the theoretical complexity that counts floating-point operations Question: how to explain and verify such claim —at least illustrate?



- Can you trust me when I claim that "these algorithms are fast in terms of measured times"?
- Instruction-level parallelism (ILP): what is it?
- Evaluating ILP: pen and paper
- Evaluating ILP: an automatic approach with two simulation tools



## These algorithms are fast in terms of measured times ???

|                     |           | CompHorner<br>Horner | DDHorner<br>Horner | DDHorner<br>CompHorner |
|---------------------|-----------|----------------------|--------------------|------------------------|
| Pentium 4, 3.00 GHz | GCC 4.1.2 | 2.8                  | 8.5                | 3.0                    |
| (x87 fp unit)       | ICC 9.1   | 2.7                  | 9.0                | 3.4                    |
| (sse2 fp unit)      | GCC 4.1.2 | 3.0                  | 8.9                | 3.0                    |
| (sse2 fp unit)      | ICC 9.1   | 3.2                  | 9.7                | 3.4                    |
| Athlon 64, 2.00 GHz | GCC 4.1.2 | 3.2                  | 8.7                | 3.0                    |
| Itanium 2, 1.4 GHz  | GCC 4.1.1 | 2.9                  | 7.0                | 2.4                    |
|                     | ICC 9.1   | 1.5                  | 5.9                | 3.9                    |

Parameters<sup>1</sup> are numerous and most of them have a short expected time life

• processor (family, unit, frequency), compiler (family, version, options)

Conclusion: CompHorner runs a least two times faster than DDHorner

- it's not a theorem
- it's only a blurred picture

<sup>&</sup>lt;sup>1</sup>Average ratios for polynomials of degree 5 to 200; wp = IEEE-754 double precision

#### Measures are mostly non-reproducible

• The execution time of a binary program varies, even using the same data input and the same execution environment.

#### Why? Experimental uncertainties

- spoiling events: background tasks, concurrent jobs, OS process scheduling, interrupts
- non deterministic dynamic instruction scheduler or branch predictor, initial state of the branch predictor
- external conditions: temperature of the room
- accuracy of the timings: no constant cycle period on modern processors (Intel core, i7, ...)

#### Uncertainty increases as computer system complexity does

multicore architectures

## How to explain that the flop count and running time measures are not proportional?

|                        | Horner | CompHorner | DDHorner       | DDHorner<br>CompHorner |
|------------------------|--------|------------|----------------|------------------------|
| Flop count             | 2n     | 22n + 5    | <b>28n</b> + 4 | pprox 1.3              |
| Flop ratio             | 1      | pprox 11   | pprox 14       |                        |
| Measured #cycles ratio | 1      | 2.8 - 3.2  | 8.7 – 9.7      | 3 – 3.5                |

## How to explain that the flop count and running time measures are not proportional?

|                        | Horner | CompHorner | DDHorner       | DDHorner<br>CompHorner |
|------------------------|--------|------------|----------------|------------------------|
| Flop count             | 2n     | 22n + 5    | <b>28n</b> + 4 | $\approx 1.3$          |
| Flop ratio             | 1      | pprox 11   | pprox 14       |                        |
| Measured #cycles ratio | 1      | 2.8 - 3.2  | 8.7 – 9.7      | 3 – 3.5                |

Previous results

- First question opened by T. Ogita, S.M. Rump and S. Oishi (SISC, 2005).
- SCAN 2006 (Duisburg): very first results about instruction level parallelism (ILP)
- Nicolas Louvet's PhD (nov. 2007), research report (LaLo08)

Can you trust me when I claim that "these algorithms are fast in terms of measured times"?

#### Instruction-level parallelism (ILP): what is it?

- Evaluating ILP: pen and paper
- O Evaluating ILP: an automatic approach with two simulation tools

#### 5 Conclusion

Instruction-level parallelism (ILP) represents the potential of the instructions of a program that can be executed simultaneously.

An instruction i is data dependent on an instruction j if either

- instruction j produces a result that may be used by instruction i,
- their exists a chain of dependencies of the first type between *i* and *j*.



#### If two instructions are data dependent, they cannot execute simultaneously

• True data dependence (RAW) *vs.* false data dependence (WAR and WAW): dynamic register renaming suppresses false dependencies.

