SCAN 2008
Sep. 29 - Oct. 3, 2008, at El Paso, TX, USA

Accurate Solution of Triangular Linear System

Philippe Langlois
DALI at University of Perpignan
France

Nicolas Louvet
INRIA and LIP at ENS Lyon
France

$$
\begin{gathered}
\text { philippe.langlois@univ-perp.fr } \\
\text { nicolas.louvet@ens-lyon.fr }
\end{gathered}
$$

Motivation

How to improve and validate the accuracy of a floating point computation, without large computing time overheads?

- Our main tool to improve the accuracy:
compensation of the rounding errors.
- Existing results:
- summation and dot product algorithms from T. Ogita, S. Oishi and S. Rump,
- Horner algorithm for polynomial evaluation from the authors.
- Today's study: triangular system solving which is one of the basic block for numerical linear algebra.

Outline

(1) Context
(2) The substitution algorithm and its accuracy
(3) A first compensated algorithm CompTRSV
(4) Compensated algorithm CompTRSV2 improves CompTRSV
(5) Conclusion

Floating point arithmetic

Let $a, b \in \mathbb{F}$ and op $\in\{+,-, \times, /\}$ an arithmetic operation.

- $\mathrm{fl}(x$ op $y)=$ the exact x op y rounded to the nearest floating point value.

Every arithmetic operation may suffer from a rounding error.

- Standard model of floating point arithmetic :

$$
f \mid(a \text { op } b)=(1+\varepsilon)(a \text { op } b), \quad \text { with } \quad|\varepsilon| \leq \mathbf{u} .
$$

Working precision $\mathbf{u}=2^{-p}$ (in rounding to the nearest rounding mode).

- In this talk: IEEE-754 binary fp arithmetic, rounding to the nearest, no underflow nor overflow.

Why and how to improve the accuracy?

- The general "rule of thumb" for backward stable algorithms:
result accuracy \lesssim condition number of the problem \times computing precision.

Why and how to improve the accuracy?

- The general "rule of thumb" for backward stable algorithms: result accuracy \lesssim condition number of the problem \times computing precision.
- Classic solution to improve the accuracy: increase the working precision \mathbf{u}.
- Hardware solution:
- extended precision available in $\times 87 \mathrm{fpu}$ units.
- Software solutions:
- arbitrary precision library (the programmer choses its working precision): MP, MPFUN/ARPREC, MPFR.
- fixed length expansions libraries: double-double, quad-double (Bailey et al.)
\hookrightarrow XBLAS library $=$ BLAS + double-double $\left(\right.$ precision $\left.\mathbf{u}^{2}\right)$

Why and how to improve the accuracy?

- The general "rule of thumb" for backward stable algorithms: result accuracy \lesssim condition number of the problem \times computing precision.
- Classic solution to improve the accuracy: increase the working precision \mathbf{u}.
- Hardware solution:
- extended precision available in $\times 87 \mathrm{fpu}$ units.
- Software solutions:
- arbitrary precision library (the programmer choses its working precision): MP, MPFUN/ARPREC, MPFR.
- fixed length expansions libraries: double-double, quad-double (Bailey et al.) \hookrightarrow XBLAS library $=$ BLAS + double-double (precision \mathbf{u}^{2})
- Alternative solution: compensated algorithms use corrections of the generated rounding errors.

Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors at the current working precision.

Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors at the current working precision.

+	$(x, y)=2 \operatorname{Sum}(a, b)$ such that $x=a \oplus b$ and $a+b=x+y$	6 flop	Knuth (74)
\times	$(x, y)=2 \operatorname{Prod}(a, b)$ such that $x=a \otimes b$ and $a \times b=x+y$	17 flop	Dekker (71)
/	$\begin{aligned} & (q, r)=\operatorname{DivRem}(a, b) \\ & \quad \text { such that } \quad q=a \oslash b, \text { and } a=b \times q+r . \end{aligned}$	20 flop	Pichat \& Vignes (93)

with $a, b, x, y, q, r \in \mathbb{F}$.

