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Motivation

How to improve and validate the accuracy of a floating point computation,

without large computing time overheads ?

Our main tool to improve the accuracy:

compensation of the rounding errors.

Existing results:

I summation and dot product algorithms from T. Ogita, S. Oishi and S.

Rump,

I Horner algorithm for polynomial evaluation from the authors.

Today’s study: triangular system solving which is one of the basic block for

numerical linear algebra.
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Outline

1 Context
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Floating point arithmetic

Let a, b ∈ F and op ∈ {+,−,×, /} an arithmetic operation.

fl(x op y) = the exact x op y rounded to the nearest floating point value.

x⊕ yx + y

Every arithmetic operation may suffer from a rounding error.

Standard model of floating point arithmetic :

fl(a op b) = (1 + ε)(a op b), with |ε| ≤ u.

Working precision u = 2−p (in rounding to the nearest rounding mode).

In this talk: IEEE-754 binary fp arithmetic, rounding to the nearest,

no underflow nor overflow.
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Why and how to improve the accuracy?

The general “rule of thumb” for backward stable algorithms:

result accuracy . condition number of the problem× computing precision.

Classic solution to improve the accuracy: increase the working precision u.

– Hardware solution:

I extended precision available in x87 fpu units.

– Software solutions:

I arbitrary precision library (the programmer choses its working precision):

MP, MPFUN/ARPREC, MPFR.

I fixed length expansions libraries: double-double, quad-double (Bailey et al.)

↪→ XBLAS library = BLAS + double-double (precision u2)

Alternative solution: compensated algorithms use corrections of the

generated rounding errors.
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Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors

at the current working precision.

+ (x , y) = 2Sum(a, b) 6 flop Knuth (74)

such that x = a⊕ b and a + b = x + y

× (x , y) = 2Prod(a, b) 17 flop Dekker (71)

such that x = a⊗ b and a× b = x + y

/ (q, r) = DivRem(a, b) 20 flop Pichat &

such that q = a� b, and a = b × q + r . Vignes (93)

with a, b, x , y , q, r ∈ F.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)

x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Algorithm (EFT for the division)

function [q, r ] = DivRem(a, b)

q = a� b

[x , y ] = 2Prod(q, b)

r = (a	 x)	 y
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Substitution algorithm for Tx = b

Consider the triangular linear system Tx = b, with T ∈ Fn×n and vector b ∈ Fn,
t1,1

...
. . .

tn,1 · · · tn,n




x1

...

xn

 =


b1

...

bn

 .

The substitution algorithm computes

x1, x2, . . . , xn, the solution of Tx = b, as

xk =
1

tk,k

(
bk −

k−1∑
i=1

tk,ixi

)
,

Algorithm (Substitution)

function x̂ = TRSV(T , b)

for k = 1 : n

ŝk,0 = bk

for i = 1 : k − 1

p̂k,i = tk,i ⊗ x̂ i

ŝk,i = ŝk,i−1 	 p̂k,i

end

x̂k = ŝk,k−1 � tk,k

end
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Accuracy of the substitution algorithm

Skeel’s condition number for Tx = b is

cond(T , x) :=
‖|T−1||T ||x |‖∞

‖x‖∞
.

The accuracy of x̂ = TRSV(T , x) satisfies

‖ x̂ − x‖∞
‖ x̂‖∞

≤ nu cond(T , x) +O(u2),

assuming cond(T ) := ‖|T−1||T |‖∞ � 1
nu .

The computed x̂ can be arbitrarily less accurate than the w.p. u.
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Substitution : accuracy w.r.t. cond(T , x)
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How to compensate the rounding errors generated by the substitution algorithm?
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Compensated triangular system solving

x̂ = TRSV(T , x) is the solution to Tx = b computed by substitution.

Our goal: to compute an approximate ĉ of the correcting term

c = x − x̂ , with c ∈ Rn×1,

and then compute the compensated solution x = x̂ ⊕ ĉ .

Since Tc = b − T x̂ , c is the exact solution of the triangular system

Tc = r , with r = b − T x̂ ∈ Rn×1.