Dependencies are properties of the algorithm: the presence of a data dependence in an instruction sequence reflects a data dependence in the source code.

For a given instruction set, let the compiler or the processor break the instruction sequence into an overlapping instruction flow.

- Micro-architectural techniques: pipelining, superscalar execution, fetching blocks of instructions, dynamic branch prediction, dynamic scheduling with register renaming, out-of-order execution, load address speculation, ...
- Static or dynamic implementation of these techniques

Itanium vs. x86-32, x86-64, PPC, ...

## ILP: some key points

Pipelining: multiple instructions partially overlap in execution (IPC  $\leq 1$ )

Superscalar execution: multiple execution pipelined units execute multiple instructions in parallel (IPC > 1)

|              | clock cycle number |    |    |    |     |     |     |    |
|--------------|--------------------|----|----|----|-----|-----|-----|----|
| inst. number | inst. type         | 1  | 2  | 3  | 4   | 5   | 6   | 7  |
| i            | Int                | IF | ID | ΕX | MEM | WB  |     |    |
| i+1          | FI                 | IF | ID | ΕX | MEM | WB  |     |    |
| <i>i</i> + 2 | Int                |    | IF | ID | EX  | MEM | WB  |    |
| <i>i</i> + 3 | FI                 |    | IF | ID | EX  | MEM | WB  |    |
| <i>i</i> + 4 | Int                |    |    | IF | ID  | EX  | MEM | WB |
| <i>i</i> + 5 | FI                 |    |    | IF | ID  | EX  | MEM | WB |

Out-of-order execution just satisfying the data dependencies

## How to quantify instruction-level parallelism in a program?

Step 1: let us consider an ideal processor (Hennessy-Patterson) The ideal processor runs the program such that

an instruction is scheduled on the cycle immediately following the execution of the predecessor on which it depends

- all but true data dependencies are removed
- conditional branches/loops are perfectly predicted
- memory accesses are also perfect
- name dependencies are removed
- an unlimited number of instructions can be executed in the same cycle
- every instruction is executed in one clock cycle

## How to quantify instruction-level parallelism in a program?

Step 1: let us consider an ideal processor (Hennessy-Patterson)

The ideal processor runs the program such that

an instruction is scheduled on the cycle immediately following the execution of the predecessor on which it depends

Step 2: compute its optimal IPC = IPC on the ideal processor

$$\begin{split} \mathsf{IPC} &= \mathsf{average number of instructions executed in one clock cycle} \\ &= \frac{\mathsf{Total number of instructions}}{\mathsf{Total latency of the program}} \end{split}$$

Step 1: let us consider an ideal processor (Hennessy-Patterson)

The ideal processor runs the program such that

an instruction is scheduled on the cycle immediately following the execution of the predecessor on which it depends

Step 2: compute its optimal IPC = IPC on the ideal processor

$$\begin{split} \mathsf{IPC} &= \mathsf{average number of instructions executed in one clock cycle} \\ &= \frac{\mathsf{Total number of instructions}}{\mathsf{Total latency of the program}} \end{split}$$

Conclusion

More IPC implies better performances on modern processors.

- Can you trust me when I claim that "these algorithms are fast in terms of measured times"?
- Instruction-level parallelism (ILP): what is it?
- Evaluating ILP: pen and paper
- O Evaluating ILP: an automatic approach with two simulation tools



#### C implementation of CompHorner

```
double CompHorner(double *P, int n, double x) {
 double p, r, c, pi, sig;
 double x hi, x lo, hi, lo, t;
 int i:
 t = x * splitter :
 x hi = t - (t - x); x lo = x - x hi;
 r = P[n]; c = 0.0;
 for(i=n-1; i>=0; i--) \in
    p = r * x;
    t = r * _splitter_;
    hi = t - (t - r);
    lo = r - hi:
   pi = (((hi*x_hi - p) + hi*x_lo))
          + lo*x hi) + lo*x lo:
    /* TwoSum(s. sigma, p. P[i]): */
    r = p + P[i];
    t = r - p;
    sig = (p - (r - t)) + (P[i] - t);
    c = c * x + (pi+sig);
 return(r+c);
3
```

- 1. Counting the number of flop in the algorithm
  - 22*n* + 5 flop in the accurate evaluation of a degree *n* polynomial



- 1. Counting the number of flop in the algorithm
  - 22*n* + 5 flop in the accurate evaluation of a degree *n* polynomial
- 2. From within the data flow graph, find the execution latency for one iteration
  - the latency of one iteration is 10 cycles.