Algorithm (Knuth)
function $[\mathrm{x}, \mathrm{y}]=2 \operatorname{Sum}(\mathrm{a}, \mathrm{b})$

$$
\begin{aligned}
& x=a \oplus b \\
& z=x \ominus a \\
& y=(a \ominus(x \ominus z)) \oplus(b \ominus z)
\end{aligned}
$$

Algorithm (EFT for the division)

 function $[q, r]=\operatorname{DivRem}(a, b)$$$
\begin{aligned}
& q=a \oslash b \\
& {[x, y]=2 \operatorname{Prod}(q, b)} \\
& r=(a \ominus x) \ominus y
\end{aligned}
$$

Substitution algorithm for $T x=b$

Consider the triangular linear system $T x=b$, with $T \in \mathbb{F}^{n \times n}$ and vector $b \in \mathbb{F}^{n}$,

$$
\left(\begin{array}{ccc}
t_{1,1} & & \\
\vdots & \ddots & \\
t_{n, 1} & \cdots & t_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) .
$$

The substitution algorithm computes $x_{1}, x_{2}, \ldots, x_{n}$, the solution of $T x=b$, as

$$
x_{k}=\frac{1}{t_{k, k}}\left(b_{k}-\sum_{i=1}^{k-1} t_{k, i} x_{i}\right),
$$

$$
\begin{aligned}
& \text { Algorithm (Substitution) } \\
& \text { function } \widehat{x}=\operatorname{TRSV}(T, b) \\
& \text { for } k=1: n \\
& \qquad \widehat{s}_{k, 0}=b_{k} \\
& \text { for } i=1: k-1 \\
& \qquad \widehat{p}_{k, i}=t_{k, i} \otimes \widehat{x}_{i} \\
& \qquad \widehat{s}_{k, i}=\widehat{s}_{k, i-1} \ominus \widehat{p}_{k, i} \\
& \text { end } \\
& \widehat{x}_{k}=\widehat{s}_{k, k-1} \oslash t_{k, k} \\
& \text { end }
\end{aligned}
$$

Accuracy of the substitution algorithm

- Skeel's condition number for $T x=b$ is

$$
\operatorname{cond}(T, x):=\frac{\left\|\mid T^{-1}\right\| T\|x\|_{\infty}}{\|x\|_{\infty}} .
$$

- The accuracy of $\hat{x}=\operatorname{TRSV}(T, x)$ satisfies

$$
\frac{\|\widehat{x}-x\|_{\infty}}{\|\widehat{x}\|_{\infty}} \leq n \mathbf{u} \operatorname{cond}(T, x)+\mathcal{O}\left(\mathbf{u}^{2}\right)
$$

assuming cond $(T):=\left\|\left|T^{-1}\|T \mid\|_{\infty} \ll \frac{1}{n u}\right.\right.$.

- The computed \widehat{x} can be arbitrarily less accurate than the w.p. u.

Substitution : accuracy w.r.t. cond (T, x)

How to compensate the rounding errors generated by the substitution algorithm?

Compensated triangular system solving

$\widehat{x}=\operatorname{TRSV}(T, x)$ is the solution to $T x=b$ computed by substitution.

- Our goal: to compute an approximate \widehat{c} of the correcting term

$$
c=x-\hat{x}, \quad \text { with } \quad c \in \mathbb{R}^{n \times 1}
$$

and then compute the compensated solution $\bar{x}=\widehat{x} \oplus \widehat{c}$.

Compensated triangular system solving

$\widehat{x}=\operatorname{TRSV}(T, x)$ is the solution to $T x=b$ computed by substitution.

- Our goal: to compute an approximate \widehat{c} of the correcting term

$$
c=x-\hat{x}, \quad \text { with } \quad c \in \mathbb{R}^{n \times 1}
$$

and then compute the compensated solution $\bar{x}=\widehat{x} \oplus \widehat{c}$.

- Since $T c=b-T \widehat{x}, c$ is the exact solution of the triangular system

$$
T c=r, \quad \text { with } \quad r=b-T \hat{x} \in \mathbb{R}^{n \times 1} .
$$

- In the classic iterative refinement frame,
- r is the residual associated with computed \hat{x}
- the useful approach to compute an approximate residual \widehat{r} : evaluate $b-T \widehat{x}$ using twice the working precision $\left(\mathbf{u}^{2}\right)$

Computing the residual thanks to EFT

function $\widehat{x}=\operatorname{TRSV}(T, b)$
for $k=1: n$

$$
\begin{aligned}
\widehat{s}_{k, 0} & =b_{k} \\
\text { for } i & =1: k-1
\end{aligned}
$$

$$
\widehat{p}_{k, i}=t_{k, i} \otimes \widehat{x}_{i}
$$

$\left\{\right.$ rounding error $\left.\pi_{k, i} \in \mathbb{F}\right\}$
$\widehat{s}_{k, i}=\widehat{s}_{k, i-1} \ominus \widehat{p}_{k, i} \quad$ \{rounding error $\left.\sigma_{k, i} \in \mathbb{F}\right\}$
end

$$
\widehat{x}_{k}=\widehat{s}_{k, k-1} \oslash t_{k, k}
$$

end
$\left\{\right.$ rounding error $\rho_{k} / t_{k, k}$, with $\left.\rho_{k} \in \mathbb{F}\right\}$