In the classic iterative refinement frame,

I r is the residual associated with computed bx
I the useful approach to compute an approximate residual br :

evaluate b − T bx using twice the working precision (u2)
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Computing the residual thanks to EFT

function x̂ = TRSV(T , b)

for k = 1 : n

ŝk,0 = bk

for i = 1 : k − 1

p̂k,i = tk,i ⊗ x̂ i {rounding error πk,i ∈ F }
ŝk,i = ŝk,i−1 	 p̂k,i {rounding error σk,i ∈ F }

end

x̂k = ŝk,k−1 � tk,k {rounding error ρk/tk,k , with ρk ∈ F }
end

Proposition

Given x̂ = TRSV(T , b) ∈ Fn, let r = (r1, . . . , rn)
T ∈ Rn be the residual

r = b − T x̂ associated with x̂ . Then we have exactly

rk = ρk +
k−1∑
i=1

σk,i − πk,i , for k = 1 : n.
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Compensated substitution algorithm

Algorithm

function x = CompTRSV(T , b)

for k = 1 : n

ŝk,0 = bk ; r̂k,0 = ĉk,0 = 0

for i = 1 : k − 1

[ p̂k,i , πk,i ] = 2Prod(tk,i , x̂ i )

[ ŝk,i , σk,i ] = 2Sum( ŝk,i−1,− p̂k,i )

r̂k,i = r̂k,i−1 ⊕ (σk,i 	 πk,i )

ĉk,i = ĉk,i−1 ⊕ tk,i ⊗ ĉ i

end

[ x̂k , ρk ] = DivRem( ŝk−1, tk,k)

r̂k = ρk ⊕ r̂k,k−1

ĉk = ( r̂k 	 ĉk,k−1)� tk,k

end

x = x̂ ⊕ ĉ

This algorithm computes

the approximate solution

x̂ = ( x̂1, . . . , x̂n)
T = TRSV(T , b)

by the substitution algorithm;

the rounding errors

πk,i , σk,i and ρk ;

the residual vector

r̂ = ( r̂1, . . . , r̂n)
T ≈ b − T x̂

as a function of πk,i , σk,i and ρk ;

the correcting term Tc = b

ĉ = ( ĉ1, . . . , ĉn)
T = TRSV(T , r̂);

the compensated solution

x = x̂ ⊕ ĉ .
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An a priori error bound for CompTRSV

The approximate residual vector r̂ computed in CompTRSV is as accurate as if

it was computed in doubled working precision (u2).

Theorem

The accuracy of the compensated solution x̂ = CompTRSV(T , b) satisfies

‖ x − x‖∞
‖x‖∞

. u + fnu
2K(T , x) + O(u3).

This error bound is more pessimistic than the “expected” error bound

u + gn u2 cond(T , x) + O(u3),

since

‖|T−1||T ||x |‖∞
‖x‖∞

=: cond(T , x) ≤ K(T , x) :=
‖(|T−1||T |)2|x |‖∞

‖x‖∞
.

But we often observe K(T , x) ≤ α cond(T , x) with α “small” in practice. . .
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Practical accuracy of CompTRSV w.r.t. cond(T , x)

1

105

1010

1015

1020

1025

1030

1035

1040

1 105 1010 1015 1020 1025 1030 1035

103 cond(T,x)
K(T,x)

cond(T, x)

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

1

1 105 1010 1015 1020 1025 1030 1035

cond(T, x)

er
re

ur
 r

el
at

iv
e

u

u
-1

u
-2

Bo
rn

e 
po

ur
 T

R
SV

Bo
rn

e 
po

ur
 X

Bl
as

TR
SV

TRSV

XBlasTRSV

CompTRSV

n=40,

systems generated

by “method 1”:
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In these experiments,

CompTRSV is as accurate

as XBlasTRSV
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Practical accuracy of CompTRSV w.r.t. cond(T , x)
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The accuracy of

CompTRSV is not as good

as expected. . .
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From CompTRSV to CompTRSV2

Algorithm

function x = CompTRSV(T , b)

for k = 1 : n

ŝk,0 = bk ; r̂k,0 = ĉk,0 = 0

for i = 1 : k − 1

[ p̂k,i , πk,i ] = 2Prod(tk,i , x̂ i )

[ ŝk,i , σk,i ] = 2Sum( ŝk,i−1,− p̂k,i )

r̂k,i = r̂k,i−1 ⊕ (σk,i 	 πk,i )

ĉk,i = ĉk,i−1 ⊕ tk,i ⊗ ĉ i

end

[ x̂k , ρk ] = DivRem( ŝk−1, tk,k)

r̂k = ρk ⊕ r̂k,k−1

ĉk = ( r̂k 	 ĉk,k−1)� tk,k

end

x = x̂ ⊕ ĉ

Iteration k produces x̂k and ĉk as a

function of

x̂1, . . . , x̂k−1

ĉ1, . . . , ĉk−1

with ĉk ≈ xk − x̂k

Vector compensation:

corrected x is computed only after

whole x̂ and ĉ have been computed

Issue: component compensation, i.e. ,

compute xk at iteration k
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From CompTRSV to CompTRSV2