- 1. Counting the number of flop in the algorithm
  - 22*n* + 5 flop in the accurate evaluation of a degree *n* polynomial
- 2. From within the data flow graph, find the execution latency for one iteration
  - the latency of one iteration is 10 cycles.
- 3. Find the total execution latency within the data flow graph
  - consecutive iterations overlap by 8 cycles

#### C implementation of CompHorner

```
double CompHorner(double *P, int n, double x) {
 double p, r, c, pi, sig;
 double x_hi, x_lo, hi, lo, t;
 int i:
 t = x * _splitter_;
 x hi = t - (t - x); x lo = x - x hi;
 r = P[n]; c = 0.0;
 for(i=n-1; i>=0; i--) {
    p = r * x;
    t = r * _splitter_;
    hi = t - (t - r);
    lo = r - hi:
    pi = (((hi*x_hi - p) + hi*x_lo))
          + lo*x hi) + lo*x lo:
    /* TwoSum(s. sigma, p. P[i]): */
    r = p + P[i];
    t = r - p;
    sig = (p - (r - t)) + (P[i] - t);
    c = c * x + (pi+sig);
 return(r+c);
3
```

- 1. Counting the number of flop in the algorithm
  - 22*n* + 5 flop in the accurate evaluation of a degree *n* polynomial
- 2. From within the data flow graph, find the execution latency for one iteration
  - the latency of one iteration is 10 cycles.
- 3. Find the total execution latency within the data flow graph
  - consecutive iterations overlap by 8 cycles
- 4. Optimal IPC for CompHorner

$$IPC_{CompHorner} = \frac{22n+5}{2n+8}$$
  

$$\approx 11 \text{ instructions per cycle.}$$

## Measured performances vs. potential of performances

|                         | Horner | CompHorner | DDHorner   | DDHorner<br>CompHorner |
|-------------------------|--------|------------|------------|------------------------|
| Flop count              | 2n     | 22n + 5    | 28n + 4    | pprox 1.3              |
| Optimal IPC             | 1      | 11         | 1.6        | $\approx 6.8$          |
| Optimal #cycles: avg.   | 2n     | 2n         | 17.5n      |                        |
| Optimal #cycles: ratio  | 1      | pprox 1    | pprox 8.75 | pprox 8.75             |
| Measured #cycles: ratio | 1      | 2.7 - 3.2  | 8.5 - 9.7  | 2.9 – 3.3              |

More ILP available in CompHorner than in DDHorner,

so better practical performances on modern processors

Observing that on the ideal processor,

optimal average number of cycles = Flop count / Optimal IPC

- CompHorner run as fast as Horner
- CompHorner run about 8 times faster than DDHorner

We need processors exploiting more ILP to verify this performance potential

- Can you trust me when I claim that "these algorithms are fast in terms of measured times"?
- Instruction-level parallelism (ILP): what is it?
- Evaluating ILP: pen and paper
- 4 Evaluating ILP: an automatic approach with two simulation tools
- 6 Conclusion

#### Software simulation is classic for processor design

- complexity, costly, one step final process.
- SimpleScalar, System C, Liberty, Asim (Intel ppty), MaxCore (ARM ppty)

Unisim: INRIA + CEA + Princeton U. + HiPEAC (IST Network of Excellence on High-Performance Embedded Architectures and Compilers = 10 EEC countries + STMicroelectronics, ARM, Philips, Infineon)

- Library of processors (PowerPC, ARM), of processor component: processor, memory (main, caches), network (buses)
- Open simulation framework
- Cycle-level simulators are cycle accurate models characterized by an high accuracy on performance evaluation comparing to the real hardware.