Proposition

Given $\hat{x}=\operatorname{TRSV}(T, b) \in \mathbb{F}^{n}$, let $r=\left(r_{1}, \ldots, r_{n}\right)^{T} \in \mathbb{R}^{n}$ be the residual $r=b-T \hat{x}$ associated with \widehat{x}. Then we have exactly

$$
r_{k}=\rho_{k}+\sum_{i=1}^{k-1} \sigma_{k, i}-\pi_{k, i}, \quad \text { for } \quad k=1: n
$$

Compensated substitution algorithm

Algorithm

```
function \overline{x}=\operatorname{CompTRSV(T,b)}
```

for $k=1: n$

$$
\widehat{s}_{k, 0}=b_{k} ; \widehat{r}_{k, 0}=\widehat{c}_{k, 0}=0
$$

$$
\text { for } i=1: k-1
$$

$$
\left[\widehat{p}_{k, i}, \pi_{k, i}\right]=2 \operatorname{Prod}\left(t_{k, i}, \widehat{x}_{i}\right)
$$

$$
\left[\widehat{s}_{k, i}, \sigma_{k, i}\right]=2 \operatorname{Sum}\left(\widehat{s}_{k, i-1},-\widehat{p}_{k, i}\right)
$$

$$
\widehat{r}_{k, i}=\widehat{r}_{k, i-1} \oplus\left(\sigma_{k, i} \ominus \pi_{k, i}\right)
$$

$$
\widehat{c}_{k, i}=\widehat{c}_{k, i-1} \oplus t_{k, i} \otimes \widehat{c}_{i}
$$

end

$$
\begin{aligned}
& {\left[\hat{x}_{k}, \rho_{k}\right]=\operatorname{DivRem}\left(\widehat{s}_{k-1}, t_{k, k}\right)} \\
& \widehat{r}_{k}=\rho_{k} \oplus \widehat{r}_{k, k-1} \\
& \widehat{c}_{k}=\left(\widehat{r}_{k} \ominus \widehat{c}_{k, k-1}\right) \oslash t_{k, k} \\
& \text { end } \\
& \bar{x}=\widehat{x} \oplus \widehat{c}
\end{aligned}
$$

This algorithm computes

- the approximate solution

$$
\widehat{x}=\left(\widehat{x}_{1}, \ldots, \widehat{x}_{n}\right)^{T}=\operatorname{TRSV}(T, b)
$$

by the substitution algorithm;

- the rounding errors

$$
\pi_{k, i}, \sigma_{k, i} \text { and } \rho_{k}
$$

- the residual vector $\widehat{r}=\left(\widehat{r}_{1}, \ldots, \widehat{r}_{n}\right)^{T} \approx b-T \widehat{x}$ as a function of $\pi_{k, i}, \sigma_{k, i}$ and ρ_{k};
- the correcting term $T c=b$

$$
\widehat{c}=\left(\widehat{c}_{1}, \ldots, \widehat{c}_{n}\right)^{T}=\operatorname{TRSV}(T, \widehat{r}) ;
$$

- the compensated solution

$$
\bar{x}=\widehat{x} \oplus \widehat{c} .
$$

An a priori error bound for CompTRSV

The approximate residual vector \hat{r} computed in CompTRSV is as accurate as if it was computed in doubled working precision (\mathbf{u}^{2}).

Theorem

The accuracy of the compensated solution $\widehat{x}=\operatorname{CompTRSV}(T, b)$ satisfies

$$
\frac{\|\bar{x}-x\|_{\infty}}{\|x\|_{\infty}} \lesssim \mathbf{u}+f_{n} \mathbf{u}^{2} \mathrm{~K}(T, x)+\mathcal{O}\left(\mathbf{u}^{3}\right) .
$$

This error bound is more pessimistic than the "expected" error bound

$$
\mathbf{u}+g_{n} \mathbf{u}^{2} \operatorname{cond}(T, x)+\mathcal{O}\left(\mathbf{u}^{3}\right)
$$

since

$$
\frac{\left\|\left|T^{-1}\|T\| x\right|\right\|_{\infty}}{\|x\|_{\infty}}=: \operatorname{cond}(T, x) \leq \mathrm{K}(T, x):=\frac{\left\|\left(\left|T^{-1} \| T\right|\right)^{2}|x|\right\|_{\infty}}{\|x\|_{\infty}} .
$$

But we often observe $\mathrm{K}(T, x) \leq \alpha \operatorname{cond}(T, x)$ with α "small" in practice...