Algorithm

function x = CompTRSV2(T , b)

for k = 1 : n

ŝk,0 = bk ; r̂k,0 = ĉk,0 = 0

for i = 1 : k − 1

[ p̂k,i , πk,i ] = 2Prod(tk,i , x i )

[ ŝk,i , σk,i ] = 2Sum( ŝk,i−1,− p̂k,i )

r̂k,i = r̂k,i−1 ⊕ (σk,i 	 πk,i )

ĉk,i = ĉk,i−1 ⊕ tk,i ⊗ y i

end

[ x̂k , ρk ] = DivRem( ŝk−1, tk,k)

r̂k = ρk ⊕ r̂k,k−1

ĉk = ( r̂k 	 ĉk,k−1)� tk,k

[ xk , yk ] = 2Sum( x̂k , ĉk)

end

Iteration k produces

x̂k w.r.t. x1, . . . , xk−1

ĉk s.t. ĉk ≈ xk − x̂k

Since [ xk , yk ] = 2Sum( x̂k , ĉk),

xk = x̂k ⊕ ĉk

xk + yk = x̂k + ĉk

and yk ≈ xk − xk

Iteration k computes xk and yk w.r.t.

x1, . . . , xk−1

y1, . . . , yk−1

with yk ≈ xk − xk

Ph. Langlois (Univ. Perpignan, France) Accurate Solution of Triangular Linear System October 2, 2008 15 / 19



Accuracy of CompTRSV2

In algorithm CompTRSV,

x =


x1

...

xn

 ∈ Fn, y =


y1
...

yn

 ∈ Fn and x+ y =


x1 + y1

...

xn + yn

 ∈ Rn.

The vector x + y is an approximate solution of the system Tx = b,

and the exact solution of a slightly perturbed system,

(T + ∆T )( x + y) = (b + ∆b), with |∆T | ≤ γ2
6n|T | and |∆b| ≤ γ2

6n|b|,

where γ6n ≈ 6nu.

Theorem

The accuracy of the compensated solution x = CompTRSV2(T , b) satisfies

‖ x − x‖∞
‖x‖∞

. u + 72n2u2 cond(T , x) + O(u3).
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Practical accuracy of CompTRSV2 w.r.t. cond(T , x)

n=100, systems generated by “method 2”

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

1

1 105 1010 1015 1020

er
re

ur
 r

el
at

iv
e

cond(T, x)

u

u
-1

Borne pour T
RSV

Borne pour X
BlasT

RSV

TRSV

XBlasTRSV

CompTRSV2

CompTRSV2 is as accurate as

the classic substitution algorithm performed in twice the working precision (u2).
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Running time comparisons

Top: overhead ratios to double the accuracy while increasing dimension n

Down: CompTRSV and CompTRSV2 run at least twice as fast as XBlasTRSV
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Conclusion

We have presented a compensated substitution algorithm, CompTRSV:

I a priori error bound,

I and practical numerical behavior

not entirely satisfying. . .

We have also presented an improvement of this method, CompTRSV2:

the solution computed by CompTRSV2 is as accurate as if it was computed

by the substitution algorithm in twice the working precision (u2).

CompTRSV and CompTRSV2 runs at least twice as fast as XBlasTRSV.
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Componentwise condition numbers for linear systems

Let Ax = b be a linear system, with A ∈ Rn×n non singular and b ∈ Rn×1.

Given E ∈ Rn×n and b ∈ Rn×1, with |E | ≥ 0 and |f | ≥ 0, Higham defines the

following componentwise condition number,

condE ,f (A, x) = lim
ε→0

sup
{‖∆x‖∞

ε‖x‖∞
, (A + ∆A)(x + ∆x) = b + ∆b,

|∆A| ≤ εE , |∆b| ≤ εf
}
,

and proves that

condE ,f (A, x) =
‖|A−1|(E |x |+ f )‖∞

‖x‖∞
.

For the special case E = |A| and f = |b|, we use Skeel’s condition number,

cond(A, x) =
‖|A−1||A||x |‖∞

‖x‖∞
,

which differs from cond|A|,|b|(A, x) by at most a factor 2.
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Floating-point operations counts

TRSV: n2

CompTRSV and CompTRSV2: 27n2/2 + O(n)

XBlasTRSV: 45n2/2 + O(n)
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