Starting with a block diagram

• Main hardware components of a 5-stage pipelined DLX





Starting with a block diagram

• Main hardware components of a 5-stage pipelined DLX

 $\mathsf{One}\ \mathsf{component} = \mathsf{One}\ \mathsf{module}$ 





Starting with a block diagram

• Main hardware components of a 5-stage pipelined DLX

 $\mathsf{One}\ \mathsf{component} = \mathsf{One}\ \mathsf{module}$ 

- = One C++ object
  - its processes: C++ methods
  - its state: C++ class properties



#### Starting with a block diagram

- Main hardware components of a 5-stage pipelined DLX
- $\mathsf{One}\ \mathsf{component} = \mathsf{One}\ \mathsf{module}$
- = One C++ object
  - $\bullet$  its processes: C++ methods
  - its state: C++ class properties

Port-based communication between modules  $+ \\ {\rm a \ clock}$ 

#### OoOSim

- a simulated Power PC with an arbitrary superscalar rate
- RISC instruction set, 7-stage pipeline, out-of-order execution

#### How to simulate the ideal processor?

- F: the branch prediction is perfect (emulation of the true result)
- A: the register renaming step avoids all but true dependencies
- S: the instruction queue is arbitrarily large (to encompass poor ILP cases)
- R: the length of the register file is arbitrarily large ("infinite" number of physical registers)
- E: the number of execution units of every type (iop, flop, ) at least equals the superscalar degree
- WB: the number of WB at least equals the superscalar degree
- G: the length of the ROB queue is arbitrarily large and the number of retired instructions at least equals the superscalar degree

SREWBG

out of order

in order

in order

#### OoOSim

- a simulated Power PC with an arbitrary superscalar rate
- RISC instruction set, 7-stage pipeline, out-of-order execution

How to simulate the ideal processor?



#### The experimental process

- We increase the superscalar rate at least until the IPC becomes constant
- In practice, superscalar rates 1, 2, 4, 16 and 32 have been used
- Every program is compiled with option
  - -O3 -finline-functions -Wall -mno-fused-madd

#### A picture of the processor state at every cycle

| 100088a0 | SC                   | f: 8969 | a: 8977 | s: 9237 | r: 9238 | e: 9239 | w: 9240 | r: 9243 |
|----------|----------------------|---------|---------|---------|---------|---------|---------|---------|
| 100088a4 | mfcr r0              | f: 9243 | a: 9244 | s: 9245 | r: 9246 | e: 9247 | w: 9248 | r: 9251 |
| 100088a8 | mr r31, r3           | f: 9243 | a: 9244 | s: 9245 | r: 9246 | e: 9247 | w: 9248 | r: 9251 |
| 100088ac | andis. r9, r0, 4096  | f: 9243 | a: 9244 | s: 9245 | r: 9248 | e: 9249 | w: 9250 | r: 9253 |
| 100088b0 | bc 13, 2, 0x100088bc | f: 9243 | a: 9244 | s: 9245 | r: 9250 | e: 9251 | w: 9252 | r: 9255 |
| 100088b4 | bl 0x10001a6c        | f: 9243 | a: 9244 | s: 9245 | r: 9246 | e: 9247 | w: 9248 | r: 9255 |
| 10001a6c | lis r9, 4104         | f: 9243 | a: 9244 | s: 9245 | r: 9246 | e: 9247 | w: 9248 | r: 9255 |
| 10001a70 | lwz r0, 3540(r9)     | f: 9243 | a: 9244 | s: 9245 | r: 9248 | e: 9249 | w: 9252 | r: 9255 |
| 10001a74 | lis r9, 4104         | f: 9243 | a: 9244 | s: 9245 | r: 9246 | e: 9247 | w: 9248 | r: 9255 |
| 10001a78 | addi r3, r9, 3668    | f: 9243 | a: 9245 | s: 9246 | r: 9248 | e: 9249 | w: 9250 | r: 9255 |
| 10001a7c | cmpi cr0, 0, r0, 0   | f: 9243 | a: 9245 | s: 9246 | r: 9252 | e: 9253 | w: 9254 | r: 9257 |
| 10001a80 | bclr 13, 2           | f: 9243 | a: 9245 | s: 9246 | r: 9254 | e: 9255 | w: 9256 | r: 9259 |
| 100088b8 | stw r31, 0(r3)       | f: 9243 | a: 9245 | s: 9246 | r: 9250 | e: 9251 | w: 9252 | r: 9259 |
| 100088bc | li r0, 1             | f: 9243 | a: 9245 | s: 9246 | r: 9247 | e: 9248 | w: 9249 | r: 9259 |
| 100088c0 | mr r3, r30           | f: 9243 | a: 9245 | s: 9246 | r: 9247 | e: 9248 | w: 9249 | r: 9259 |