Practical accuracy of CompTRSV w.r.t. cond (T, x)

$\mathrm{n}=40$,
systems generated by "method 1":
$\mathrm{K}(T, x) \leq 10^{3} \operatorname{cond}(T, x)$

In these experiments,
CompTRSV is as accurate as XBlasTRSV

Practical accuracy of CompTRSV w.r.t. cond (T, x)

$\mathrm{n}=100$,
systems generated
by "method 2":
$\mathrm{K}(T, x) \leq 10^{6} \operatorname{cond}(T, x)$

The accuracy of
CompTRSV is not as good as expected...

From CompTRSV to CompTRSV2

```
Algorithm
function \(\bar{x}=\operatorname{CompTRSV}(T, b)\)
    for \(k=1: n\)
    \(\widehat{s}_{k, 0}=b_{k} ; \widehat{r}_{k, 0}=\widehat{c}_{k, 0}=0\)
    for \(i=1: k-1\)
    \(\left[\widehat{p}_{k, i}, \pi_{k, i}\right]=2 \operatorname{Prod}\left(t_{k, i}, \widehat{x}_{i}\right)\)
    \(\left[\widehat{s}_{k, i}, \sigma_{k, i}\right]=2 \operatorname{Sum}\left(\widehat{s}_{k, i-1},-\widehat{p}_{k, i}\right)\)
    \(\widehat{r}_{k, i}=\widehat{r}_{k, i-1} \oplus\left(\sigma_{k, i} \ominus \pi_{k, i}\right)\)
    \(\widehat{c}_{k, i}=\widehat{c}_{k, i-1} \oplus t_{k, i} \otimes \widehat{c}_{i}\)
end
\(\left[\widehat{x}_{k}, \rho_{k}\right]=\operatorname{DivRem}\left(\widehat{s}_{k-1}, t_{k, k}\right)\)
\(\widehat{r}_{k}=\rho_{k} \oplus \widehat{r}_{k, k-1}\)
\(\widehat{c}_{k}=\left(\widehat{r}_{k} \ominus \widehat{c}_{k, k-1}\right) \oslash t_{k, k}\)
end
\(\bar{x}=\widehat{x} \oplus \widehat{c}\)
```


From CompTRSV to CompTRSV2

```
Algorithm
function \(\bar{x}=\operatorname{CompTRSV} 2(T, b)\)
    for \(k=1: n\)
    \(\widehat{s}_{k, 0}=b_{k} ; \hat{r}_{k, 0}=\widehat{c}_{k, 0}=0\)
    for \(i=1: k-1\)
        \(\left[\hat{p}_{k, i}, \pi_{k, i}\right]=2 \operatorname{Prod}\left(t_{k, i}, \bar{x}_{i}\right)\)
        \(\left[\widehat{s}_{k, i}, \sigma_{k, i}\right]=2 \operatorname{Sum}\left(\widehat{s}_{k, i-1},-\widehat{p}_{k, i}\right)\)
        \(\widehat{r}_{k, i}=\widehat{r}_{k, i-1} \oplus\left(\sigma_{k, i} \ominus \pi_{k, i}\right)\)
        \(\widehat{c}_{k, i}=\widehat{c}_{k, i-1} \oplus t_{k, i} \otimes \bar{y}_{i}\)
        end
        \(\left[\hat{x}_{k}, \rho_{k}\right]=\operatorname{DivRem}\left(\hat{s}_{k-1}, t_{k, k}\right)\)
        \(\widehat{r}_{k}=\rho_{k} \oplus \widehat{r}_{k, k-1}\)
        \(\widehat{c}_{k}=\left(\widehat{r}_{k} \ominus \widehat{c}_{k, k-1}\right) \oslash t_{k, k}\)
        \(\left[\bar{x}_{k}, \bar{y}_{k}\right]=2 \operatorname{Sum}\left(\hat{x}_{k}, \widehat{c}_{k}\right)\)
    end
```

Iteration k produces

- \widehat{x}_{k} w.r.t. $\bar{x}_{1}, \ldots, \bar{x}_{k-1}$
- \widehat{c}_{k} s.t. $\widehat{c}_{k} \approx x_{k}-\widehat{x}_{k}$

Since $\left[\bar{x}_{k}, \bar{y}_{k}\right]=2 \operatorname{Sum}\left(\widehat{x}_{k}, \widehat{c}_{k}\right)$,

- $\bar{x}_{k}=\widehat{x}_{k} \oplus \widehat{c}_{k}$
- $\bar{x}_{k}+\bar{y}_{k}=\widehat{x}_{k}+\widehat{c}_{k}$
and $\bar{y}_{k} \approx x_{k}-\bar{x}_{k}$

Iteration k computes \bar{x}_{k} and \bar{y}_{k} w.r.t.

- $\bar{x}_{1}, \ldots, \bar{x}_{k-1}$
- $\bar{y}_{1}, \ldots, \bar{y}_{k-1}$
with $\bar{y}_{k} \approx x_{k}-\bar{x}_{k}$

Accuracy of CompTRSV2

In algorithm CompTRSV,

$$
\bar{x}=\left(\begin{array}{c}
\bar{x}_{1} \\
\vdots \\
\bar{x}_{n}
\end{array}\right) \in \mathbb{F}^{n}, \quad \bar{y}=\left(\begin{array}{c}
\bar{y}_{1} \\
\vdots \\
\bar{y}_{n}
\end{array}\right) \in \mathbb{F}^{n} \quad \text { and } \quad \bar{x}+\bar{y}=\left(\begin{array}{c}
\bar{x}_{1}+\bar{y}_{1} \\
\vdots \\
\bar{x}_{n}+\bar{y}_{n}
\end{array}\right) \in \mathbb{R}^{n} .
$$

The vector $\bar{x}+\bar{y}$ is an approximate solution of the system $T x=b$, and the exact solution of a slightly perturbed system,

$$
(T+\Delta T)(\bar{x}+\bar{y})=(b+\Delta b), \quad \text { with } \quad|\Delta T| \leq \gamma_{6 n}^{2}|T| \quad \text { and } \quad|\Delta b| \leq \gamma_{6 n}^{2}|b|,
$$

where $\gamma_{6 n} \approx 6 n \mathbf{u}$.
Theorem
The accuracy of the compensated solution $\bar{x}=\operatorname{CompTRSV} 2(T, b)$ satisfies

$$
\frac{\|\bar{x}-x\|_{\infty}}{\|x\|_{\infty}} \lesssim \mathbf{u}+72 n^{2} \mathbf{u}^{2} \operatorname{cond}(T, x)+\mathcal{O}\left(\mathbf{u}^{3}\right)
$$

Practical accuracy of CompTRSV2 w.r.t. cond (T, x)

$\mathrm{n}=100$, systems generated by "method 2"

CompTRSV2 is as accurate as
the classic substitution algorithm performed in twice the working precision $\left(\mathbf{u}^{2}\right)$.

Running time comparisons

Top: overhead ratios to double the accuracy while increasing dimension n Down: CompTRSV and CompTRSV2 run at least twice as fast as XBlasTRSV

Conclusion

- We have presented a compensated substitution algorithm, CompTRSV:
- a priori error bound,
- and practical numerical behavior not entirely satisfying. . .
- We have also presented an improvement of this method, CompTRSV2: the solution computed by CompTRSV2 is as accurate as if it was computed by the substitution algorithm in twice the working precision $\left(\mathbf{u}^{2}\right)$.
- CompTRSV and CompTRSV2 runs at least twice as fast as XBlasTRSV.

Componentwise condition numbers for linear systems

Let $A x=b$ be a linear system, with $A \in \mathbb{R}^{n \times n}$ non singular and $b \in \mathbb{R}^{n \times 1}$.
Given $E \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n \times 1}$, with $|E| \geq 0$ and $|f| \geq 0$, Higham defines the following componentwise condition number,

$$
\begin{aligned}
& \operatorname{cond}_{E, f}(A, x)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{\|\Delta x\|_{\infty}}{\varepsilon\|x\|_{\infty}},(A+\Delta A)(x+\Delta x)=b+\Delta b\right. \\
&|\Delta A| \leq \varepsilon E,|\Delta b| \leq \varepsilon f\}
\end{aligned}
$$

and proves that

$$
\operatorname{cond}_{E, f}(A, x)=\frac{\left\|\left|A^{-1}\right|(E|x|+f)\right\|_{\infty}}{\|x\|_{\infty}}
$$

For the special case $E=|A|$ and $f=|b|$, we use Skeel's condition number,

$$
\operatorname{cond}(A, x)=\frac{\left\|\mid A^{-1}\right\| A\|x\|_{\infty}}{\|x\|_{\infty}}
$$

which differs from $\operatorname{cond}_{|A|,|b|}(A, x)$ by at most a factor 2 .

Floating-point operations counts

- TRSV: n^{2}
- CompTRSV and CompTRSV2: $27 n^{2} / 2+O(n)$
- XBlasTRSV: $45 n^{2} / 2+O(n)$