21/34

### A picture of the processor state at every cycle

|               |                    | Feuille1           |                     |                   |
|---------------|--------------------|--------------------|---------------------|-------------------|
| RetIns: 34652 | sim_num_ins: 34556 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34653 | sim_num_ins: 34557 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34654 | sim_num_ins: 34558 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34655 | sim_num_ins: 34559 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34656 | sim_num_ins: 34560 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34657 | sim_num_ins: 34561 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34658 | sim_num_ins: 34562 | sim_num_refs: 6212 | sim_num_loads: 3544 | stall_sched: 3189 |
| RetIns: 34659 | sim_num_ins: 34563 | sim_num_refs: 6213 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34660 | sim_num_ins: 34564 | sim_num_refs: 6213 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34661 | sim_num_ins: 34565 | sim_num_refs: 6213 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34662 | sim_num_ins: 34566 | sim_num_refs: 6213 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34663 | sim_num_ins: 34567 | sim_num_refs: 6213 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34664 | sim_num_ins: 34568 | sim_num_refs: 6214 | sim_num_loads: 3545 | stall_sched: 3189 |
| RetIns: 34665 | sim_num_ins: 34569 | sim_num_refs: 6214 | sim_num_loads: 3545 | stall_sched: 3189 |
|               |                    |                    |                     |                   |

RetIns: 34666 sim\_num\_ins: 34570 sim\_num\_refs: 6214 sim\_num\_loads: 3545 stall\_sched: 3189

## The simulated ideal proc runs accurate Horner algorithms



## The simulated ideal proc runs accurate Horner algorithms



## Simulation results *vs.* current processors experiments Simulated IPC *vs.* theoretical IPC and consequences

|                          | Horner | CompHorner | DDHorner  | DDHorner<br>CompHorner |
|--------------------------|--------|------------|-----------|------------------------|
| Measured #cycles ratio   | 1      | 2.7 - 3.2  | 8.5 – 9.7 | 2.9 – 3.3              |
| Simulated #cycles ratio  | 1      | 3.09       | 8.49      | pprox 2.75             |
| for superscal.rate $= 2$ |        |            |           |                        |
| Simulated Optimal IPC    | 2.5    | 12.44      | 1.82      | 6.83                   |
| Optimal IPC (by hand)    | 1      | 11         | 1.6       | pprox 6.8              |

IPC explains the measured performances compared to Flop count

Simulated optimal IPC  $\approx$  Optimal IPC by hand for CompHorner and DDHorner

- Small differences comes from instructions vs. flop
- Consequence: the number of cycles for CompHorner equals the Horner one for superscalar rate larger than 16

- Can you trust me when I claim that "these algorithms are fast in terms of measured times"?
- 2 Instruction-level parallelism (ILP): what is it?
- Status Status
- Evaluating ILP: an automatic approach with two simulation tools
- 5 Conclusion

## Simulating the ideal processor with Pin (Intel)

http://www.pintool.org

Pin allows us to instrument the binary code (for Intel architectures)

- Insert extra code into the program to collect run-time information
- Execution trace: the instrumentation applies dynamically

## Simulating the ideal processor with Pin (Intel)

#### http://www.pintool.org

Pin allows us to instrument the binary code (for Intel architectures)

- Insert extra code into the program to collect run-time information
- Execution trace: the instrumentation applies dynamically

## counter++ mov p, Rp p = p \* x;counter++ mul x, Rp counter++ mov a, Ra p = p + a;counter++ add Ra, Rp counter++

## Simulating the ideal processor with Pin (Intel)

http://www.pintool.org

Pin allows us to instrument the binary code (for Intel architectures)

- Insert extra code into the program to collect run-time information
- Execution trace: the instrumentation applies dynamically

A PinTool to compute the Optimal IPC: principles

- For every executed instruction *i*, Pin returns its characteristics: operation code, source register, destination, memory address...
- Resolution of the data dependencies between *i* and its sources: recovering of cycle *c* = max{cycle that produces a source for instruction *i*}.
- Tag *i* as being executed and its destination as being available at cycle c + 1,
- increment the instruction counter

Optimal IPC = # instructions / # cycles

## Simulation produces reproducible results

```
start : start
    start : .plt
         start : libc csu init
               start : init
                    start : call amon start
                    stop : call amon start::IF13]::CF9]::ILPF1.44444]
                    start : frame_dummy
                    stop : frame_dummy::I[7]::C[3]::ILP[2.33333]
                    start : do alobal ctors aux
                    stop : __do_global_ctors_aux::I[11]::C[6]::ILP[1.83333]
               stop : _init::I[41]::C[26]::ILP[1.57692]
         stop : __libc_csu_init::I[63]::C[39]::ILP[1.61538]
         start : main
              start : .plt
                    start : .plt
                        start : Horner
                        stop : Horner::I[5015]::C[2005]::ILP[2.50125]
                        start : Horner
                        stop : Horner::I[5015]::C[2005]::ILP[2.50125]
                        start : Horner
                        stop : Horner::I[5015]::C[2005]::ILP[2.50125]
                    stop : main::I[20129]::C[7012]::ILP[2.87065]
                    start : fini
                        start : __do_global_dtors_aux
                        stop : do alobal dtors aux::I[11]::C[4]::ILP[2.75]
                    stop : fini::I[23]::C[13]::ILP[1.76923]
```

Global ILP ::: I[20236]:: C[7065]:: ILP[2.86426]

## The simulated ideal processor runs CompHorner4



## The simulated ideal processor runs CompHorner4



# The simulated ideal processor runs accurate dot product (OgRO:05)



# The simulated ideal processor runs accurate dot product (OgRO:05)



|                                         | Dot | Dot2        | DotXBLAS    |
|-----------------------------------------|-----|-------------|-------------|
| Measured <sup>2</sup> $\#$ cycles ratio |     |             |             |
| Avg. for Pentium4-32                    | 1   | 5           | 9.5         |
| Simulated #cycles ratio                 |     |             |             |
| for superscal.rate $= 2$                | 1   | $\approx 7$ | pprox 9     |
| for superscal.rate = $4$                | 1   | $\approx 3$ | pprox 9     |
| Simulated min #cycles ratio             | 1   | $\approx 2$ | $\approx$ 9 |
|                                         |     |             |             |
| Simulated max IPC                       | 4   | 15          | 2           |

- Compensated Dot2 has an impressive high IPC:  $\approx$  15;
- it will provide twice more accurate dot product for twice more computing times than the original result

<sup>&</sup>lt;sup>2</sup>From OgRO:05

- Can you trust me when I claim that "these algorithms are fast in terms of measured times"?
- Instruction-level parallelism (ILP): what is it?
- Evaluating ILP: pen and paper
- O Evaluating ILP: an automatic approach with two simulation tools

### 5 Conclusion

#### Pros

- Reliable: results are reproducible both in time and location
- Realistic: simulation results can be correlated with measured ones
- Exploratory tool: gives us the taste of the behavior of our algorithms within "tomorrow" processors
- Optimisation tool: simulation provides a simple way to analyse the effect of some hardware constraints
- Useful: providing a very detailed picture of the behavior of the algorithm

#### Cons ... at the current state

- It remains some architecture dependencies: the instruction set
- Assembler program or High level programming language? IPC and Floating Operations per Cycle may be different for too arithmetically simple algorithms

#### Todo list

- Focus on Floating Operations per Cycle
- Improve the simulators running-time performance
- Make them available on-line and usable as black-box

#### Towards computed-assisted proof for performance evaluation

- Pro: simulation provides automatic results
- Cons: reliability of the simulation result depends on the reliability of the compiler and on the simulator

## **Bibliography and links**

- John L. Hennessy and David A. Patterson. Computer Architecture – A Quantitative Approach. Morgan Kaufmann, 2nd edition, 2003.
- Philippe Langlois and Nicolas Louvet.

More instruction level parallelism explains the actual efficiency of compensated algorithms.

Technical Report hal-00165020, DALI Research Team, HAL-CCSD, July 2007.

Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi.

Accurate sum and dot product.

SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

Siegfried M. Rump, Takeshi Ogita, and Shin'ichi Oishi. Accurate floating-point summation -part I: Faithful rounding. SIAM J. Sci. Comput., 2008.